1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²

Tamanho: px
Começar a partir da página:

Download "1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional = 4200 knm²"

Transcrição

1 CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA O ENADE 1) Determine a energia de deformação (energia interna) da estrutura abaixo. Rigidez flexional 42 knm² Formulário: equação geral da energia de deformação: Solução: A estrutura não possui cargas axiais nem torcionais, portanto as duas últimas parcelas da equação geral da energia de deformação são iguais a zero. O efeito de cisalhamento para vigas esbeltas pode ser desprezado, portanto a energia de deformação pode ser determinada por: U L M2 dx 2EI As equações de momento fletor por trecho são: Trecho A-B (para nó A; x ) Trecho B-A (para nó B; x ) M(x) 45x M(x) 45(x 3) Trecho B-C (para nó B; x ) Trecho C-B (para nó C; x ) M(x) 6(x 1,5)² M(x) 6x² 1

2 A energia de deformação é obtida pelo comprimento total da estrutura, para isso basta somar as integrais do trecho AB (ou BA) com o trecho BC (ou CB), pois a integral do trecho AB e BA são iguais já que representam a mesma área (o mesmo é válido para o trecho BC), portanto podemos calcular a energia de deformação da seguinte forma: Usando as equações do trechos AB e CB: U L M2 3 dx ( 45x)2 dx + 2EI ,5 ( 6x²)2 dx 2,821 knm 2 42 Ou, usando as equações do trechos BA e BC: U L M2 dx 2EI 3 (45(x 3)) dx + 1,5 (6(x 1,5)²) dx 2,821 knm 2) Para o pórtico abaixo determine: a) Deflexão horizontal, a deflexão vertical e a rotação no ponto B. b) O valor percentual que P2 deve majorado para o ponto B não ter deslocamento. Dados: Perfis A-36 W46x6, ambos posicionados para trabalhar no eixo de maior inércia conforme figura abaixo. Ix cm4 Formulário: Deslocamento obtido com trabalho virtual: 2

3 SOLUÇÃO: Tabela Kurt Bayer A estrutura não possui cargas torcionais, portanto a parcela da equação do trabalho virtual devido à torção é nula. O efeito dos esforços de cisalhamento para vigas esbeltas podem ser desprezados, além disso o pilar possui altíssima rigidez axial (EA 1524 kn), o que gera um deslocamento desprezível devido aos esforços axiais (,46 m), portanto em geral, o deslocamento em pórticos (e semipórticos como é o caso) pode ser calculado apenas com o efeito flexional da estrutura: A rigidez flexional é igual a: L Δ mm dx EI EI 2 kn/m² m knm² Para realizar a multiplicação do diagrama virtual interno e do diagrama interno da peça devemos calcular os diagramas de momento fletor: M(x) p/ P1 e P2 m(x) p/ δvb m(x) p/ δhb m(x) p/ θb Deslocamento horizontal do nó B (com tabela Kurt-Bayer): 3

4 EIδ hb ( 1 3,5 (2 ( 7, 32,5) + ( 7, 5) + ( 3,5 32,5) ( 3,5 5))) + ( 1 3,5 ( 3,5) ( 5)) 2 EIδ hb 74, ,25 δ hb 146, ,2 m Deslocamento vertical do nó B (com tabela Kurt-Bayer): O diagrama virtual da carga vertical no nó B é nulo, portanto não há deslocamento (desprezível). Rotação no nó B (com tabela Kurt-Bayer): EIθ B ( 1 3,5 ( 1,) ( 32,5 5)) + (3,5 ( 1,) ( 5)) 2 EIθ B 144, θ B 312, Resposta a) δ hb 2 cm e θ B,6 rad,6 rad Para determinarmos o valor percentual que P2 deve majorado para o ponto B não ter deslocamento devemos calcular qual o valor da coordenada do momento fletor no ponto D quando a deflexão é nula. Já que o valor da carga P2 altera a coordenada no ponto D do diagrama de momento fletor, então: ( 1 3,5 (2 ( 7, y) + ( 7, 5) + ( 3,5 y) ( 3,5 5))) + ( 1 3,5 ( 3,5) ( 5)) 2 y + 7 Portanto, um diagrama de momento fletor que apresenta em D o valor de +7 knm, não irá gerar deslocamento B: 4

5 Figura 1 Diagrama com majoração da carga P2 A partir do ponto C até o ponto D houve um aumento de 12 knm no diagrama de momento, então para determinar a carga P2 que gera esse esforço basta dividirmos pelo braço de alavanca: P 2 12 knm 3,5 m 34,286 kn Assim, quando é aplicada uma carga P2 de 34,286 kn, não teremos deslocamento horizontal em B, portanto com um aumento de 29,286 kn em relação a carga de 5, kn atual. Aumento percentual P 2 P 2 P 2 29,286 5, 586 % Resposta b) A carga deve ser majorada em 586 % do valor atual. 3) Uma barra quadrada é feita de plástico PVC com módulo de elasticidade E 9 GPa e deformação por escoamento ε e,1 mm/mm. Determine as dimensões a de sua menor seção transversal, de modo que não falhe por flambagem elástica. As extremidades da barra estão presas por pinos e seu comprimento é de 1.25 mm. FONTE: HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Prentice Hall, 21. 5

6 SOLUÇÃO: ÁREA A a² MOMENTO DE INÉRCIA I a4 12 RAIO DE GIRAÇÃO r I A a 4 12 a² a 12 TENSÃO DE ESCOAMENTO σ e ε e E,1 9 MPa 9 MPa Para determinar o menor valor de a de modo que a barra não falhe por flambagem, a tensão crítica de flambagem deve ser igualada à tensão de escoamento, pois desta forma a estrutura irá falhar por resistência. TENSÃO CRÍTICA DE FLAMBAGEM MENOR DIMENSÃO DE a σ cr π2 E ( KL r ) ² 9 π2 9 ( 1, 1,25 a ) ² 12 a ± 4, m A solução negativa da equação de segundo grau não tem significado físico. Portanto a menor seção da barra para que a estrutura não falhe por flambagem, e sim, por resistência é 43,59 x 43,59 mm². 6

7 4) Pela Analogia de Mohr, determine o diagrama de momentos fletores da viga de inércia constante abaixo. Unidades SI. TABELA DE CONVERSÃO DAS CONDIÇÕES DE CONTORNO DA VIGA REAL PARA VIGA CONJUGADA Tabela de conversão Fonte: MARTHA, L. F. C. R. Análise de estruturas: conceitos e métodos básicos. Rio de Janeiro: ELSEVIER, 21. SOLUÇÃO Carregamento da viga conjugada: Equilíbrio à rotação em B ( M ): ( M B EI L BC 2 ) L BC 3 + (M C EI L BC 2 ) 2 L BC 3 M c M B 2 7

8 Portanto o valor do momento em C é igual a metade do valor do momento em B. Equilíbrio à rotação em A ( M ): + ( 64 EI 2, 2 ) (2, 2 3 ) + (64 EI 8, 8, ) (2, ) + ( M B 2 EI 7, 2 ) (1 + 7, 2 3 ) ( M B EI 1, 2 ) (1, 2 3 ) (M B EI 7, 7, ) (1, ) +85, , ,67 M B 33,33 M B 43,17 M B 128, 5,83 M B M B 25,18 knm Momento no ponto de aplicação da carga: M c M B 2 25,18 12,59 knm 2 M 64 25, ,96 knm 8

9 5) Desenhe a Linha de Influência de Momentos Fletores na Seção S da viga abaixo. Divida cada vão em quatro partes para preencher a Tabela. Usar três casas decimais. Inércia constante. VÃO AB VÃO BC Posição da Carga Móvel P 1, kn a b Lvão E D MA MB MC MS [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] [knm] (Coluna a e b da Tabela se referem às distâncias entre a posição da Carga Móvel e os apoios do vão carregado, conforme fórmulas dos Termos de Carga). FORMULÁRIO Coeficientes de Propagação: α AB L AB 2 (L AB + L BC ) α BC L BC α CB L CB 2 (L CB + L BA ) α BA L BA Momentos nos apoios do vão AB carregado: (Para obter os momentos do vão BC carregado, as fórmulas abaixo devem ser adaptadas conforme exposto em aula) M A Termos de Carga α BA 1 (α BA α AB ) (α AB ) M B α AB 1 (α AB α ) (α BA BA ) L 2 (L + b) 9 L 2 (L + a)

10 SOLUÇÃO Inicialmente deve-se calcular os Coeficientes de Propagação da viga. O apoio C não possui engastamento, assim a propagação do momento M B para M C, quando o vão AB está carregado, deve ser igual a zero, portanto: α BC O apoio A não possui engastamento, assim a propagação do momento M B para M A, quando o vão BC está carregado, deve ser igual a zero, portanto: Os coeficientes de propagação são: α AB L AB α BA 2 (L AB + L BC ) α BC L BC 2 2 (2 + 32) 32,192 Portanto temos: α CB L CB 2 (L CB + L BA ) α BA L BA 32 2 (32 + 2) 2,38 1

11 Foi imposto que cada vão fosse dividido em quatro partes para determinação dos valores da Linha de Influência na seção S (LIM s ). Para o vão AB teremos as seguintes posições da carga móvel a partir do apoio A a cada 5, m ( L AB 4 Posições da Carga Móvel no Vão AB:, 5, 1, 15 e 2. 5, m) Para o vão BC teremos as seguintes posições da carga móvel a partir do apoio A a cada 8, m ( L BC 4 Portanto, a primeira coluna pode ser preenchida: Posições da Carga Móvel no Vão BC: 2, 28, 36, 44 e 52. 8, m) VÃO 1 VÃO 2 Posição da Carga Móvel Q 1, kn [m] Os valores a e b representam a distância entre a carga e os apoios do vão L carregado, conforme fórmula dos Termos de Carga. Assim os valores a, b e L podem ser preenchidos diretamente: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1, kn a b Lvão [m] [m] [m] [m]

12 Termos de Carga e Momentos em B para vão AB carregado: Quando a carga está na posição (sobre o apoio A) e na posição 2 (sobre o apoio B), ou o valor de a ou de b é igual a zero, desta forma os Termos de Cargas são nulos, e já estão preenchidos na Tabela. Posição 5: M B L 2 (L + b) (2 + 15) 6,563 knm α AB 1 (α AB α ) (α BA BA L 2 (L + a) (2 + 5) 4,688 knm ),192 ( 6,563 4,688),9 knm 1 (,192 ) Posição 1: M B α AB 1 (α AB α ) (α BA BA L 2 (L + b) 2 2 (2 + 1) 7,5 knm L 2 (L + a) 2 2 (2 + 1) 7,5 knm ),192 ( 7,5 7,5) 1,44 knm 1 (,192 ) Posição 15: M B α AB 1 (α AB α ) (α BA BA L 2 (L + b) (2 + 5) 4,688 knm L 2 (L + a) (2 + 15) 6,563 knm ),192 ( 4,688 6,563) 1,26 knm 1 (,192 ) Preenchendo a Tabela, temos os seguintes Termos de Carga e Momentos em B quando o vão AB está carregado: VÃO 1 Posição da Carga Móvel Q 1, kn a b Lvão E D MA MB MC [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] ,563 4,688 -, ,5 7,5-1, ,688 6,563-1,

13 Termos de carga para vão BC carregado: Quando a carga está na posição 2 (sobre o apoio B) e na posição 52 (sobre o apoio C), ou o valor de a ou de b é igual a zero, desta forma os Termos de Cargas são nulos, e já estão preenchidos na Tabela. Posição 28: L 2 (L + b) ( ) 1,5 knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) (32 + 8) 7,5 knm ),38 ( 7,5 1,5) 3,234 knm 1 (,38 ) Posição 36: L 2 (L + b) 32 2 ( ) 12, knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) 32 2 ( ) 12, knm ),38 ( 12, 12,) 3,696 knm 1 (,38 ) Posição 44: L 2 (L + b) (32 + 8) 7,5 knm M B α CB 1 (α CB α BC ) (α BC L 2 (L + a) ( ) 1,5 knm ),38 ( 1,5 7,5) 2,31 knm 1 (,38 ) Preenchendo a Tabela, temos os seguintes Termos de Carga e Momentos em B quando o vão BC está carregado: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1, kn a b Lvão E D MA MB MC [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] ,563 4,688 -, ,5 7,5-1, ,688 6,563-1, ,5 7,5-3, , 12, -3, ,5 1,5-2,

14 Para determinação dos Momentos na seção S, deve-se considerar dois casos: Caso 1: Quando Vão AB está carregado Nessa condição, o vão BC está descarregado, portanto o diagrama de Momentos no vão descarregado é uma reta. Desta forma o valor do Momento no vão BC será sempre: M(x) M B + ( M C M B ) x L BC Sendo x a seção de interesse, temos x 8, m (um quarto do vão) para a Seção S. Ou pela relação entre os triângulos M B BC e M s SC, temos: M S 3 4 M B Desta forma, podemos preencher os valores na do M s Tabela quando o vão AB está carregado. Caso 2: Quando Vão BC está carregado A partir da teoria de Estabilidade I, temos o equilíbrio da viga BC: Para equilíbrio à rotação no Ponto C, temos: +(V B,dir L BC ) M B P b Portanto: Então o Momento em S é: V B,dir +M B + P b L BC M B + b 32 M S V B,dir 8, M B ( M B + b 32 ) 8, M B 14

15 Para posição 28 (b 24 e M B 3,234 )* M S ( M B + b 32 ) 8, M 3, B ( ) 8, 3,234 3,575 knm 32 *Obs.: Os valores de M B e P devem ser inseridos na fórmula em valores absolutos, pois os sinais já foram considerados no cálculo do equilíbrio à rotação no ponto C devido ao sentido apresentado no esquema estrutural da viga BC. (Equilíbrio em C: +(V B,dir L BC ) M B P b ) Para posição 36 (b 16 e M B 3,696 ) M S ( M B + b 32 ) 8, M 3, B ( ) 8, 3,696 1,228 knm 32 Para posição 44 (b 8 e M B 2,31 ) M S ( M B + b 32 ) 8, M B ( 2, ) 8, 2,31,268 knm 32 Preenchendo a Tabela com os valores obtidos, temos: VÃO 1 VÃO 2 Posição da Carga Móvel Q 1, kn a b Lvão E D MA MB MC MS [m] [m] [m] [m] [knm] [knm] [knm] [knm] [knm] [knm] ,563 4,688 -,9 -, ,5 7,5-1,44-1, ,688 6,563-1,26 -, ,5 7,5-3,234 3, , 12, -3,696 1, ,5 1,5-2,31, Com os valores obtidos na Tabela, pode-se desenhar a Linha de Influência de Momentos em S: 15

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 CE2 ESTABIIDADE DAS CONSTRUÇÕES II ISTA DE EXERCÍCIOS PREPARATÓRIA PARA PROVA A1 1) Qual material atende ao Critério de Deslocamentos Excessivos e é o mais econômico para execução da viga abaixo? Determine

Leia mais

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. FESP Faculdade de Engenharia São Paulo Avaliação: A2 Data: 15/set/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Duração: 85 minutos Nome: Matrícula

Leia mais

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula: Assinale a(s) avaliação(ões) que perdeu: A1 A2

Leia mais

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS - FLAMBAGEM

CE2 ESTABILIDADE DAS CONSTRUÇÕES II LISTA DE EXERCÍCIOS - FLAMBAGEM CE2 ESTBILIDDE DS CONSTRUÇÕES II LIST DE EXERCÍCIOS - FLMBGEM FONTE: HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Prentice Hall, 2010. SOLUÇÃO 13.3 ÁRE = (10 25) + 10 10 = 1100 mm² MOMENTOS

Leia mais

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior

FESP Faculdade de Engenharia São Paulo. Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior FESP Faculdade de Engenharia São Paulo Avaliação: S1 Data: 29/jun/ 2015 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Prof. Alfonso Pappalardo Junior Duração: 85 minutos Nome: Matrícula

Leia mais

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos

FESP Faculdade de Engenharia São Paulo. CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos FESP Faculdade de Engenharia São Paulo Avaliação: A1 Data: 12/mai/ 2014 CE2 Estabilidade das Construções II Prof. Douglas Pereira Agnelo Duração: 85 minutos Nome: Matrícula ORIENTAÇÕES PARA PROVA a b c

Leia mais

(NBR 8800, Tabela C.1)

(NBR 8800, Tabela C.1) CE Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: A1 Data: 13/abr/

Leia mais

Figura 1 Viga poligonal de aço estrutural

Figura 1 Viga poligonal de aço estrutural PÓRTICO, QUADROS E ESTRUTURAS MISTAS MODELO 01 Para a viga poligonal contínua, indicada na Figura 1, determinar por Análise Matricial de Estruturas as rotações e as reações verticais nos apoios e. Dados:

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da

Leia mais

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr.

FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. CE2 Estabilidade das Construções II FESP Faculdade de Engenharia São Paulo Prof. Douglas Pereira Agnelo Prof. Dr. Alfonso Pappalardo Jr. Nome: Matrícula ORIENTAÇÕES PARA PROVA Avaliação: S2 Data: 24/NOV/

Leia mais

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul

RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul RESISTÊNCIA DOS MATERIAIS II 6º CICLO (EEM 6NA) Profa. Ms. Grace Kelly Quarteiro Ganharul gracekellyq@yahoo.com.br grace.ganharul@aedu.com Graduação em Engenharia Mecânica Disciplina: RESISTÊNCIA DOS MATERIAIS

Leia mais

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP

Exercícios de linha elástica - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1. Um pequeno veículo de peso P se move ao longo de uma viga de seção retangular de largura e altura de, respectivamente, 2 e 12 cm. Determinar a máxima distância s, conforme

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada

Leia mais

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

PROVA COMENTADA. Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes: ? Momento fletor Diagrama de Corpo Livre Reação redundante escolhida Reação vertical no ponto A: Utilizando as equações de equilíbrio para encontrar a relação entre a reação redundante e as reações restantes:

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender a deformação por torção Compreender os esforços de torção Determinar distribuição de tensões de cisalhamento

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios para Prova 1 Lista de Exercícios para Prova 1 1 - Para as estruturas hiperestáticas abaixo, determine um SISTEMA PRINCIPAL válido. No SISTEMA PRINCIPAL escolhido, determine os gráficos de momento fletor e as reações

Leia mais

Professor: José Junio Lopes

Professor: José Junio Lopes Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2014-2 Objetivos Conceituar e capacitar para a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2014-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE II Prof. Dr. Daniel Caetano 2018-2 Objetivos Compreender o conceito de flambagem Compreender o surgimento de tensões por dilatação/contração térmica

Leia mais

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO

TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO TEORIA DAS ESTRUTURAS II PROF.: VICTOR MACHADO APRESENTAÇÃO Contatos: victor.silva@progeto.com.br victormsilva.com PLANO DE AULA Apresentação do Plano de Aula Forma de Avaliação Faltas e Atrasos UNIDADE

Leia mais

Nota de aula 15 - Flambagem

Nota de aula 15 - Flambagem Nota de aula 15 - Flambagem Flávia Bastos (retirado da apostila do rof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF 1o. semestre de 2011 Flávia Bastos RESMAT II 1/22 Informações sobre este documento:

Leia mais

Capítulo 5 Carga Axial

Capítulo 5 Carga Axial Capítulo 5 Carga Axial Resistência dos Materiais I SIDES 05 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Determinar a tensão normal e as deformações em elementos

Leia mais

Equações diferenciais

Equações diferenciais Equações diferenciais Equações diferenciais Equação diferencial de 2ª ordem 2 d 2 Mz x q x dx d Mz x Vy x q x C dx Mz x q x C x C 1 2 1 Equações diferenciais Equação do carregamento q0 q x 2 d 2 Mz x q

Leia mais

AULA 09 AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES

AULA 09 AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com EXERCÍCIOS COMPLEMENTARES Lista disponibilizada no dia da aula para ser entregue na semana seguinte.

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE III Prof. Dr. Daniel Caetano 2012-2 Objetivos Conceituar e capacitar paa a resolução de problemas estaticamente indeterminados na torção Compreender as limitações

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN)

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015. Resolução. 50 N(kN) PME3210 Mecânica dos Sólidos I Primeira Prova 07/04/2015 Resolução 1ª Questão (4,0 pontos) barra prismática da figura tem comprimento L=2m. Ela está L/2 L/2 engastada em e livre em C. seção transversal

Leia mais

Capítulo 3 Esforço Normal. 1ª. Questão

Capítulo 3 Esforço Normal. 1ª. Questão Capítulo 3 Esforço Normal 1ª. Questão A estaca da figura possui 60 mm de diâmetro e está submetida a uma carga de 20 kn. O solo tem a capacidade de resistir lateralmente, por meio de uma carga que varia

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre

ANÁLISE DE ESTRUTURAS I Ano lectivo de 2018/2019 2º Semestre Exercício 6 - Método dos Deslocamentos ANÁLISE DE ESTRUTURAS I Ano lectivo de 018/019 º Semestre Problema 1 (1 de Janeiro de 000) Considere o pórtico e a acção representados na figura 1. 1.a) Indique o

Leia mais

Propriedades mecânicas dos materiais

Propriedades mecânicas dos materiais Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente

Leia mais

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal.

Lista de Exercício 3 Elastoplasticidade e Análise Liimite 18/05/2017. A flexão na barra BC ocorre no plano de maior inércia da seção transversal. Exercício 1 Para o sistema estrutural da figura 1a, para o qual os diagramas de momento fletor em AB e força normal em BC da solução elástica são indicados na figura 1b, estudar pelo método passo-a-passo

Leia mais

Flexão Vamos lembrar os diagramas de força cortante e momento fletor

Flexão Vamos lembrar os diagramas de força cortante e momento fletor Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas

Leia mais

3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL

3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA

Leia mais

Fundamentos de Mecânica dos Materiais

Fundamentos de Mecânica dos Materiais Fundamentos de Mecânica dos Materiais - Estabilidade de estruturas Acetatos e imagens baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva -, R.C. Hibbeler Índice

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE I Prof. Dr. Daniel Caetano 2013-1 Objetivos Compreender o que é a deformação por torção Compreender os esforços que surgem devido à torção Determinar distribuição

Leia mais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas

Leia mais

AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II AULA 09 AULA 09 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com

AULA 09 ESTABILIDADE DAS CONSTRUÇÕES II AULA 09 AULA 09 METODOLOGIA DA DISCIPLINA. Site da disciplina: engpereira.wordpress.com ESTABILIDADE DAS CONSTRUÇÕES II METODOLOGIA DA DISCIPLINA Site da disciplina: engpereira.wordpress.com 1 EXERCÍCIOS COMPLEMENTARES Lista disponibilizada no dia da aula para ser entregue na semana seguinte.

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares

Leia mais

Teoria das Estruturas I - Aula 08

Teoria das Estruturas I - Aula 08 Teoria das Estruturas I - Aula 08 Cálculo de Deslocamentos em Estruturas Isostáticas (1) Trabalho Externo das Cargas e Energia Interna de Deformação; Relações entre Energia de Deformação e Esforços Internos;

Leia mais

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por:

para a = 110 cm, o momento torçor e a tensão no trecho A-B é dada por: Lista de torção livre Circular Fechada - Valério SA. - 2015 1 1) a. Determinar a dimensão a de modo a se ter a mesma tensão de cisalhamento máxima nos trechos B-C e C-D. b. Com tal dimensão pede-se a máxima

Leia mais

NL AE. 9,72x10 m. Logo, os cabos atendem com folga o limite máximo estabelecido pois: 1,17x10 m. CD 9,72x10 1,17x10 8,55x10 m = 0,0855 cm

NL AE. 9,72x10 m. Logo, os cabos atendem com folga o limite máximo estabelecido pois: 1,17x10 m. CD 9,72x10 1,17x10 8,55x10 m = 0,0855 cm Q1) Para os cálculos deste eercício serão usadas as seguintes unidades: força [kn], comprimento [m], tensão [kpa=kn/m ]. Os comparativos com os deslocamentos permissíveis serão feitos em [cm]. A equação

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 05 Flambagem de Colunas Eng. Civil Augusto Romanini

Leia mais

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2014-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2018-2 Objetivos Conhecer o princípio de Saint-Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação

Leia mais

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Terceira Prova 25/11/2002 Duração: 2:30 hs Sem Consulta CIV 1127 ANÁISE DE ESTRUTURAS II 2º Semestre 02 Terceira Prova 25/11/02 Duração: 2:30 hs Sem Consulta 1ª Questão (4,0 pontos) Para uma viga de ponte, cujo modelo estrutural é apresentado abaixo, calcule

Leia mais

Capítulo 3: Propriedades mecânicas dos materiais

Capítulo 3: Propriedades mecânicas dos materiais Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade

Leia mais

Deflexão em vigas de eixo reto

Deflexão em vigas de eixo reto 10 de novembro de 2016 Linha elástica da flexão é a curva formada pelo eixo de uma viga inicialmente retilíneo, devido à aplicação de momentos de flexão. Figura : Exemplo de viga em flexão Antes da aplicação

Leia mais

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta CIV 27 ANÁLISE DE ESRUURAS II 2º Semestre 2002 Primeira Prova Data: 04/09/2002 Duração: 2:45 hs Sem Consulta ª Questão (6,0 pontos) Considere a estrutura hiperestática abaixo, onde também está indicado

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 06 TORÇÃO Augusto Romanini Sinop - MT 2017/1 AULAS

Leia mais

TRELIÇA C/ SISTEMA TENSOR DE CABO

TRELIÇA C/ SISTEMA TENSOR DE CABO Q) RESPOSTA TRELIÇA C/ SISTEMA TENSOR DE CABO Obtidas as matrizes de rigidez dos elementos estruturais, deve-se remanejar tais coeficientes para a matriz de rigidez da estrutura (graus de liberdade ordenados).

Leia mais

23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros.

23.(UNIFESPA/UFPA/2016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. .(UNIFESPA/UFPA/016) A viga de madeira de seção I composta da Figura 5 é constituída por três peças de madeira de 6 x 16 centímetros. Figura 5 Viga de madeira de seção composta pregada. Dimensões em centímetros.

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Calcular deformações (rotações) por torção Capacitar para o traçado de diagramas de momento torçor em barras Material

Leia mais

Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas

Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas Estruturas de Aço e Madeira Aula 05 Peças de Aço Comprimidas - Compressão e Flambagem - Flambagem por Flexão (Global) - Dimensionamento conforme a Norma (Sem Flambagem Local) Prof. Juliano J. Scremin 1

Leia mais

Teoria das Estruturas - Aula 03

Teoria das Estruturas - Aula 03 Teoria das Estruturas - Aula 03 Relações Diferenciais entre Mom. Fletores, Esforços Cortantes e Carregamentos Diagramas de Estado de Momento Fletor (M) e Esforço Cortante (V); Equação da Linha Elástica;

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas

Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Princípio dos Trabalhos Virtuais Treliças e Vigas Isostáticas Fonte: HIBBELER, R. C. Resistência dos Materiais. 5. ed. São Paulo: PEARSON, 2004. 14.20 /14.22 14.24 /14.26 Resposta: 11,72 mm Resposta: 33,68

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

Construções Metálicas I AULA 5 Compressão

Construções Metálicas I AULA 5 Compressão Universidade Federal de Ouro Preto Escola de Minas Ouro Preto - MG Construções Metálicas I AULA 5 Compressão Introdução Denomina-se coluna uma peça vertical sujeita à compressão centrada. Exemplos de peças

Leia mais

Problema resolvido 4.2

Problema resolvido 4.2 Problema resolvido 4.2 A peça de máquina de ferro fundido é atendida por um momento M = 3 kn m. Sabendo-se que o módulo de elasticidade E = 165 GPa e desprezando os efeitos dos adoçamentos, determine (a)

Leia mais

MECSOL34 Mecânica dos Sólidos I

MECSOL34 Mecânica dos Sólidos I MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão

Leia mais

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II RESISTÊNCIA DOS MATERIAIS II FLEXÃO PARTE II Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer as hipóteses simplificadoras na teoria de flexão Conceituar a linha neutra Capacitar para a localização da

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por: PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;

Leia mais

Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Flambagem PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL O que é e por que estudar? Onde ocorre? Que fatores influenciam? Como evitar? or que, normalmente, é desejável que a diagonal das treliças

Leia mais

1. Flambagem Introdução

1. Flambagem Introdução 1. Flambagem 1.1. Introdução Flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas (peças onde a área de secção transversal é pequena em relação ao seu comprimento), quando submetidas a um

Leia mais

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I

RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I RESISTÊNCIA DOS MATERIAIS II CARREGAMENTO AXIAL PARTE I Prof. Dr. Daniel Caetano 2012-2 Objetivos Conhecer o princípio de Saint- Venant Conhecer o princípio da superposição Calcular deformações em elementos

Leia mais

Barras prismáticas submetidas a momento fletor e força cortante

Barras prismáticas submetidas a momento fletor e força cortante Barras prismáticas submetidas a momento fletor e força cortante Introdução Os esforços mais comuns de incidência em vigas estruturais são a força cortante e o momento fletor, os quais são causados por

Leia mais

CAPÍTULO 6 TRAÇÃO E COMPRESSÃO SIMPLES

CAPÍTULO 6 TRAÇÃO E COMPRESSÃO SIMPLES PÍTUO 6 TRÇÃO E OMPRESSÃO SIMPES 6.1 Um arame de alumínio, de 30 metros de comprimento, é submetido à uma tensão de tração de 700 Kgf/cm 2 ; determinar o alongamento do arame. De quantos graus seria necessário

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. eer E. Russell Johnston, Jr. Deflexão de Vigas por Integração Capítulo 7 Deflexão de Vigas por Integração 7.1 Introdução 7. Deformação de

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =

Leia mais

Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2)

Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2) Estruturas de Aço e Madeira Aula 07 Vigas de Alma Cheia (2) - Flexão em Vigas de Alma Não-Esbelta com Contenção Lateral - Tabela G.1 da NBR 8800 / 2008 ( FLA e FLM em vigas de alma não-esbelta ) - Esforço

Leia mais

Instabilidade Estrutural

Instabilidade Estrutural Instabilidade Estrutural Estruturas Aeroespaciais I (1036) 014 Tópicos Contextualização do problema em estruturas aeronáuticas Instabilidade em colunas e vigas Efeito de imperfeições iniciais Aspetos de

Leia mais

Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados

Exercício 2. Universidade de São Paulo Faculdade de Arquitetura e Urbanismo. PEF Estruturas na Arquitetura Sistemas Reticulados Universidade de São Paulo Faculdade de Arquitetura e Urbanismo Exercício 2 PEF 2602 - Estruturas na Arquitetura Sistemas Reticulados Equipe 09 Felipe Tinel 5914801 Gabriela Haddad 5914714 Lais de Oliveira

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE II Prof. Dr. Daniel Caetano 2018-2 Objetivos Calcular deformações por torção Capacitar para o traçado de diagramas de momento torsor em barras Material de Estudo

Leia mais

8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS

8 FLAMBAGEM 8.1 ESTABILIDADE DE ESTRUTURAS 8 FLAMBAGEM É o fenômeno que ocorre quando uma carga axial de compressão, atuando em uma barra, ocasiona uma flexão lateral, na direção do menor raio de giração de sua seção transversal, rompendo a peça

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008 Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de

Leia mais

Curso de Dimensionamento de Estruturas de Aço EAD - CBCA. Módulo2. Parte 2

Curso de Dimensionamento de Estruturas de Aço EAD - CBCA. Módulo2. Parte 2 Curso de Dimensionamento de Estruturas de Aço EAD - CBCA Módulo2 Parte 2 Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da

Leia mais

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta

CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta CIV 1127 ANÁLISE DE ESTRUTURAS II 2º Semestre 2007 Primeira Prova Data: 17/09/2007 Duração: 2:30 hs Sem Consulta 1ª Questão (5,5 pontos) Determine pelo Método das Forças o diagrama de momentos fletores

Leia mais

Estruturas de Aço e Madeira Aula 08 Vigas de Alma Cheia (3)

Estruturas de Aço e Madeira Aula 08 Vigas de Alma Cheia (3) Estruturas de Aço e Madeira Aula 08 Vigas de Alma Cheia (3) - Vigas de Alma Não-Esbelta sem Contenção Lateral (FLT) - Vigas de Alma Esbelta (ANEXO H da NBR 8800/2008 ) Prof. Juliano J. Scremin 1 Aula 08

Leia mais

MAC-015 Resistência dos Materiais Unidade 03

MAC-015 Resistência dos Materiais Unidade 03 MAC-015 Resistência dos Materiais Unidade 03 Engenharia Elétrica Engenharia de Produção Engenharia Sanitária e Ambiental Leonardo Goliatt, Michèle Farage, Alexandre Cury Departamento de Mecânica Aplicada

Leia mais

Estruturas Hiperestáticas Planas

Estruturas Hiperestáticas Planas Estruturas Hiperestáticas Planas P1 19/09/96 1ª Questão Traçar o diagrama de momentos fletores e forças cortantes decorrentes de um resfriamento T da barra CE da estrutura da figura abaixo. Considerar

Leia mais

Deflexão em vigas e eixos

Deflexão em vigas e eixos Capítulo 12: Deflexão em vigas e eixos Adaptado pela prof. Dra. Danielle Bond Deflexão em Vigas e Eixos Muitas vezes é preciso limitar o grau de deflexão que uma viga ou eixo pode sofrer quando submetido

Leia mais

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2 Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça

Leia mais

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)

1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição) 11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.

Leia mais

Teoria das Estruturas - Aula 16

Teoria das Estruturas - Aula 16 Teoria das Estruturas - Aula 16 Estruturas Hiperestáticas: Método dos Deslocamentos (2) Exemplo de Estrutura com 3 Graus de Hipergeometria; Simplificações do Método; Prof. Juliano J. Scremin 1 Aula 16

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840

Leia mais

Pressão Interna + Momento Fletor e Esforço Axial.

Pressão Interna + Momento Fletor e Esforço Axial. 3 Método Anaĺıtico Este capítulo apresenta o desenvolvimento analítico para determinação das tensões atuantes no tubo da bancada de ensaios descrita anteriormente, causadas pelos carregamentos de pressão

Leia mais

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV

RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV RESISTÊNCIA DOS MATERIAIS II TORÇÃO PARTE IV Prof. Dr. Daniel Caetano 2018-1 Objetivos Conceituar fluxo de cisalhamento Determinar distribuição de tensões de cisalhamento em tubos de paredes finas sob

Leia mais

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 03: Estruturas Submetidas à Flexão e Cisalhamento

Leia mais

RESISTÊNCIA DE MATERIAIS II

RESISTÊNCIA DE MATERIAIS II INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Civil e Arquitectura Secção de Mecânica Estrutural, Estruturas e Construção Ano lectivo de 2003/2004 2 o teste e o exame Lisboa, 23 de Junho de 2004

Leia mais