Matrizes e sistemas de equações algébricas lineares

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Matrizes e sistemas de equações algébricas lineares"

Transcrição

1 Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37

2 Definições Equação linear Uma equação (algébrica) linear na incógnita x tem a forma ax = b onde o coeficiente a e o termo independente b são números reais (ou complexos) x : a : b : incógnita (ou variável) coeficiente termo independente ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 2 / 37

3 Definições Equação linear Uma equação (algébrica) linear nas incógnitas x 1,x 2,,x n tem a forma a 1 x 1 + a 2 x a n x n = b ou n a j x j = b, j=1 onde os a 1,a 2,,a n e o termo independente b são números reais (ou complexos) x 1,x 2,,x n : a 1,a 2,,a n : b : incógnitas coeficientes termo independente ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 3 / 37

4 Definições Sistema de equações lineares Um sistema de m equações lineares e n incógnitas em R (ou C) é uma conjunção de m equações lineares nas mesmas n incógnitas: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 (1) a m1 x 1 + a m2 x a mn x n = b m isto é, n a ij x j = b i, j=1 para i = 1,,m x j : a ij : b i : variáveis coeficientes termos independentes ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 4 / 37

5 Solução Uma solução do sistema (1) é uma sequência ordenada (α 1,,α n ) de números reais (ou complexos), tal que (1) é verdadeiro quando x 1 = α 1,,x n = α n Exemplo Considere o sistema de 2 equações lineares e 3 incógnitas em R: (2) { 2x y + z = 0 x + y z = 1 (1, 0, 2) é solução do sistema (2) ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 5 / 37

6 Nova representação de um sistema de equações a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m a 11 a 12 a 1n a 21 a 22 a 2n x 1 x 2 = b 1 b 2 a m1 a m2 a mn x n b m Ax = b ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 6 / 37

7 Exemplo O sistema { 2x y + z = 0 x + y z = 1 pode ser representado do seguinte modo: [ ] x y z = [ 0 1 ] ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 7 / 37

8 Matriz Uma matriz do tipo m n e de entradas reais (ou complexas) é um quadro de mn números reais (ou complexos) dispostos em m linhas e n colunas A = a 11 a 1j a 1n a i1 a ij a in a m1 a mj a mn Notação: A = [a ij ] ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 8 / 37

9 Entrada de uma matriz A = a 11 a 1j a 1n a i1 a ij a in a m1 a mj a mn Elemento ou entrada (i, j) ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 9 / 37

10 Linhas de uma matriz A = a 11 a 1j a 1n a i1 a ij a in a m1 a mj a mn Linha i ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 10 / 37

11 Colunas de uma matriz A = a 11 a 1j a 1n a i1 a ij a in a m1 a mj a mn Coluna j ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 11 / 37

12 Matriz nula [a ij ] é a matriz nula se a ij = 0, para i = 1,,m e j = 1,,n, ie, todas as entradas são nulas A matriz nula do tipo m n designa-se por 0 m n ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 12 / 37

13 Matriz coluna e matriz linha Matriz coluna: a 1 a m Matriz linha: [ a1 a n ] ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 13 / 37

14 Matrizes quadradas Uma matriz diz-se quadrada se o número de linhas é igual ao número de colunas a 11 a 1i a 1n a i1 a ii a in a n1 a ni a nn n diz-se a ordem da matriz ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 14 / 37

15 Matrizes quadradas A = a 11 a 1i a 1n a i1 a ii a in a n1 a ni a nn Diagonal principal de A: a 11,a 22,,a nn O traço de A, tra, é a soma de todas as entradas da diagonal principal ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 15 / 37

16 Matriz triangular inferior Uma matriz quadrada A = [a ij ] diz-se triangular inferior se a ij = 0 para i < j a 11 0 a i1 a ii a n1 a ni a nn ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 16 / 37

17 Matriz triangular superior Uma matriz quadrada A = [a ij ] diz-se triangular superior se a ij = 0 para i > j a 11 a 1i a 1n a ii a in 0 a nn ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 17 / 37

18 Matriz diagonal Uma matriz quadrada A = [a ij ] diz-se diagonal se a ij = 0 para i j A = a a ii a nn Se todas as entradas da diagonal principal forem iguais, diremos que a matriz é escalar ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 18 / 37

19 Matriz identidade A matriz diagonal de ordem n cujas entradas da diagonal principal são iguais a 1 designa-se por matriz identidade (de ordem n) I n = ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 19 / 37

20 Igualdade de matrizes Duas matrizes A = [a ij ] e B = [b ij ], do tipo m n, dizem-se iguais se a ij = b ij, para i = 1,,m e j = 1,,n Nestas condições, escrevemos A = B ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 20 / 37

21 Operações com matrizes Adição de matrizes Se duas matrizes A = [a ij ] e B = [b ij ] forem do mesmo tipo m n, então a soma A + B é a matriz do tipo m n cuja entrada (i,j) é para i = 1,,m e j = 1,,n a ij + b ij, ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 21 / 37

22 Propriedades da adição de matrizes A,B,C (m n), (A + B) + C = A + (B + C) A,B (m n), A + B = B + A A (m n), A + 0 m n = A A = [a ij ] (m n), A = [ a ij ] (m n), A + A = 0 m n ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 22 / 37

23 Multiplicação de um número por uma matriz O produto de um número (real ou complexo) α por uma matriz A = [a ij ] do tipo m n é a matriz igualmente do tipo m n tal que a entrada (i,j) é para i = 1,,m e j = 1,,n αa ij, Nestas condições, usamos a seguinte notação: αa ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 23 / 37

24 Propriedades do produto de um número por uma matriz α,β, A, (αβ)a = α(βa) α, A,B, α(a + B) = αa + αb α,β, A, (α + β)a = αa + βa A, 1A = A ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 24 / 37

25 Multiplicação de matrizes O produto de A = [a ij ], do tipo m n, por B = [b ij ], do tipo n p é a matriz do tipo m p, tal que a entrada (i,j) é definida por n a iq b qj, q=1 para i = 1,,m e j = 1,,p Notação para o produto de A por B: AB ou A B ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 25 / 37

26 Multiplicação de matrizes c ij = n a iq b qj q=1 = a i1 b 1j + a i2 b 2j + + a in b nj b 1j = [ ] b 2j a i1 a i2 a in b nj = (linha i de A) (coluna j de B) ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 26 / 37

27 Propriedades do produto de matrizes A (m n), B (n p), C (p r), (AB)C = A(BC) A,B (m n), C (n p), (A + B)C = AC + BC A (m n), B,C (n p), A(B + C) = AB + AC A (m n), B (n p), α, α(ab) = (αa)b = A(αB) A (m n), A0 n p = 0 m p, 0 p m A = 0 p n A (m n), AI n = A, I m A = A ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 27 / 37

28 OBSERVAÇÃO: A MULTIPLICAÇÃO DE MATRIZES NÃO É COMUTATIVA!! AS LEIS DO ANULAMENTO DO PRODUTO EM MATRIZES NÃO SÃO VÁLIDAS!! ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 28 / 37

29 Transposta de uma matriz A transposta de uma matriz A do tipo m n, A T, é uma matriz do tipo n m cujas linhas são as colunas de A pela mesma ordem Exemplo A = [ /2 ] A T = /2 Se A = A T, então diremos que A é simétrica Se A = A T, então diremos que A é anti-simétrica ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 29 / 37

30 Propriedades da transposição Considere as matrizes A,B do tipo m n, e C do tipo n p, e um número α (A T ) T = A (A + B) T = A T + B T (AC) T = C T A T (αa) T = αa T ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 30 / 37

31 Matrizes invertíveis Inversa de uma matriz Uma matriz quadrada A, de ordem n, é invertível se existir uma matriz quadrada B, de ordem n, tal que AB = BA = I n Exemplo Uma inversa de é [ ? ] ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 31 / 37

32 Propriedades da inversa de uma matriz Se A é invertível, então a inversa é única e denota-se por A 1 Se A e B são matrizes invertíveis, então AB é uma matriz invertível e (AB) 1 = B 1 A 1 Se A é invertível, então (A T ) 1 = (A 1 ) T Se A é invertível e k é um número inteiro, então (A k ) 1 = (A 1 ) k Se A é invertível e α é um escalar não-nulo, então (αa) 1 = 1 α A 1 ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 32 / 37

33 Matrizes elementares Chama-se matriz elementar de ordem m a toda a matriz que se obtém de I m por aplicação de uma operação elementar às respectivas linhas, ie I Troca entre si de duas linhas II Multiplicação de todos os elementos de uma linha por um número diferente de zero III Substituição de uma linha pela soma dessa linha com um múltiplo de outra ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 33 / 37

34 Matrizes elementares do tipo I Para i,j {1,,m}, com i j, P ij é a matriz que resulta de I m trocando entre si a linha i com a linha j Exemplos P 12 = = P 21 ; P 24 = = P 42 Seja A m n P il A é a matriz que se obtém de A trocando a linha i com a linha j Teorema (P ij ) 1 = P ij ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 34 / 37

35 Matrizes elementares do tipo II Para i {1,,m} e α um escalar não nulo, D i (α) é a matriz que se obtém de I m multiplicando a linha i por α Exemplos D 2 (7) = ; D 3 (9) = Seja A m n D i (α)a é a matriz que se obtém de A multiplicando a linha i por α Teorema (D i (α)) 1 = D i (α 1 ) ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 35 / 37

36 Matrizes elementares do tipo III Para i,j {1,,m}, com i j, e α um escalar, E ij (α) é a matriz que se obtém de I m substituindo a linha i pela soma da linha i com a linha j previamente multiplicada por α Exemplos E 24 ( 4) = ; E 31(1/2) = / Seja A m n E ij (α)a é a matriz que se obtém de A adicionando à linha i a linha j previamente multiplicada por α Teorema (E ij (α)) 1 = E ij ( α) ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 36 / 37

37 Observações Se E for uma matriz elementar, EA é a matriz que se obtém de A aplicando-lhe às linhas as mesmas operações elementares que foram aplicadas às linhas de I m para obter E Resultado análogo é válido para o produto AE, reflectindo-se agora o efeito da multiplicação nas colunas de A: AE é a matriz obtida de A aplicando-lhe às colunas as mesmas operações elementares que foram aplicadas às colunas de I n para obter E ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 37 / 37

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014

Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014 es Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais Abril de 2014 Matrizes Matrizes Uma matriz A, m n (m por n), é uma tabela de mn números dispostos em m linhas e n colunas.

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais

Matrizes - ALGA /05 1. Matrizes

Matrizes - ALGA /05 1. Matrizes Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores

Leia mais

Matemática II /06 - Matrizes 1. Matrizes

Matemática II /06 - Matrizes 1. Matrizes Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)

Leia mais

Matrizes - Matemática II /05 1. Matrizes

Matrizes - Matemática II /05 1. Matrizes Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

Revisão: Matrizes e Sistemas lineares. Parte 01

Revisão: Matrizes e Sistemas lineares. Parte 01 Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes

Leia mais

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares

Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n.

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n. Matrizes noções gerais e notações Definição Designa-se por matriz de números reais a um quadro do tipo a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn onde os elementos a ij (i = 1, 2,...,

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa

Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Lições de Matemática Maria do Rosário Grossinho, João Paulo Janela Universidade Técnica de Lisboa Versão provisória vp Capítulo Matrizes e Determinantes Versão provisória () Generalidades Definição Dados

Leia mais

São tabelas de elementos dispostos ordenadamente em linhas e colunas.

São tabelas de elementos dispostos ordenadamente em linhas e colunas. EMENTA (RESUMO) Matrizes Matrizes, determinantes e suas propriedades, Multiplicação de matrizes, Operações com matrizes, Matrizes inversíveis. Sistemas de Equações Lineares Sistemas equações lineares,

Leia mais

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn

a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn Matrizes Definição Definição Uma matriz m n é uma tabela de mn números dispostos em m linhas e n colunas a 11 a 1 a 1n a 1 a a n a m1 a m a mn Embora a rigor matrizes possam ter quaisquer tipos de elementos,

Leia mais

Lista de Exercícios 04 Álgebra Matricial

Lista de Exercícios 04 Álgebra Matricial Lista de Exercícios 04 Álgebra Matricial - 017.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Pensamento. "A escada da sabedoria tem os degraus feitos de números." (Blavatsky) Prof. MSc. Herivelto Nunes

Pensamento. A escada da sabedoria tem os degraus feitos de números. (Blavatsky) Prof. MSc. Herivelto Nunes Aula Introdutória Álgebra Linear I- Abril 2017 Pensamento "A escada da sabedoria tem os degraus feitos de números." (Blavatsky) Prof. MSc. Herivelto Nunes Unidade Matrizes. Matrizes A matriz foi criada

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

MATRIZES. Conceitos e Operações

MATRIZES. Conceitos e Operações MATRIZES Conceitos e Operações As matrizes são tabelas de números reais utilizadas em quase todos os ramos da ciência e da engenharia. Várias operações realizadas por computadores são através de matrizes.

Leia mais

Aula 07 mtm B MATRIZES

Aula 07 mtm B MATRIZES Aula 07 mtm B MATRIZES Definição Tabela de números dispostos em linhas e colunas. Representação ou ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a

Leia mais

Método de eliminação de Gauss

Método de eliminação de Gauss Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da

Leia mais

Unidade 2 - Matrizes. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013

Unidade 2 - Matrizes. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 2 - Matrizes A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 9 de agosto de 2013 O dono de uma pequena frota de quatro táxis, movidos

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

Parte 1 - Matrizes e Sistemas Lineares

Parte 1 - Matrizes e Sistemas Lineares Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Matrizes Inversas 1 Matriz Inversa e Propriedades 2 Cálculo da matriz

Leia mais

ficha 2 determinantes

ficha 2 determinantes Exercícios de Álgebra Linear ficha 2 determinantes Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 Determinantes 2 Sendo

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto

Leia mais

Matrizes - Parte 1. Márcio Nascimento

Matrizes - Parte 1. Márcio Nascimento Matrizes - Parte 1 Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 20171 4 de setembro

Leia mais

1, , ,

1, , , Ministério da Educação Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Licenciatura em Informática Fundamentos de Geometria Analítica e Álgebra Linear Profª Sheila R. Oro Este texto

Leia mais

Álgebra Linear. Licenciatura em Economia. Maria Joana Soares

Álgebra Linear. Licenciatura em Economia. Maria Joana Soares Álgebra Linear Licenciatura em Economia Maria Joana Soares setembro 2012 1 Matrizes 11 Conceitos básicos Na disciplina de Álgebra Linear, as chamadas matrizes são objetos matemáticos que desempenham um

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Apostila de Matemática 10 Matriz

Apostila de Matemática 10 Matriz Apostila de Matemática 10 Matriz 1.0 Definição m e n são números inteiros maiores que zero. Matriz mxn é uma tabela retangular formada por m.n números reais, dispostos é m linhas e n colunas. A tabela

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

Matriz, Sistema Linear e Determinante

Matriz, Sistema Linear e Determinante Matriz, Sistema Linear e Determinante 1.0 Sistema de Equações Lineares Equação linear de n variáveis x 1, x 2,..., x n é uma equação que pode ser expressa na forma a1x1 + a 2 x 2 +... + a n x n = b, onde

Leia mais

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016

AULA 8- ÁLGEBRA MATRICIAL VERSÃO: OUTUBRO DE 2016 CURSO DE ADMINISTRAÇÃO CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA 01 AULA 8- ÁLGEBRA MATRICIAL VERSÃO: 0.1 - OUTUBRO DE 2016 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

Produto Misto, Determinante e Volume

Produto Misto, Determinante e Volume 15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................

Leia mais

Matrizes - Parte II. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2

Matrizes - Parte II. Juliana Pimentel.  juliana.pimentel. Sala Bloco A, Torre 2 Matrizes - Parte II Juliana Pimentel juliana.pimentel@ufabc.edu.br http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 AB BA (Comutativa) Considere as matrizes [ ] [ 1 0 1 2 A =

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

Determinantes - Parte 02

Determinantes - Parte 02 Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.1 10

Leia mais

1 5 = = = = = = = = 5

1 5 = = = = = = = = 5 MATRIZES PARTE II. Matriz dos Cofatores Dada uma matriz A, a cada elemento aij de A está associado um cofator Cij. Definição: Chama-se matriz dos cofatores de A, e denota-se por A,a matriz A = [C ij ].

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

Álgebra Linear I - Aula 14. Roteiro

Álgebra Linear I - Aula 14. Roteiro Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes

Leia mais

ÁLGEBRA LINEAR AULA 4

ÁLGEBRA LINEAR AULA 4 ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da

Leia mais

Determinantes - Parte 02

Determinantes - Parte 02 Determinantes - Parte 02 Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 23

Leia mais

Unicidade da Forma Escalonada Reduzida de uma Matriz

Unicidade da Forma Escalonada Reduzida de uma Matriz 1 Unicidade da Forma Escalonada Reduzida de uma Matriz Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 1 de maio de 24 Definição 1 Uma

Leia mais

Apostila de Matemática 11 Determinante

Apostila de Matemática 11 Determinante Apostila de Matemática 11 Determinante 1.0 Definições A determinante só existe se a matriz for quadrada. A tabela é fechada por 2 traços. Determinante de matriz de ordem 1 a 11. 1 2.0 Determinante Matriz

Leia mais

Sistemas de Equações Lineares e Matrizes

Sistemas de Equações Lineares e Matrizes Sistemas de Equações Lineares e Matrizes. Quais das seguintes equações são lineares em x, y, z: (a) 2x + 2y 5z = x + xy z = 2 (c) x + y 2 + z = 2 2. A parábola y = ax 2 + bx + c passa pelos pontos (x,

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple

I Lista de Álgebra Linear /02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1 I Lista de Álgebra Linear - 2012/02 Matrizes-Determinantes e Sistemas Prof. Iva Zuchi Siple 1. Determine os valores de x e y que tornam verdadeira a igualdade ( x 2 + 5x x 2 ( 6 3 2x y 2 5y y 2 = 5 0

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 18 de

Leia mais

Matrizes. Curso de linguagem matemática Professor Renato Tião

Matrizes. Curso de linguagem matemática Professor Renato Tião Matrizes Curso de linguagem matemática Professor Renato Tião Uma matriz A m n é uma maneira de apresentar informações numéricas ou algébricas dispostas como numa tabela com m linhas e n colunas cercada

Leia mais

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade

MATRIZES Matriz quadrada Matriz linha e matriz coluna Matriz diagonal Matriz identidade MATRIZES Matriz quadrada matriz quadrada de ordem. diagonal principal matriz quadrada de ordem. - 7 9 diagonal principal diagonal secundária Matriz linha e matriz coluna [ ] colunas). (linha e matriz linha

Leia mais

Sistemas Lineares. ( Aula 3 )

Sistemas Lineares. ( Aula 3 ) Sistemas Lineares ( Aula 3 ) Determinante Definição: Determinante Matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo n x n). A toda matriz quadrada está associado um

Leia mais

LISTA DE EXERCÍCIOS 2017

LISTA DE EXERCÍCIOS 2017 CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco UCDB Engenharia de Computação Revisão: Tópicos de

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que.

Exercício 1: Matriz identidade. Exercício 3: Exercício 2: Exemplo: Igualdade entre matrizes 13/05/2017. Obtenha a matriz, em que. Conceito de matriz Matrizes Matrizes são tabelas retangulares utilizadas para organizar dados numéricos. Nas matrizes, cada número é chamado de elemento da matriz, as filas horizontais são chamadas linhas

Leia mais

(Todos os cursos da Alameda) Paulo Pinto

(Todos os cursos da Alameda) Paulo Pinto Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas

Leia mais

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre

Leia mais

Determinantes. Prof. Márcio Nascimento

Determinantes. Prof. Márcio Nascimento Determinantes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 4 de fevereiro

Leia mais

Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares

Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares 1 Introdução Neste capitulo, estaremos interessados em estudar os sistemas de equações

Leia mais

MATRIZES E DETERMINANTES. a, com índices duplos, onde

MATRIZES E DETERMINANTES. a, com índices duplos, onde MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

UFSC Matrizes. Prof. BAIANO

UFSC Matrizes. Prof. BAIANO UFSC Matrizes Prof. BAIANO Matrizes Classifique como Verdadeiro ou Falso ( F ) Uma matriz é dita retangular, quando o número de linhas é igual ao número de colunas. ( F ) A matriz identidade é aquela em

Leia mais

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores

Econometria. Operações básicas de vetores. Operações básicas de vetores. Operações básicas de vetores. Independência de vetores Operações básicas de vetores Econometria Adição Suponha dois vetores x e y com n componentes cada: 1. Alguns tópicos importantes de Álgebra Linear Danielle Carusi Machado - Econometria II Operações básicas

Leia mais

RaciocínioLógico TFC -C G U Tele - Transmitido Teoria Mais de 360 aprovados na Receita Federal em 2006 Prof.Milton Ueta Data de impressão: 08/02/2008 67 das 88 vagas no AFRF no PR/SC 150 das 190 vagas

Leia mais

Prof a Dr a Ana Paula Marins Chiaradia

Prof a Dr a Ana Paula Marins Chiaradia Projeto TEIA DO SABER 2007 UNESP Campus de Guaratinguetá Secretaria de Estado da Educação, SP. Departamento de Matemática Diretoria de Ensino da Região de Guaratinguetá Coordenador Prof. Dr. José Ricardo

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.

Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2. setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

Departamento de Matemática

Departamento de Matemática Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F

Leia mais

UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE

UNIOESTE DETERMINANTES. Profa. Simone Aparecida Miloca UNIOESTE DETERMINANTES Profa. Simone Aparecida Miloca UNIOESTE 2017 Sumario Determinantes Determinantes Introdução Determinante é um número associado a uma matriz quadrada. Permutação Considere n objetos distintos

Leia mais

Unidade 1 - O que é Álgebra linear? A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013

Unidade 1 - O que é Álgebra linear? A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 1 - O que é Álgebra linear? A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 9 de agosto de 2013 O que é Álgebra linear? Atualmente,

Leia mais

Álgebra Linear e Geometria Analítica. 6ª aula

Álgebra Linear e Geometria Analítica. 6ª aula Álgebra Linear e Geometria nalítica 6ª aula DETERMINNTES Permutações Uma permutação σ ( p, p, p,, p n ) dos elementos do conjunto {,,,, n} éum arranjo dos n números em alguma ordem sem repetições ou omissões

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares Matrizes e Sistemas Lineares Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 1 Matrizes Uma matriz é um conjunto retangular de números, símbolos ou expressões, organizados em

Leia mais

Matrizes - Transpostas e Simetrias

Matrizes - Transpostas e Simetrias Matrizes - Transpostas e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.1 29 de julho

Leia mais

Matrizes - Transpostas e Simetrias

Matrizes - Transpostas e Simetrias Matrizes - Transpostas e Simetrias Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 20152

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

ALGA - Eng.Civil e Eng. Topográ ca - ISE /

ALGA - Eng.Civil e Eng. Topográ ca - ISE / ALGA - Eng.Civil e Eng. Topográ ca - ISE - 0/0 0. (a) Calcule o sinal das seguintes permutações (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) para calcular, usando a de nição, os

Leia mais

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0.

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0. Determinantes Definição Definição Se A = [a 11 é uma matriz 1 1, então Se é uma matriz, então Exemplo 1 [ 1 3 4 A = A = a 11 [ a11 a 1 a 1 a A = a 11 a a 1 a 1 [ 1 0 = ; 0 1 [ 6 8 = 1; 3 4 = 0 Para definir

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES PET-FÍSICA MATRIZES E DETERMINANTES Aula 7 TATIANA MIRANDA DE SOUZA ANA CAROLINA DOS SANTOS LUCENA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido

Leia mais

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson MATEMÁTICA Aula Matrizes Prof. Anderson Assuntos Conceito Matrizes com Nomes Especiais Igualdade de Matrizes Operações com Matrizes Matriz Inversa Conceito As matrizes são quantidades de dados passíveis

Leia mais

Baseado no Capítulo 2 do livro: Material preparado pelo

Baseado no Capítulo 2 do livro: Material preparado pelo Baseado no Capítulo 2 do livro:.. h,.. h 2. (28) h &,. Material preparado pelo.. é ç : @. Departamento de Ciências Exatas / ESALQ USP Fevereiro de 22 Í N D I C E 2.. Matrizes e vetores... 2 2... Matrizes,

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emerson Marcos Furtado Mestre em Métodos Numéricos pela Universidade Federal do Paraná (UFPR). Graduado em Matemática pela UFPR. Professor do Ensino Médio nos estados do Paraná e Santa Catarina desde 1992.

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas 0 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 206 Sumário DETERMINANTE... Exemplo... Exemplo 2... EXERCÍCIOS FUNDAMENTAIS... Exemplo 3... EXERCÍCIOS FUNDAMENTAIS...

Leia mais

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 11. 3º Bimestre. Matrizes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 11 Matrizes Professor Luciano Nóbrega º Bimestre MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º 45º

Leia mais

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software

Legenda. Questões. 1ª Lista de Exercícios (ALGA001) Prof. Helder G. G. de Lima 1. Cálculos Conceitos Teoria Software ª Lista de Exercícios (ALGA) Prof. Helder G. G. de Lima Legenda Cálculos Conceitos Teoria Software Questões. Mostre que as afirmações a seguir não são necessariamente verdadeiras para matrizes quadradas

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais