Vibrações mecânicas. Este movimento chama-se vibração mecânica, em princípio representa sempre efeitos indesejáveis

Tamanho: px
Começar a partir da página:

Download "Vibrações mecânicas. Este movimento chama-se vibração mecânica, em princípio representa sempre efeitos indesejáveis"

Transcrição

1 Vibrações mecânicas Jstiicação da ocorrência Sistema mecânico em eqilíbrio estável Introdz-se ma pertrbação por exemplo na orma do deslocamento Liberta-se Depois disso o sistema tende voltar à sa posição do eqilíbrio estável Neste passo actam as orças de restitição (orças elásticas das molas, orças de gravidade) O sistema em geral atinge a sa posição de eqilíbrio estável com ma certa velocidade, assim o sistema ltrapassa a sa posição de eqilíbrio, cria-se m movimento repetitivo, chamado oscilatório, a oscilação eectase em torno da posição do eqilíbrio estável Este movimento chama-se vibração mecânica, em princípio representa sempre eeitos indesejáveis Corpos o sistema de corpos com 1 gra de liberdade cinemática Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

2 Vibrações livres O movimento mantém-se apenas devido às orças de restitição, a pertrbação qe inicia o movimento corresponde a m deslocamento o a ma velocidade aplicada ao sistema, não há orças exteriores aplicadas ao sistema. Vibrações orçadas Há orças exteriores aplicadas ao sistema (e além disso pode haver m deslocamento o ma velocidade aplicada ao sistema). Vamos considerar somente as orças periódicas. Vibrações amortecidas Devido ao atrito (interno o externo) o movimento baixa a sa amplitde (deinição a segir), passado algm tempo cessa se or livre, mantém-se indeinidamente se or orçado. Vibrações não-amortecidas Eeito do atrito é desprezável, o movimento contina indeinidamente. Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

3 Movimento periódico (repetitivo) t T T T T T Período T T T T Tempo necessário para completar m ciclo de movimento Freqência 1 T s 1 O número de ciclos nm segndo nidade s -1 chama-se Hertz cíclica Heinrich Rdol Hertz Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

4 Movimento harmónico Gráico descrito pelas nções de seno e coseno mplitde max t Deslocamento máximo no valor absolto Movimento não-periódico Os termos período, reqência e amplitde samse também para a orça de excitação harmónica, etc. max Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16 t

5 Vibrações livres não-amortecidas Molas s orças de restitição são as orças elásticas mola indeormada de rigidez F + massa m na posição de eqilíbrio estável e est mg est mg est + pertrbação, depois de retirar a casa da pertrbação inicia-se o movimento oscilatório Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

6 continação do movimento a ma F e est na posição geral > Eqação do movimento mg ma mg est m Eqação dierencial ordinária de ª ordem homogénea m v v a ma F e e t m Eqação característica Começando do eqilíbrio estático 1 i m i m m C cos t C sin t n 1 n n Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

7 C 1 e C das condições iniciais ( pertrbação ), condições iniciais não podem ser homogéneas, se orem, não há movimento 1 t C v t v C cos t C sin t v C sin t C cos t 1 n n n 1 n n v t v v C n v cos t sin t cos t sin sin t cos sin t n n n n n v n v cos & sin tan & n v m v arctan v v Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

8 sin t v arctan( ) para arctan( ) para max sin t max : amplitde do deslocamento Φ: ânglo de ase ω n : reqência natral (circlar) T n n n Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

9 v cos t a sin t Período e ase mantêm-se mplitde v n a n Problemas sobre reqência natral de movimento 1. Resolção sando eqações de movimento 1. Estabelecer a eqação do movimento. lterar do modo qe o coeiciente do termo de aceleração eqivale a 1 3. Freqência natral eqivale à raiz qadrada do coeiciente do parâmetro de deormação (deslocamento) m m n Simpliicações: mola eqivalente Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

10 Molas eqivalentes Ligação em paralelo 3 3 eq eq Ligação em série F e 1 1 eq eq eq 1 eq 1 eq Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

11 Molas eqivalentes dos elementos elásticos deormáveis P el eq P F e eq el eq P el Pêndlo Forças de restitição são as orças de gravidade Otros mecanismos Forças de restitição de ambos tipos Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

12 . Resolção sando conservação de energia mecânica 1. Escolher a posição de velocidade máxima (posição do eqilíbrio estático estável) como nível zero para a energia potencial. Máxima energia potencial ocorre qando a cinética é nla (velocidade é zero), neste caso o deslocamento é máximo 3. Escrever o princípio de igaldade de energia entre estas das posições Nota: na posição do deslocamento máximo a velocidade mda o se sentido, o seja passa por zero mplitde do deslocamento corresponde ao deslocamento máximo mplitde da velocidade corresponde à velocidade máxima max v max v max Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

13 Problemas em qe é possível dispensar o eeito do peso Estes casos correspondem aos sistemas em qe existem partes lexíveis (molas) cja deormação é necessária para assegrar o eqilíbrio estático estável. Em otras palavras nestes casos a orça elástica (estática) eqilibra o peso. No entanto é possível desprezar apenas as componentes directamente eqilibradas. Para ter a certeza qais as partes desprezar, é possível escrever: a) eqação do eqilíbrio estático (na posição deormada); b) eqação do movimento com as orças elásticas completas e com o eeito de peso e ver a parcela qe se anle devido ao eqilíbrio estático. No caso de se azer esta veriicação sando o princípio de conservação de energia, é preciso ter cidado, porqe esta eqação envolve qantidades peqenas ao qadrado. Por esta razão o coseno do argmento peqeno é preciso de sbstitir pelo (1-argmento /). sbstitição do seno do argmento peqeno mantêm-se como na eqação do movimento, o seja seno do argmento peqeno eqivale ao argmento. Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

14 Vibrações livres amortecidas Recorda-se a eqação do movimento de vibração livre não-amortecida Eqação dierencial ordinária de ª ordem homogénea n O termo livre signiica qe não existe orça harmónica qe excitava este movimento, assim o lado direito da eqação eqivale a (eqação homogénea) O termo não-amortecida signiica qe o amortecimento é desprezável, assim alta o termo da primeira derivada da nção variável Qando se considera amortecimento, este habitalmente é viscoso, o seja proporcional à velocidade, e assim a eqação em acima ganha mais m termo c n m onde c [N.s/m] é o coeiciente do amortecimento viscoso Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

15 mortecimento Externo: orças de atrito entre o corpos Interno: entre as moléclas qe constitem o corpo mola indeormada de rigidez amortecedor de coeiciente c est max Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

16 Eqação do movimento já com eliminação do eqilíbrio estático ma cv posição intermédia entre est e max, v, a ma Fd cv F e mg est m c Eqação dierencial ordinária de ª ordem homogénea c n v m v a t c e n Eqação característica m c c c c 1, n i n m m m m Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

17 c n m Caso mais comm: amortecimento sb-crítico Raízes da eqação característica conjgado do número complexo Otras designações Coeiciente de amortecimento crítico c cr m n c Factor de amortecimento Damping ratio, mitas vezes em % c cr n c 1 n m 1, n i 1 n ia Otras ormas da eqação de movimento c m cr n n n Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

18 a n 1 Freqência natral (circlar) amortecida Solção a cos t D e D e e C sin t C t n i a t n i a t n t 1 1 a a Diminição de amplitde, envelopes C 1 e C das condições iniciais Parte periódica (harmónica) v t C t v cos sin sin cos nt e C t C t e C t C t nt a 1 a a n 1 a a Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

19 a 1 n a 1 n v t v v C C C C 1 v n a v cos t n e sin at at a e t t sin a a v n tan & v n a Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

20 mortecimento sb-crítico e t mortecimento crítico c 1 a c cr Raiz dpla t t C C te 1 e t Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

21 mortecimento sper-crítico Raízes reais, distintas, ambas negativas não há vibração, porqe não há parte harmónica 1, 1 t C e 1 1 t C e 1 t Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

22 Constrção da eqação de movimento Não há método alternativo para determinação da reqência natral, como nas vibrações livres não-amortecidas, onde oi possível sar o princípio da conservação de energia. gora, com o amortecimento há sempre ma perda de energia qe varia em cada ciclo, e assim é necessário constrir a eqação do movimento. Também não há relação entre amplitdes de deslocamento, velocidade e aceleração tão directa como no caso não-amortecido. Tal como nas vibrações não-amortecidas é valido: Como a eqação de movimento de ma vibração é de acto a eqação de eqilíbrio na direcção do movimento, o seja não se escrevem as 3 eqações como no caso geral, é possível azer ma simpliicação seginte: No caso da vibração anglar do conjnto de corpos com único movimento é possível sar o momento de inércia em relação ao centro de rotação. O seja não é necessário relacionar as orças e os momentos de inércia aos centros de massa de corpos elementares, mas é possível sar único momento de inércia relacionado ao centro de rotação. Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

23 Vibrações orçadas Recorda-se a eqação do movimento de vibração livre amortecida meq ceq eq Eqação dierencial ordinária de ª ordem homogénea Considera-se somente ma excitação harmónica (existem otras), qe orma o lado direito da eqação. ssim a eqação do movimento corresponde a ma eqação dierencial ordinária de ª ordem não-homogénea Excitação pode ter das ormas: orça externa harmónica o movimento de base harmónico Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

24 Vibrações orçadas não-amortecidas Excitação pela orça externa harmónica m sin eq eq F t Ft ma F e Ft reqentemente Fsin t m eq eq Fsin t Solção da eqação não-homogénea tem das partes: homogénea e particlar H P Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

25 Solção homogénea chama-se também vibração natral tc cos t H C1 sin Usando a solção da eqação característica Solção particlar chama-se também vibração orçada cos D sin t D t P 1 Cálclo das constantes D 1, D cos m D sin t D t 1 consoante a orma do lado direito da eqação do movimento 1sin cos sin D t D t F t F F F D, D 1 1 F m m n sin P F t Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

26 Cálclo das constantes C1, C das condições iniciais n n F C sin t C cos t sin t 1 Condições iniciais homogéneas C sin F v C cos t C sin t cos t n 1 n n n F v C cos C cos n 1 F 1 F H F sin sin t t F n envelopes + + cos - t F H F H n Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

27 Natral Forçada Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

28 Condições iniciais não-homogéneas v C sin tc cos t sin t 1 F t C sin t cos t C 1cos F t C v t v C 1 F v C 1 v sin t sin t sin t n F n F sin t sin t sin t o n F n Como anteriormente e Φ Mantêm-se também a análise qando v = v arctan v Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

29 Excitação pelo movimento de base harmónico ma t b t t t b b m t b t Usin t Movimento total t b m m b b Usin t m mu sin t b F mu Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

30 ssim nas eqações anteriores basta sbstitir F mu Qando se pretende resolver a componente relativa v sin t sin tsin t sign U U U 1 No entanto qando é preciso resolver o deslocamento total sin t sin t U sin t t b n U n U sin t sin t sin t n U n Ut Ut U 1 Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

31 Ressonância mplitde da solção particlar tende para ininito qando a reqência da excitação coincide com a reqência natral F E U 1 U 1 Ut U Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

32 Vibrações orçadas amortecidas O amortecimento elimina apenas a parte da vibração natral (regime transiente qando as das partes actam, o seja qando ainda a vibração natral não é desprezável) parte orçada ica (regime estacionário) Neste caso o interesse está no regime estacionário, e mitas vezes examina-se apenas a solção particlar em vez de solção completa Excitação pela orça externa harmónica sin P F sin t P F t F t Ânglo de ase da excitação não é importante, bastava alterar tempo inicial Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

33 P arctan 1 F F E d 1 R E Deslocamento estático qe casava a amplitde da orça de excitação no regime estático Rd Coeiciente de ampliicação dinâmica Excitação pelo movimento de base harmónico Parte relativa sin P U t P U U 1 Parte total sin Pt Ut t Pt Ut U 1 1 Disciplina DCR, Z. Dimitrovová, DEC/FCT/UNL, 16

Física I 2010/2011. Aula 10. Movimento Oscilatório II

Física I 2010/2011. Aula 10. Movimento Oscilatório II Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

Solução: a) T 0,21s, f 4,81Hz ; b) vmax 1,36m/s, a 41,14m/s

Solução: a) T 0,21s, f 4,81Hz ; b) vmax 1,36m/s, a 41,14m/s Problema 1 Um bloco com 35 kg está apoiado pelo conjunto de molas tal como visualizado na figura ao lado. O bloco é deslocado verticalmente para baixo e em seguida libertado. Sabendo que a amplitude do

Leia mais

4 Análise dimensional para determinação da frequência e fator de amplificação do pico máximo

4 Análise dimensional para determinação da frequência e fator de amplificação do pico máximo 4 Análise dimensional para determinação da freqência e fator de amplificação do pico máimo A análise cidadosa das eqações qe regem o escoamento pode fornecer informações sobre os parâmetros importantes

Leia mais

Osciladores lineares contínuos

Osciladores lineares contínuos Osciladores lineares contínos Apontamentos da Disciplina de Dinâmica e Engenharia Sísmica Mestrado em Engenharia de Estrtras Institto Sperior Técnico ís Gerreiro Março de 1999 Osciladores ineares Contínos

Leia mais

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;

Leia mais

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo

Derivada. Aula 09 Cálculo Diferencial. Professor: Éwerton Veríssimo Derivada Ala 09 Cálclo Dierencial Proessor: Éwerton Veríssimo Derivada: Conceito Físico Taa de Variação A dosagem de m medicamento pode variar conorme o tempo de tratamento do paciente. O desgaste das

Leia mais

Antenas de Tanguá (RJ)

Antenas de Tanguá (RJ) Antenas de Tangá (RJ) Composição de movimentos y P(x,y) y(t) O x(t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção

Leia mais

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu

Composição de movimentos. P(x,y) y(t) x(t) descoberta de Galileu Composição de movimentos P(,) (t) O (t) X descoberta de Galile Uma grande parte da discssão qe sege visa o caso particlar em qe temos m movimento nma direção X e otro na direção Y, e no qal o qe acontece

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

3. Hidráulica dos escoamentos em canais de leito fixo Classificação dos escoamentos

3. Hidráulica dos escoamentos em canais de leito fixo Classificação dos escoamentos 3. Hidrálica dos escoamentos em canais de leito ixo Revisão de conceitos de Hidrálica Geral 3.1. Classiicação dos escoamentos Número de Reynolds: exprime a importância das orças de viscosidade em relação

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

BS compósito. Sumário. BS compósito. BS compósito. BS compósito. BS compósito. Bem ou serviço compósito = dinheiro Exercícios 2 Exercícios 3

BS compósito. Sumário. BS compósito. BS compósito. BS compósito. BS compósito. Bem ou serviço compósito = dinheiro Exercícios 2 Exercícios 3 Smário Bem o serviço compósito = dinheiro Exercícios Exercícios 3 Na análise qe fizemos, há dois BS e estdamos com os gostos interferem com o orçamento odemos estender a análise a N BS No entanto, temos

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Conceitos Fundamentais 1.1

Conceitos Fundamentais 1.1 Conceitos Fndamentais. Capítlo Conceitos Fndamentais. Introdção Um sólido deformável sob a acção de forças eternas, deformar-se-á e no sólido desenvolver-se-ão esforços internos. Estes esforços serão em

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Curso de Análise Matricial de Estruturas 1

Curso de Análise Matricial de Estruturas 1 Crso de Análise Matricial de Estrtras IV MÉODO DA IIDEZ IV. Solção eral A modelagem de m sistema estrtral para sa resolção através do método da rigidez deve preferencialmente apretar m número de coordenadas

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Lista F Aulas Práticas de Scilab 1 Resposta em Freqüência Introdução:

Lista F Aulas Práticas de Scilab 1 Resposta em Freqüência Introdução: Lista F las Práticas de Scilab Resposta em Freqüência Introdção: Uma das entradas de teste para o estdo de sistemas dinâmicos são as fnções senoidais. Em particlar, os métodos de resposta em freqüência

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Dinâmica de Sólidos. Fichas da disciplina. Corneliu Cismaşiu

Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Dinâmica de Sólidos. Fichas da disciplina. Corneliu Cismaşiu Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia Dinâmica de Sólidos Fichas da disciplina Corneliu Cismaşiu c DEC/FCT/UNL, 005-009 Capítulo 6 Vibrações mecânicas Uma vibração mecânica é o

Leia mais

Integral Indefinido - Continuação

Integral Indefinido - Continuação - Continação Técnicas de Integração (Primitivação) OBJETIVO: Apresentar técnicas para determinar a fnção F() conhecida como primitiva tal qe F () f() o: f() d F() As principais técnicas de primitivação

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Capítulo 3 Comportamento mecânico dos materiais = = = =

Capítulo 3 Comportamento mecânico dos materiais = = = = apítlo omportamento mecânico dos materiais Problema Uma peça prismática de comprimento L e secção transversal rectanglar de altra 0cm e largra 0cm foi sjeita ao ensaio de tracção. variação de comprimento

Leia mais

Escoamento em Regime Turbulento Perfil de velocidade média, U

Escoamento em Regime Turbulento Perfil de velocidade média, U Escoamento em Regime Trblento Camada da parede: - Zona de eqilíbrio local. Prodção de k Dissipação de k (ε) - Na parede, 0, a eqação de balanço de qantidade de movimento na direcção x redz-se a T dp dx

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

f R e P o D. Vimos que (Po x

f R e P o D. Vimos que (Po x Universidade Salvador UNIFACS Crsos de Engenharia Cálclo IV Proa: Ilka Reboças Freire Cálclo Vetorial Teto 0: Derivada Direcional e Gradiente. A Derivada Direcional Consideremos a nção escalar : D R R

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

8.º Ano de escolaridade 2014/2015

8.º Ano de escolaridade 2014/2015 8.º Ano de escolaridade 2014/2015 A cada período serão acrescidas as alas de avaliação DOMÍNIO ÁLGEBRA (ALG8) NÚMEROS E OPERAÇÕES (NO8) CONTEÚDOS 1. Números reais Tempos previstos (45 min) 22 Distribição

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

5. Vibrações livres amortecidas

5. Vibrações livres amortecidas Sebeta de Disciplia DCR, Zzaa Dimitrovová, DEC/FCT/NL, 6 5. Vibrações livres amortecidas Em qalqer movimeto vibratório há perdas de eergia, casadas pricipalmete pelas orças de atrito itero o extero, chamadas

Leia mais

2 a Prova de Mecânica dos Fluidos II PME /05/2012 Nome: No. USP

2 a Prova de Mecânica dos Fluidos II PME /05/2012 Nome: No. USP a Prova de Mecânica dos Flidos II PME 8/5/ Nome: No. USP ª. Qestão (. pontos). Vamos admitir m escoamento trblento de ar (ρ=,kg/m ; ν=,6-5 m /s) sobre m aerofólio esbelto em regime permanente. Medidas

Leia mais

U15040 Pêndulo de torção segundo Prof. Pohl

U15040 Pêndulo de torção segundo Prof. Pohl 3B SCIENTIFIC PHYSICS U15040 Pêndulo de torção segundo Prof. Pohl Instruções para o uso 1/03 ALF 9 8 7 6 5 4 bl bm bn bo bp 3 1 1 Motor do excitador Botão rotativo para o ajuste fino da tensão do excitador

Leia mais

3 Teoria de Ondas Marítimas

3 Teoria de Ondas Marítimas 3 Teoria de Ondas Marítimas 3.1. Introdção Ondas do mar resltam da ação de forças sobre m flido de maneira a pertrbar o se estado inicial, isto é, deformá-lo. Estas forças são provocadas por diversos agentes

Leia mais

VIBRAÇÃO EXCITADA HARMONICAMENTE

VIBRAÇÃO EXCITADA HARMONICAMENTE VIBRAÇÃO EXCITADA HARMONICAMENTE Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 6 de abril de 2018 Roteiro 1 2 Ventilador Motor Roteiro 1 2 Introdução x M F (t) Mẍ + cẋ + kx = F (t) Trata-se

Leia mais

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL Professor: Gustavo Silva 1 1. Introdução Nesta aula estudaremos sistemas amortecidos e não amortecidos sendo excitados harmonicamente.

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/14 2/14 Introdução Conforme mencionado anteriormente, um sistema com n graus de liberdade necessita de n coordenadas independentes para descrever sua configuração e movimento. Normalmente essas coordenadas

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula

CÁLCULO I. 1 Teorema do Confronto. Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Ala n o 07: Teorema do Confronto. Limite Fndamental Trigonométrico. Teorema do Valor Intermediário.

Leia mais

3- Equação Diferencial Ordinária de 1 a Ordem Homogênea

3- Equação Diferencial Ordinária de 1 a Ordem Homogênea - Eqação Diferencial Ordinária de a Ordem Homogênea Definição de Fnção Homogênea: Se ma fnção f(, y) satisfaz a condição f(t, ty) n f(, y) para algm número real n, então dizemos qe f é ma fnção homogênea

Leia mais

c il a ções Física 2 aula 9 2 o semestre, 2012

c il a ções Física 2 aula 9 2 o semestre, 2012 Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka

Leia mais

Aula 6. Melhoria de imagens por filtragens: no domínio da freqüência

Aula 6. Melhoria de imagens por filtragens: no domínio da freqüência Ala 6 Melhoria de imagens por filtragens: no domínio da freqüência Análise de Imagens - 2015 Ara Conci Filtragem no Domínio da Freqüência Filtragem no Domínio da Freqüência Filtragem Passa Baixa Filtragem

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS 01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA

Leia mais

APONTAMENTOS DE VIBRAÇÕES MECÂNICAS

APONTAMENTOS DE VIBRAÇÕES MECÂNICAS APONTAMENTOS DE VIBRAÇÕES MECÂNICAS Análise de Estruturas Mestrado Integrado em Engenharia Civil & Mestrado em Engenharia Civil (Reabilitação de Edifícios) Ano lectivo 009/010 Estes apontamentos foram

Leia mais

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 1. Uma mola de constante k = 100 Nm -1 está ligada a uma massa m = 0.6 kg. A massa m pode deslizar sem atrito sobre uma mesa horizontal. Comprime-se

Leia mais

Notas de aula prática de Mecânica dos Solos I (parte 12)

Notas de aula prática de Mecânica dos Solos I (parte 12) 1 Notas de ala prática de Mecânica dos Solos I (parte 1) Hélio Marcos Fernandes Viana Tema: Exercícios de permeabilidade dos solos evolvendo a aplicação das leis de Bernoilli e Darcy 1. o ) Considerando-se

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

Laboratório de Dinâmica

Laboratório de Dinâmica UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório e Diâmica SEM 54 DINÂMICA ESTRUTURAL Ala # Resp.: Moelo Matemático Moelo e GDL com amortecimeto

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame

Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame 1 Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame Constantes Físicas Fundamentais: Velocidade da luz, c.9979458 10 8 m.s 1 Constante da aceleração da gravidade,

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações ) Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema

Leia mais

PRIMITIVAS 1. INTRODUÇÃO

PRIMITIVAS 1. INTRODUÇÃO Material de apoio referente ao tópico: Integrais Módlo I. Adaptado de: Prof. Dr. José Donizetti Lima por Prof. Dra. Dayse Regina Batists.. INTRODUÇÃO PRIMITIVAS Em mitos problemas, embora a derivada de

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

7. Movimentos Oscilatórios

7. Movimentos Oscilatórios 7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento no plano horizontal

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

6 Resultados da Análise Não-Linear

6 Resultados da Análise Não-Linear 6 Resultados da Análise Não-Linear Neste capítulo estuda-se a influência dos diversos parâmetros do sistema coluna-fundação nas vibrações livres e forçadas, com ou sem amortecimento, nãolineares. 6.1.

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A segir, ma demonstração do livro. Para adqirir a versão completa em papel, acesse: www.pagina0.com.br CÁLCULO VOLUME ZERO - REGRAS E PROPRIEDADES INICIAIS DE DERIVAÇÃO f() k f( ) k k k 0 f'() lim lim

Leia mais

CINEMÁTICA E DINÂMICA

CINEMÁTICA E DINÂMICA PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/11 2/11 Em diversos sistemas mecânicos, amortecedores de Coulomb ou de atrito seco são utilizados devido à simplicidade mecânica e conveniência. Em estruturas vibratórias, quando componentes apresentam

Leia mais

Equilíbrio em torno da dobradiça de batimento Eixo de rotação Direcção de batimento positiva Dobradiça de batimento Slide

Equilíbrio em torno da dobradiça de batimento Eixo de rotação Direcção de batimento positiva Dobradiça de batimento Slide Movimento da pá em rotação Como vimos as pás estão pivotadas na raiz de maneira a aliviar os momentos flectores nesta zona. Isto permite às pás subir e descer (batimento) As forças aerodinâmicas causam

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II MECÂNC Exame (época de recurso) 11/0/003 NOME: Não esqueça 1) (4 VL.) de escrever o nome a) Diga, numa frase, o que entende por Centro nstantâneo de Rotação (CR). Sabendo que um corpo rígido efectua um

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Cálculo 1 4ª Lista de Exercícios Derivadas

Cálculo 1 4ª Lista de Exercícios Derivadas www.matematiqes.com.br Cálclo 4ª Lista de Eercícios Derivadas ) Calclar as derivadas das epressões abaio, sando as fórmlas de derivação: a) y 4 4 d 4 b) f f c) y d d) y R : d df e) 6 f R : 6 d f) 5 y 4

Leia mais

Aprendizagens Académicas

Aprendizagens Académicas AGRUPAMENTO DE ESCOLAS DE SÃO LOURENÇO VALONGO Departamento de Matemática e Ciências Experimentais Matemática 3º Ciclo 2016/2017 PERFIL DE APRENDIZAGENS ESPECÍFICAS 8º ANO O perfil do alno foi definido

Leia mais

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de

Leia mais

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1 Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

= 0,28 m/s. F = m d 2 x d t 2

= 0,28 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

UNIVERSIDADE DO MINHO

UNIVERSIDADE DO MINHO - - UNIVERSIDADE DO MINHO Laboratório de Órgãos de Máquinas e Tribologia Guia de Realização do Trabalho Prático DETERMINAÇÃO DE FREQUÊNCIAS CRÍTICAS DE VIBRAÇÃO EM VEIOS ROTATIVOS Guimarães, 999 - -. Introdução

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

O equilíbrio e a qualidade do equilíbrio

O equilíbrio e a qualidade do equilíbrio Sebenta de Disciplina DCR, Zuzana Dimitrovová, DEC/FCT/UNL, 016 O equilíbrio e a qualidade do equilíbrio O princípio dos trabalhos virtuais fundamenta vários outros princípios. Um deles é o princípio de

Leia mais

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão): Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR

ISEP LEI AMATA - 1S. 2009/10 CÁLCULO DIFERENCIAL EM IR ISEP LEI AMATA - S. 9/ CÁLCULO DIFERENCIAL EM IR Cálclo Dierencial em IR Derivaa e ma nção nm ponto Q Q As rectas PQ, PQ epq 3 são rectas secantes à crva. P Q 3 t A recta t é tangente à crva no ponto P.

Leia mais

Utilização do MATLAB (Control System Toolbox)

Utilização do MATLAB (Control System Toolbox) Utilização do MALAB (Control Sstem oolbox). Introdção Estas notas constitem ma breve introdção à tilização do Control Sstem oolbox (versão 4) do MALAB no estdo de sistemas dinâmicos lineares. O comando

Leia mais

UNIVERSIDADE DE BRASÍLIA I/2013 DEPARTAMENTO DE ECONOMIA 18/7/13

UNIVERSIDADE DE BRASÍLIA I/2013 DEPARTAMENTO DE ECONOMIA 18/7/13 UNIVRSIDAD D BRASÍLIA I/3 DPARTANTO D CONOIA 8/7/3 TORIA DOS JOGOS - PÓS PROFSSOR AURÍCIO SOARS BUGARIN CO bgarin@nb.br htttp://www.bgarinmaricio.com PROVA GABARITO Problema -Direito e conomia A área de

Leia mais

CONVECÃO NATURAL. É o processo de transferência de calor induzido por forças gravitacionais, centrífugas ou de Coriolis.

CONVECÃO NATURAL. É o processo de transferência de calor induzido por forças gravitacionais, centrífugas ou de Coriolis. CONVECÃO NAURA É o processo de transferência de calor indzido por forças gravitacionais, centrífgas o de Coriolis. A convecção natral ocorre na circlação atmosférica e oceânica, sistemas de refrigeração

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS

ANÁLISE MATRICIAL DE ESTRUTURAS UNIVRIDD DO OT D NT CTRIN UNOC ÁR D CIÊNCI XT D TRR CURO: NGNHRI CIVI DICIPIN: NÁI MTRICI D TRUTUR PROFOR: JCKON NTONIO CRI NÁI MTRICI D TRUTUR Professor: Jackson ntonio Carelli i UMÁRIO IT D FIGUR...

Leia mais

2 Formulação do Problema

2 Formulação do Problema Formulação do Problema Neste capítulo apresenta-se a formulação para a obtenção do funcional de energia de deformação usando tanto uma formulação linear quanto não-linear objetivando a obtenção das equações

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais