Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Tamanho: px
Começar a partir da página:

Download "Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T."

Transcrição

1 Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento se repete. Este tempo necessário para um movimento deste tipo completar um ciclo é chamado de período e é representado em algumas literaturas com a letra T. Onde [T] = s A quantidade de repetições que um movimento deste tipo executa por unidade de tempo é determinado pela frequência do mesmo, representada pela letra f. Onde Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Logo Que por si Como [t] = s, temos: [ω] = rad s ω = 2π T ω = 2πf = s 1 (rad é admensional) [φ] = rad Logo, o gráfico da posição contra o tempo de um MHS apresenta-se da seguinte forma: f = 1 T [f] = 1 s = s 1 = Hz (Hertz) Um movimento deste tipo pode ser muito bem representado por uma partícula que oscila ao longo do eixo x, tendo o ponto x = 0 como ponto de equilíbrio. Uma das características importantes do MHS é sua amplitude, representada no esquema acima por x m (em outras literaturas aparece como A). Tendo No gráfico apresentado a escala de tempo é dada em múltiplos de π, pois se torna mais prático trabalhar desta maneira com a função cosseno. O valor da frequência angular ω está ligado com a periodicidade do movimento e a fase diferença de fase φ com o ponto em que o movimento se inicia. Observe o efeito da frequência angulas ω [x m ] = [x] = m, cm, mm, etc O modelo matemático perfeito para o tipo de movimento como este são as funções periódicas contínuas como o seno e o cosseno. (Lembrando que o seno é somente o cosseno deslocado de π ou 90º). 2 Tomando a mesma base da literatura, descreveremos a função posição de uma partícula em MHS por meio da expressão Observe também o efeito da diferença de fase x(t) = x m cos(ωt + φ) onde ω é conhecido como frequência angular e φ a diferença de fase. A frequência angular (ou em alguns casos, velocidade angular) define-se como ω = θ t A velocidade de um corpo é dada pela derivada da função posição do mesmo. Nada muda para MHS.

2 v(t) = dx dt x(t) = x m cos(ωt + φ) v(t) = dx dt = ω x m sen(ωt + ϕ) Sabendo que a derivada de função cosseno é o negativo da função seno e que, também, a função seno e a cosseno são deslocadas de π horizontalmente entre si, 2 temos os seguintes gráficos para posição e velocidade (com x m = 1, ω = π rad, φ = 0) s que é a velocidade máxima do MHS. A velocidade máxima do MHS sempre ocorre em instantes que o móvel passa pelo ponto de equilíbrio (x(t) = 0). A aceleração, por sua vez a(t) = dv dt = d2 x v(t) = ω x m sen(ωt + φ) a(t) = dv dt = d2 x = ω2 x m cos(ωt + φ) Apresentando o seguinte gráfico (para os mesmos parâmetros) Repare que em t = 0 temos que x(0) = x m = 1 e que v(0) = 0. Esta é outra característica do movimento. Quando o oscilador está em sua posição de afastamento máximo do seu ponto de equilíbrio, sua velocidade é zero e ele está prestes a voltar em direção ao ponto de equilíbrio. Para cada função velocidade em específica, temos determinados instantes em que Como esperado, a função aceleração de um MHS é deslocada da função velocidade (cosseno e seno) de π. A 2 aceleração é nula em tempos que a velocidade tem seu módulo máximo, ou seja, nos picos e valos da função velocidade. Ou ainda, quando a posição é máxima ou mínima (quando x(t) = x m ou x(t) = x m ), a aceleração é máxima. Observando a função aceleração, temos determinados instantes em que ficando com cos(ωt + φ) = 1 a(t) = ω 2 x m nos restando que assim sen(ωt + φ) = 1 v(t) = ω x m v m = ω x m a m = ω 2 x m a m = ω 2 x m que é a aceleração máxima do oscilador harmônico. Exercício: cap.15 Halliday v m = ω x m

3 ω 2 x m cos(ωt + φ) + k m x m cos(ωt + φ) = 0 x m cos(ωt + φ) ω 2 + k m = 0 ω 2 = k m Mecânica do MHS. Um sistema massa mola é um bom modelo de oscilação para estudo da mecânica do MHS. Tendo-se uma mola de constante elástica k presa a um bloco de massa m em um plano horizontal, o bloco é puxado até uma distância +x da origem (x = 0) e posto para oscilar. Neste ponto, neste instante é possível fazer a seguinte análise do movimento segundo as leis de Newton ω = k m Sabendo que Temos que ω = 2π T 2π T = k m T = 2π m k Exercício Cap. 15 Halliday A força F k é a força elástica é a força restauradora deste movimento pois mantém o movimento oscilatório. F x = m a x F k = m a x kx = m a x m a x kx = 0 m dv dt kx = 0 m d2 x kx = 0 + k m x = 0 Esta é a equação diferencial que determina a posição x do móvel ao longo do tempo. Uma equação diferencial não busca um valor numérico como uma solução, mas sim uma função. Neste caso, a solução deve ser a função posição que descreve o movimento oscilatório. Como já conhecemos a função posição, vamos verificar se realmente ela é solução da equação diferencial: Substituindo: = ω2 x m cos(ωt + φ) x = x m cos(ωt + φ) Pêndulo simples como um MHS. Podemos representar um pêndulo por meio de um MHS com a ressalva de algumas considerações. Observando um pêndulo simples em um estado de deslocamento angular θ temos: Neste movimento é a P x que assume o papel de força restauradora do movimento. Desenvolvendo P x = m a x m g sen(θ) = m a x g sen(θ) = a x O arco x descrito ao longo do movimento pode ser calculado por:

4 Então usamos Resultando em x = θ L θ = x L g sen x L = d2 x Pêndulo de Torção (Oscilador Harmônico Angular) O pendulo de torção é um tipo de sistema oscilatório que tem a torção de um eixo (geralmente ou fio ou uma corda) como responsável pela restauração do movimento. Para ângulos pequenos temos que sen(θ) = θ Logo g x L = d2 x Assim, temos mais uma equação diferencial do mesmo modelo g L x = 0 Que pode ser respondida por x(t) = x m cos(ωt + φ) Onde, para o pendulo simples temos Fonte: (HALLIDAY, RESNICK, KRANE) Logo sua ação restauradora é dada por τ = κθ Onde τ representa o torque aplicado (uma força aplicada a uma distância do centro de giro) e θ o ângulo de deslocamento. κ é a constante de torção (similar a constante elástica para compressão e extensão) e representa a resistência do sistema ao giro. As unidades relacionadas são: [τ] = N m [θ] = rad ω = g L tendo então o período dado por Assim [κ] = [τ] [θ] T = 2π L g Como θ = x, podemos trabalhar com a equação da L posição interpretada para o ângulo de abertura do pendulo, dado por x(t) L = x m cos(ωt + φ) L θ(t) = θ m cos (ωt + φ) Exercício. Cap.15 Halliday (não fazer a b) ainda) [κ] = N m rad = N m O período de um movimento deste tipo é dado por T = 2π I κ Onde I é o momento de inercia do oscilador. O momento de inércia I de um objeto está relacionado com sua geometria. Trabalharemos aqui somente com discos, onde I = 1 2 mr2 onde m é a massa do disco e r o seu raio

5 Energia em um MHS Um sistema em MHS é um sistema dito conservativo uma vez que a única força que atua é de caráter elástico. Esta força, por si, é determinada conservativa pois o trabalho realizado pela mesma em um ciclo que sai de um ponto e volta para o mesmo é igual a zero. Relembrando alguns conceitos: E mec = K + U Onde E mec é a energia mecânica, K é a energia cinética e U é a energia potencial do sistema. Temos que E mec = 1 2 k x m 2 = 1 2 mω2 x m 2 constante o que demonstra que o sistema é conservativo visto que sempre temos ΔE mec = 0 Lembrando que para pontos onde a velocidade é nula, temos que E mec = U. E quando a partícula oscilatória está no seu ponto de equilíbrio, em x = 0, temos E mec = K = 1 2 mv2. Em um gráfico, representando K(t) e U(t) juntos, temos: K = 1 2 mv2 E U = 1 2 kx2 Pois estamos lidando somente com forças elásticas. O detalhe importante aqui é que vimos no início do capítulo que x = x(t), ou seja, a posição x é uma função do tempo. Logo U = U(t) = 1 2 kx(t)2 = 1 2 k x m 2 cos 2 (ωt + φ) Repare que em qualquer instante t, temos que U + K = constante = E mec Exercício Tendo que v = v(t), ou seja, que a velocidade do oscilador também é uma função do tempo, temos que K = K(t) = 1 2 mv(t)2 = 1 2 mω2 2 x m sen 2 (ωt + φ) Sabendo que ω = k k = mω2 m temos que K(t) = 1 2 kx m 2 sen 2 (ωt + φ) Assim, temos que a energia mecânica do sistema E mec = K + U E mec = 1 2 k x m 2 cos 2 (ωt + φ) kx m 2 sen 2 (ωt + φ) E mec = 1 2 k x m 2 [cos 2 (ωt + φ) + sen 2 (ωt + φ)] Sabendo que cos 2 (α) + sen 2 (α) = 1, temos que Oscilador amortecido Um oscilador amortecido é um sistema de oscilação que aos poucos vai perdendo sua amplitude por ação de uma força não conservativa. Um exemplo válido disto é um sistema massa mola vertical em que a massa é colocada para oscilar dentro da água. A água atua como amortecedora do movimento aplicando uma força que é proporcional e contrária a velocidade do oscilador. F b = bv onde b é o fator de amortecimento do sistema oscilante. Logo [b] = kg s Na segunda lei de Newton temos: F x = m a x

6 (utilizando o eixo vertical como x) F k + F b = m a x kx bv = m a x k x b dx dt = m d2 x + b dx m dt + k m x = 0 que é a equação diferencial que representa o movimento oscilatório amortecido. A função posição x(t) deste movimento é a solução para a equação acima. Porém, temos três soluções possíveis para a equação diferencial acima devido ao caráter de amortecimento do sistema. 1. Amortecimento subcrítico 2. Amortecimento crítico 3. Amortecimento super-crítico Para este movimento temos que ω = k m b2 4m 2 Quando temos que k > b2 m 4m2 o resultado da raiz acima é real e o movimento é classificado como subcrítico, ou seja, a oscilação vai diminuindo sua amplitude exponencialmente, mas ainda apresentando as características de oscilação. A função posição para uma oscilação amortecida subcrítica é dada por b x(t) = x m e 2m t cos(ω t + φ) apresentando o seguinte gráfico: No livro tipler, esta equação é apresentada com A no lugar de x m. Temos então: b A(t) = A 0 e 2m t Onde A 0 é a amplitude inicial do movimento. Por definição de oscilações deste tipo temos τ = m b que representa o tempo de decaimento ou também conhecida como constante de tempo. Assim [τ] = s O fator de qualidade do amortecimento é calculado por Q = ω 0 τ Onde ω 0 é a frequência angular do movimento sem amortecimento. A relação entre ω e ω 0 é dada por ω b = ω 0 1 2mω 0 Como a amplitude do movimento amortecido vai diminuindo é esperado que haja uma perda de energia gradual. E = 1 2 mω2 x 2 m = 1 b 2 mω 2 x m0 e 2m t 2 Exercício Tipler Cap.14 = 1 2 mω 2 x 2 m0 e b m t E = E 0 e t τ 2 Para o caso das oscilações criticas temos que A amplitude deste movimento decresce segundo a seguinte equação b x m (t) = x m0 e 2m t k m = b2 4m 2 o que faz com que o resultado da raiz ω = k m b2 4m 2, seja zero, não deixando que exista frequência de oscilação. Quando temos uma oscilação supercrítica, temos

7 k m < b2 4m 2 o que faz com que o amortecimento seja mais forte que a força elástica que gera o movimento oscilatório. Em gráficos temos (Fonte: UFBA)

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 122 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis122 LISTA DE EXERCÍCIOS: OSCILAÇÕES 2014.1 01)

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

Física 2. Guia de Estudos P1

Física 2. Guia de Estudos P1 Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m 1 OSCILAÇÕES Veja o pêndulo simples abaixo. Suponha que a bola amarela parta da posição vertical de repouso até alcançar o ponto de máximo deslocamento positivo. Considerando que não há nenhuma perda,

Leia mais

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.

Leia mais

Curso de Complementos de Física

Curso de Complementos de Física Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS NOTA DE AULA 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL II (MAF 0) Coordenador: Prof. Dr. Elias Calixto Carrijo CAPÍTULO 16 OSCILAÇÕES

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013 PÊNDULOS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 15 de março de 013 Roteiro 1 Harmônicas Roteiro Harmônicas 1 Harmônicas Harmônicas Sistemas que vibram: constituem uma classe de problemas

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000]

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000] Física II para a Escola Politécnica (3310) - P (6/06/015) [0000] NUSP: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preena

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

Física I Prova 3 19/03/2016

Física I Prova 3 19/03/2016 Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10

Leia mais

Exercícios de Física Movimento Harmônico Simples - MHS

Exercícios de Física Movimento Harmônico Simples - MHS Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

Lista 14: Oscilações. Questões

Lista 14: Oscilações. Questões Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

Notas de Aula FIS0729 Oscilações, Fluidos e. Material para prova do dia 10/05/2012

Notas de Aula FIS0729 Oscilações, Fluidos e. Material para prova do dia 10/05/2012 Notas de Aula FIS0729 - Oscilações, Fluidos e Gravitação Ezequiel C. Siqueira 2012 Notas de Aula FIS0729 Oscilações, Fluidos e Gravitação Material para prova do dia 10/05/2012 Ezequiel C. Siqueira Departamento

Leia mais

= 0,7 m/s. F = m d 2 x d t 2

= 0,7 m/s. F = m d 2 x d t 2 Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 16,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação ecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 07 - Oscilação Sistema Massa-Mola Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira

Leia mais

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física

Leia mais

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1 Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018 OSCILAÇÕES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 24 de julho de 2018 MHS, Roteiro 1 Organização do curso Motivação Definições Gerais 2 Formulação geral Sistema Massa-Mola 3 Pêndulo

Leia mais

Tópico 8. Aula Prática: Pêndulo Simples

Tópico 8. Aula Prática: Pêndulo Simples Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora

Leia mais

Figura 1.1: Diagrama esquemático ilustrando o sistema do problema.

Figura 1.1: Diagrama esquemático ilustrando o sistema do problema. Figura 1.1: Diagrama esquemático ilustrando o sistema do problema. 1 Exemplos 1.1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude de 7 centímetros.

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

FÍSICA. Prof. RICARDO FAGUNDES PROMILITARES AFA/EFOMM/EN MÓDULO 11 SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3 2. EXERCÍCIOS DE COMBATE 10

FÍSICA. Prof. RICARDO FAGUNDES PROMILITARES AFA/EFOMM/EN MÓDULO 11 SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3 2. EXERCÍCIOS DE COMBATE 10 SUMÁRIO 1. MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) 3. EXERCÍCIOS DE COMBATE 10 MOVIMENTO HARMÔNICO SIMPLES (M.H.S.) Quando a força resultante que atua em uma partícula apresentar a forma abaixo F kr rˆ Podemos

Leia mais

Capítulo O Movimento Harmônico Simples (MHS)

Capítulo O Movimento Harmônico Simples (MHS) Capítulo 3 Oscilações Após nosso estudo prévio de rotações de corpos rígidos, agora nos voltamos para outro tipo de movimento. O movimento oscilatório. Este movimento corresponde a vibrações localizadas

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão):

Oscilações. Movimento Harmônico Simples. Guia de Estudo (Formato para Impressão): Page 1 of 6 Oscilações Guia de Estudo (Formato para Impressão): Após o estudo deste tópico você deve: Entender os conceitos de Frequência, Período, Amplitude e Constante de Fase; Conhecer e saber resolver

Leia mais

Movimento harmônico simples (MHS)

Movimento harmônico simples (MHS) Movimento harmônico simples (MHS) Movimento periódico: movimento que se repete em intervalos de tempo sucessivos e iguais. Ex.: movimento circular uniforme (MCU). Período (T): menor intervalo de tempo

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado

Leia mais

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário 1 de 8 05/05/2008 11:32 Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário Aplicações do Movimento Harmônico Simples, Amortecimento, Oscilações Forçadas e Ressonância) Guia de

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova de Recuperação - 14/02/200 - Gabarito 1. Uma massa é abandonada com velocidade inicial igual a zero de modo que atinge o solo 10 segundos depois de solta. Desprezando

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II 1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap

Leia mais

Física I 2010/2011. Aula 10. Movimento Oscilatório II

Física I 2010/2011. Aula 10. Movimento Oscilatório II Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

Física para Engenharia II - Prova de Recuperação

Física para Engenharia II - Prova de Recuperação 43096 Física para Engenharia II - Prova de Recuperação - 03 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000] Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número

Leia mais

c il a ções Física 2 aula 9 2 o semestre, 2012

c il a ções Física 2 aula 9 2 o semestre, 2012 Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka

Leia mais

Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES CAPÍTULO 15. Objetivos do Aprendizado. Ideias-Chave. Depois de ler este módulo, você será capaz de...

Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES CAPÍTULO 15. Objetivos do Aprendizado. Ideias-Chave. Depois de ler este módulo, você será capaz de... CAPÍTULO 15 Oscilações 15-1 MOVIMENTO HARMÔNICO SIMPLES Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 15.01 Conhecer a diferença entre movimento harmônico simples (MHS) e outros

Leia mais

Oscilações, Coerência e Ressonância

Oscilações, Coerência e Ressonância , Coerência e Ressonância 1. Por que alguns sistemas físicos oscilam e outros não?. O que caracteriza um sistema oscilatório? 3. Como se mede o período de um pêndulo? parâmetros internos Oscilaç A determinação

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES UFSC - CFM DEPTO. DE FÍSICA FÍSICA EXPERIMENTAL I - FSC 5122 1 - OBJETIVOS EXPERIÊNCIA M003-3 PÊNDULO SIMPLES a) Medir a aceleração da gravidade local. b) Identificar o equipamento e entender seu funcionamento.

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................

Leia mais

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples Oscilador Harmônico 8 - Oscilador Harmônico Mecânica Quântica Em Física, o oscilador harmônico é qualquer sistema que apresenta movimento oscilatório, de forma harmônica, em torno de um ponto de equilíbrio.

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 59136 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 Oscilações Forçadas e Ressonância Nas aulas precedentes estudamos oscilações livres de diferentes tipos de sistemas físicos. Em uma oscilação

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais