Série IV - Momento Angular (Resoluções Sucintas)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Série IV - Momento Angular (Resoluções Sucintas)"

Transcrição

1 Mecânica e Ondas, 0 Semestre , LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme uma partícula se desloca com velocidade constante e, portanto, em linha recta, pode fazer-se coincidir o eixo dos xx com a direcção do movimento, logo: { r = vo t e x + r o v = v o e x substituindo na expressão do momento angular: L = (v o t e x + r o ) mv o e x L = v o t e x mv o e x + r o mv o e x L = 0 + mv o r o e x L = mv o r o e x ou seja, o momento angular vai conservar-se ao longo do movimento, dependendo apenas das condições iniciais. b) No caso do movimento circular uniforme, usando coordenadas cilíndricas para descrever o movimento (sendo o plano polar o plano do movimento), tem-se: { r = ro e r v = v o e θ substituindo na expressão do momento angular: L = r o e r mv o e θ L = mr o v o ( e r e θ ) L = mr o v o e z ou seja, o momento angular vai conservar-se ao longo do movimento, dependendo apenas das condições iniciais.. Colocando a origem do sistema de coordenadas no centro, e descrevendo o sistema em coordenadas polares, tem-se: L = r p e, uma vez que apenas irá actuar uma força radial, o seu momento em relação à origem é nulo, logo o momento angular irá conservar-se. a) e b) Para cada um dos casos, tem-se: 1

2 { r1 = l o e r v 1 = l o θ1 e θ L1 = l o e r ml o θ1 e θ { r = l o e r v = l o θ e θ L = l o e r m l o θ e θ ou seja, { L1 = ml θ o 1 e z L = m ( l o ) θ e z e, uma vez que o momento angular se conserva, tem-se, que L 1 = L : ml o θ 1 = m l o 4 θ θ = 4 θ 1 e para a velocidade, ou seja, v = l o θ = l o 4 θ 1 = l o θ1 v = v 1 c) Se se cortar o fio deixa de actuar a força central e cai-se na situação da partícula livre que se irá deslocar com uma velocidade constante igual à velocidade que a partícula tinha no instante em que o fio foi cortado. 3. O movimento dá-se com velocidade angular constante ω m = 0.5 kg l = 0.90 m T r = = 196 N a) A condição de l = C te implica que a resultante das forças que actuam segundo a direcção radial seja igual a zero: T + F c + p cos θ = 0 T + m v l + mg cos θ = 0 com v = l ω T = mg cos θ m l ω l T = mlω mg cos θ a tensão é máxima no ponto inferior da trajectória, θ = 0: T r = mlωr mg 196 = ω r ω r = 0.6 rad/s b) Para que o movimento seja circular é necessário que T 0, logo: F c + P cos θ 0 ora a situação mais desfavorável corresponde a θ = π, θ mlω m mg = 0 ω m = g l ω m = 3.3 rad/s c) O momento da força gravítica (peso) é dado por:

3 N = r P com P = mg cos θ er mg sen θ e θ N = r e r (mg cos θ e r mg sen θ e θ ) N = mg r sen θ e z para que o movimento seja uniforme é necessário que o momento total seja nulo e, uma vez que o momento da força da gravidade é o único diferente de zero, tem-se: N + N = 0 N = N logo N = mg r sen θ e z 4. Sejam: m = 40 kg AC = 4.8 m d = 0.3 m No equilíbrio, a resistência em A terá de ser perpendicular à parede e em B perpendicular à barra. Colocando um sistema de coordenadas com origem em A e eixo dos xx horizontal e eixo dos yy s vertical, tem-se: R A = R A e x R B = R B sen α e x + R B cos α e y P = mg e y A resultante das forças que actuam a barra terá de ser zero bem como o momento das forças em relação a qualquer ponto (calculemos em relação ao ponto A): { RA + R B + P = 0 AB R AC B + P = 0 ou em componentes: R A R B sen α = 0 R B cos α = cos α R B cos α = 0 tem-se então, R B = cos α 0.3 cos α e como, cos α cos α = 0 cos 3 α = α = 60 o R B = = 784 N R A = = 674 N em resumo: R A = 674 N R B = 784 N α = 60 o 3

4 5. Não havendo forças exteriores a actuar o sistema, o quantidade de movimento total mantem-se constante. a) Colocando um sistema de eixos no centro do halter, sendo o eixo dos xx s o horizontal e o dos yy s o vertical, tem-se para o centro de massa do sistema: v CM = m v+ m 0+m 0 m = 1 4 v = 1 4 v e x v CM = 1.5 e x (m/s) b) No referencial do centro de massa tem-se imediatamente antes dos choque: v 1 = v e x v 4 e x = 3 v 4 e x v = 0 v 4 e x = v 4 e x v 3 = v 4 e x calculando o momento angular imediatamente antes da colisão, L antes = L 1 + L 1 + L ou seja, L antes = a e y m 3 v 4 e x + a e y m ( v 4 e x) a e y m( v 4 e x) L antes = 1 4 a mv e z No instante imediatamente a seguir ao choque, em coordenadas cilíndricas, tem-se logo, L depois = a e r m a θ e θ a e r m( a θ) e θ L depois = 1 4 ma θ er e θ ma θ er e θ L depois = 1 ma θ ez Uma vez que não há forças exteriores, o momento das forças exteriores é nulo, logo o momento angular conserva-se: logo L antes = L depois 1 4 a mv = 1 ma θ θ = 1 a v θ = ω = 5 rad/s c) Cálculo da variação da energia cinética no referencial laboratório: T antes = 1 m v = 5 4 m = 5.0 J T depois = 1 mv CM + T CM depois a energia cinética depois do choque, medida no referencial do centro de massa é: ( ) Tdepois CM = 1 mv mv = 1 m ( a ) θ + ( a ) θ = m a θ 4 = m logo Tdepois CM = 1.56 m (J) 4

5 e substituindo na expressão da energia cinética depois do choque, tem-se: T depois = m m =.5 J e, portanto, a variação da energia cinética é de: T = T depois T antes = =.5 J 6. O momento angular total do sistema é igual à soma dos momentos angulares das partículas. Usando coordenadas cilíndricas em que o eixo dos zz s é o eixo de rotação do sistema. L = L 1 + L e o sistema roda com velociadade angular: ω = ω e θ = θ e θ a) O movimento vai dar-se no plano polar: L = r 1 m v 1 + r m v como se tem: r = r 1 = r e r e v = v 1 = r θ e θ substituindo na expressão do momento angular, L = r 1 m v 1 = (r e r ) (r θ e θ ) L = mr θ ez = ( mr ) ω = I ω b) Escrevendo as expressões das posições e velocidades para este segundo caso, { r1 = r sen ϕ e r + r cos ϕ e z e v 1 = r sen ϕ θ e θ { r = r 1 = r sen ϕ e r r cos ϕ e z v = v 1 = r sen ϕ θ e θ substituindo na expressão do momento angular: L = r 1 m v 1 + r m v = r 1 m v 1 L = (r sen ϕ e r + r cos ϕ e z ) m(r sen ϕ θ e θ ) L = mr θ sen ϕ ( e r e θ ) + mr θ sen ϕ cos ϕ ( ez e θ ) L = ( mr sen ϕ) ( θ e z ) mr sen ϕ cos ϕ ( θ e r ) L = I ω mr sen ϕ cos ϕ ( θ e r ) 7. Seja por o movimento sobre a superfície do cone, com ω = 10 r.p.m = 10 π 60 = 1.05 rad/s l = 4.5 m α = 30 o a) Sendo R o raio da circurferência descrita pela massa: 5

6 sen α = R l 1 = R 4.5 R =.5 m v = ω R = v =.36 m/s b) As forças em jogo sobre a massa m são, em cada instante, sobre a direcção radial e vertical (plano rz), assim, P + T + N = m a em que P, T e N são, respectivamente, o peso, a força exercida pelo fio e a reacção normal: P = mg e z T = T sen α e r + T cos α e z N = N cos α e r + N sen α e z a = ω R e r substituindo então na expressão da lei de Newton e decompondo nas suas componentes: { { T sen α + N cos α = ω R m T 3 N = mg + T cos α + N sen α = 0 3 T + N = resolvendo o sistema: T + 3 T 3 = T = 58 N substituindo, tem-se N = N = 17 N c) Para que a reacção normal seja nula ( N = 0), tem-se substituindo nas equações { { T sen α = ω R m T sen α = ω R m mg + T cos α = 0 T cos α = mg dividindo ordenadamente, logo, tg α = ω R g ω = ω = 1.59 rad/s g tg α R 8. Designando por ϕ o ângulo que o pêndulo faz com a vertical, e por r a direcção radial do fio, tem-sem, para as forças em jogo: { T = T er P = mg cos ϕ e r mg sen ϕ e ϕ aplicando a lei de Newton em cada uma das componentes. Note-se que o pêndulo irá descrever uma circunferência de raio R = l sen ϕ e que a sua aceleração será a = v /R segundo a normal à circunferência, assim, esta aceleração será: a = v R sen ϕ e r v R cos ϕ e ϕ = a = v l e r v l cos ϕ sen ϕ e ϕ v l sen ϕ sen ϕ e r v l sen ϕ cos ϕ e ϕ 6

7 logo, { T + mg cos ϕ = m v l mg sen ϕ = m v cos ϕ l sen ϕ a) e b) Sendo o movimento circular, pode escrever-se: v = ω R = ω l sen ϕ de onde resulta para as equações do movimento { T + mg cos ϕ = mω l sen ϕ mg sen ϕ = mω l sen ϕ cos ϕ da segunda equação: resulta mg sen ϕ = mω l sen ϕ cos ϕ cos ϕ = g ω l e substituindo na primeira equação: obtem-se logo T + mg cos ϕ = mω l sen ϕ T = mg g ω l mω l (1 T = m g ω l mω l + m g ω l T = mω l g ω 4 l ) c) O momento angular da partícula será, L = r m v = (l e r ) m(l sen ϕ ω) e θ em que θ é a direcção correspondente ao movimento de rotação. Tem-se, então, L = l msen ϕ ω ( e r e θ ) = l msen ϕ ω e ϕ a sua projecção sobre o eixo, será: L sen ϕ = l msen ϕ ω 9. Sejam, M Sol = kg R Sol = m G = 6, Nm /kg v o = 500 m/s b = 10 1 m Uma vez que a única força em jogo é a força gravítica e ela é conservativa, a energia mecânica vai conservar-se. Por outro lado, uma vez que estamos perante uma força central, o momento angular total do sistema também se vai conservar. Dada a grande desproporção entre os dois corpos em jogo, podemos considerar o Sol em repouso: 7

8 E o = 1 mv o G M S m r o = 1 mv o (quando r o ) E 1 = 1 mv G M S m d L o = mr o v o sen α = mv o b L 1 = mv d (b = r o sen α parêmetro de impacto) logo { 1 mv o = 1 mv G M S m d mv o b = mv d { v o = v G M S d v o b = v d a) Para resolver o sistema anterior, tem-se a partir da segunda equação v = b d v o e substituindo na primeira equação b v d o = v o + G M S d b v o v o d G M S d = 0 v o d + G M S d b v o = 0 que tem como soluções: d = G M S v o ± ( G M S v o ) + b escolhendo a solução positiva ( ) d = G M S + G MS vo v + b o substituindo os valores, obtem-se d = m substituindo na expressão da velocidade v = b d v o = m/s b) A distância mínima formal para que não colida com o Sol será a distância mínima igual ao raio do Sol, logo, usando a equação obtida na alínea anterior em que d será agora o seu raio R S = G M S v o resolvendo em ordem a b: b = RS + R S G M S vo de onde se obtem b = m ( ) G M + S v + b o 8

9 10. A partir dos dados do problema: R = m M = kg F c = 10 5 N ω = 500 rot/min = 500 π 60 = 6 rad/s a) A partir dos resultados obtidos no anexo, tem-se para o momento de inércia do disco I disco = 1 M R I = I = kg m b) O momento angular é dado por: L = I ω L = L = kg m /s c) A energia cinética é dada por por: E c = 1 I ω E c = E c = J d) A partir da expressão da força de atrito F at = 0.3 F c = N Como a derivada do momento angular é igual ao momento da força de atrito, N = r F e d L dt = N r F = d L dt R F at t = L e, substituindo t = t = s = 18.9 min e) A energia dissipada será dada pela variação da energia cinética: E diss = E f c Ei c = E diss = J 11. Dados iniciais R = 0.15 m M o = 10 kg d = m M 1 = 1 kg a) A partir dos resultados obtidos no anexo, tem-se para o momento de inércia do disco I = I disco = 1 M R I = I = 0.11 kg m b) A partir da conservação da energia mecânica durante a descida da massa M 1, Ec i + Ep i = Ec f + Ep f Ep i = 0 Ec i = 0 Ep f = mg d Ef c = 1 I ω + 1 M 1 v uma vez que a relação entre ω e v é dada por v = ω R, tem-se: 9

10 E f c = 1 1 M o R ω + 1 M 1 ω R = 1 ( M o + M 1 ) R ω tem-se então para a conservação da energia: 0 = 1 ( M o + M 1 ) R ω M 1 g h ω = 1 4 M 1 g h R M o + M 1 ω = 17.1 rad/s c) Usando a relação entre a velocidade linear e angular: v = ω r v = v =.6 m/s d) Para o cálculo do momento angular final: L = I ω L = L = 1.93 kg m /s e) Para o cálculo da energia cinética final, usando a expressão obtida anteriormente E f c = 1 ( M o + M 1) R ω E f c = 1 (10 + 1) E f c = 19.7 J 1. Dados iniciais R = 0.05 m µ = 7.5 g/cm 3 = kg/m 3 A partir daqui pode calcular-se a massa: M = µ V = µ 4 3 π R3 M = π M = 3.9 kg a) A partir dos resultados obtidos no anexo, tem-se para o momento duma esfera I = I esf = 5 M R I = I = kg m b) Da relação entre a velocidade do centro de massa e a velocidade angular: v CM = ω r v CM = ω R e v CM = v o ω = v o R = ω = 60 rad/s c) Usando a expressão do momento angular L = I ω L = L = 0.34 kg m /s d) A partir da expressão da energia cinética: E i c = 1 M v o + 1 I ω = 1 M v o M R ω E i c = 7 10 M v o E i c = E i c = 4.7 J e) Para calcular a altura máxima, pode usar-se a conservação da energia mecânica na subida: E i c + Ei p = Ef c + Ef p 7 10 M v o + 0 = 0 + M g h max h max = 7 v o 10 g = h max = 0.64 m= 64 cm 10

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

Física I para a Escola Politécnica ( ) - PSub (14/07/2017)

Física I para a Escola Politécnica ( ) - PSub (14/07/2017) [0000]-p1/8 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas: z7ba: (1) E; () D; (3) C; (4) A; yy3: (1) D; () A; (3) E; (4) E; E1zy: (1) E; () A; (3) E; (4) E; zgxz: (1) B; () C; (3) B; (4) C; (1) [1,0] Um

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações:

6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: 6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da régua; b) em relação

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F o semestre Fernando Sato Prova 3 (Gabarito) - Diurno - 23/06/2008 UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin F 18-1 o semestre 008 - Fernando Sato Prova 3 (Gabarito) - Diurno - 3/06/008 Problema 1: No esquema da figura abaixo, uma bala (com massa

Leia mais

FIS-26 Resolução Lista-04 Lucas Galembeck 2013

FIS-26 Resolução Lista-04 Lucas Galembeck 2013 FIS-6 Resolução Lista-4 Lucas Galembeck 1 1. Um cordão é enrolado num pequeno cilindro homogêneo de massa M. Supondo que ele seja puxado por uma força F para frente, calcule a aceleração do cilindro e

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla, indique apenas uma das opções. R 1 R 2

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla, indique apenas uma das opções. R 1 R 2 Física Geral I 1º semestre - 2004/05 3 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 12 de Janeiro 2005 Duração: 2 horas + 30 min tolerância Nas

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

Física I para a Escola Politécnica ( ) - P3 (07/07/2017)

Física I para a Escola Politécnica ( ) - P3 (07/07/2017) Física I para a Escola Politécnica (433101) - P3 (07/07/017) [0000]-p1/9 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) (1) [1,0] Uma bola de sinuca de raio r rola sem deslizar do topo de um domo esférico com raio

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio?

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio? 1 II.5. Corpo rígido (versão: 20 de Maio, com respostas) 1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações : (a) em relação ao eixo que passa

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Problemas de Mecânica e Ondas 3

Problemas de Mecânica e Ondas 3 Problemas de Mecânica e Ondas 3 P 3.1. ( Exercícios de Física, A. Noronha, P. Brogueira, McGraw Hill, 1994) Considere uma esfera de densidade e raio r imersa num fluido de viscosidade e massa específica

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 30/11/2014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000] Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número

Leia mais

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 A vista da prova será feita na 2 a feira 5/12/2011, na sala de aula no horário de 8h-8h30. Primeira Questão No sistema de coordenadas

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Energia potencial (para um campo de forças conservativo).

Energia potencial (para um campo de forças conservativo). UNIVERSIDDE DO PORTO Faculdade de Engenharia Departamento de Engenharia Civil Mecânica II Ficha 5 (V3.99) Dinâmica da Partícula Conceitos F = m a p = m v Princípio fundamental. Quantidade de movimento.

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

Física I Reposição 2 3/12/2014

Física I Reposição 2 3/12/2014 Nota Física I Reposição 3/1/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 14

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Física I Prova 2 25/10/2014

Física I Prova 2 25/10/2014 Nota Física I Prova 5/10/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

Física 1. Energia Resumo P2

Física 1. Energia Resumo P2 Física 1 Energia Resumo P2 Fórmulas e Resumo Teórico Energia Potencial Gravitacional - Considerando um corpo de massa m a uma altura h do solo, temos: E = mgh Energia Potencial Elástica - Considerando

Leia mais

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é

DISCURSIVAS. Solução: (a) Com os eixos escolhidos conforme a figura, a altura instantânea da caixa a partir do instante t=0 em que começa a cair é DISCURSIVAS 1. Um pequeno avião monomotor, à altitude de 500m, deixa cair uma caixa. No instante em que a caixa é largada, o avião voava a 60,0m/s inclinado de 30,0 0 acima da horizontal. (a) A caixa atinge

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME:

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME: G3 FIS1026 17/06/2013 MECÂNICA NEWTONIANA B NOME: Matrícula: TURMA: QUESTÃO VALOR GRAU REVISÃO 1 3,0 2 3,5 3 3,5 Total 10,0 Dados: g = 10 m/s 2 ; Sistema de coordenadas y α constante: Δω = αt; Δθ = ω 0

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014 UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h =

Solução: Alternativa (c). Esse movimento é retilíneo e uniforme. Portanto h = (g t 1 2 )/2 e 2 h = UNIVERSIDADE FEDERAL DE ITAJUBÁ FÍSICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/06/206 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 0 Prova sem consulta. 02 Duração:

Leia mais

Física 1. Resumo e Exercícios P1

Física 1. Resumo e Exercícios P1 Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica Olimpíadas de Física 2007 Selecção para as provas internacionais Prova Teórica Sociedade Portuguesa de Física 4/Maio/2007 Olimpíadas Internacionais de Física 2007 Selecção para as provas internacionais

Leia mais

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d

I m k m r (3,5) 3000.(3) kg.m. Como d d d 3,697sen d Capítulo 17 - Exercícios 17.65) Os passageiros, a gôndola e a estrutura de balanço ilustrados abaixo têm uma massa total de 50 Mg (ton.), com centro de massa em e raio de giração kb 3,5 m. Adicionalmente,

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS

UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS UNIVERSIDADE FEDERAL DE ITAJUBÁ Pró-Reitoria de Graduação - PRG Coordenação de Processos Seletivos COPS PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 28/06/2015 Física

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 718-1 01. Uma pequena coluna de ar de altura h = 76 cm é tampada por uma coluna de mercúrio através de um tubo vertical de altura H =15 cm. A pressão atmosférica é de 10 5 Pa e a temperatura é de

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

Mecânica e Ondas 1º Ano -2º Semestre 2º Exame 26/06/ :30h. Mestrado Integrado em Engenharia Aeroespacial

Mecânica e Ondas 1º Ano -2º Semestre 2º Exame 26/06/ :30h. Mestrado Integrado em Engenharia Aeroespacial Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Exame 6/06/013 11:30h Duração do Exame: :30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique

Leia mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais evidente entre objetos com grandes massas, ocasionada

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida, 431 400-07 Porto. Tel. 8

Leia mais

a 1,019m/s, S 89,43N ; b)

a 1,019m/s, S 89,43N ; b) Problema O bloco de massa m =5kg e o bloco de massa m =30kg são mantidos em equilíbrio na posição mostrada pela força P. mola tem uma constante de rigidez k=kn/m e encontra-se indeformada nesta posição.

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção

Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

Prova P1 Física para Engenharia II, turma set. 2014

Prova P1 Física para Engenharia II, turma set. 2014 Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos de Carácter Geral e Cursos Tecnológicos PROVA 115/10 Págs. Duração da prova: 120 minutos 2001

Leia mais

Lista 7. Campo magnético, força de Lorentz, aplicações

Lista 7. Campo magnético, força de Lorentz, aplicações Lista 7 Campo magnético, força de Lorentz, aplicações Q28.1) Considere a equação da força magnética aplicada sobre uma partícula carregada se movendo numa região com campo magnético: F = q v B. R: Sim,

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior. Física 01. Uma haste de comprimento L e massa m uniformemente distribuída repousa sobre dois apoios localizados em suas extremidades. Um bloco de massa m uniformemente distribuída encontra-se sobre a barra

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

Em primeiro lugar devemos converter a massa do corpo dada em gramas (g) para quilogramas (kg) usado no Sistema Internacional (S.I.

Em primeiro lugar devemos converter a massa do corpo dada em gramas (g) para quilogramas (kg) usado no Sistema Internacional (S.I. Um corpo de massa 100 g é abandonado no ponto sobre uma superfície cilíndrica, com abertura de 150 o, sem atrito, cujo o eixo é horizontal e normal ao plano da figura em O. Os pontos e O estão sobre o

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre

Leia mais

Física 1. Rotação e Corpo Rígido Resumo P3

Física 1. Rotação e Corpo Rígido Resumo P3 Física 1 Rotação e Corpo Rígido Resumo P3 Fórmulas e Resumo Teórico Momento Angular - Considerando um corpo de massa m a um momento linear p, temos: L = r p = r mv Torque - Considerando uma força F em

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Mecânica Geral 2016/17

Mecânica Geral 2016/17 Mecânica Geral 2016/17 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido B (Vectores velocidade angular e momento angular e movimento giroscópico.) 1.

Leia mais

Física I Prova 3 29/11/2014

Física I Prova 3 29/11/2014 Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA

PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA SELEÇÃO 9 PROCESSO SELETIVO TURMA DE 9 FASE PROVA DE CONHECIMENTOS DE FÍSICA Caro professor, esta prova tem questões de caráter objetivo (múltipla escolha) sobre física básica. A duração da prova é de

Leia mais

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular Física I 2010/2011 Aula 16 Momento de uma Força e Momento Angular Sumário O Momento angular A 2.ª Lei de Newton na forma angular O Momento Angular de um Sistema de Partículas O Momento Angular de um Corpo

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações. Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas

Leia mais

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1. 1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num

Leia mais

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 03/06/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 03/06/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

3. Mecânica de Newton

3. Mecânica de Newton 3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME MECÂNICA A DINÂMICA 1 ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO 3 a LISTA DE EXERCÍCIOS - PME100 - MECÂNICA A DINÂMICA LISTA DE EXERCÍCIOS COMPLEMENTARES AO LIVRO TEXTO (FRANÇA, MATSUMURA) 1) Três barras uniformes de

Leia mais

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA

Leia mais

AULA 4 DINÂMICA DO MOVIMENTO CURVILÍNEO QUESTÕES 1, 2, 3 e 4. Veja questões 22 e 23 da página 97 - Tudo vai se esclarecer quando chegarmos lá.

AULA 4 DINÂMICA DO MOVIMENTO CURVILÍNEO QUESTÕES 1, 2, 3 e 4. Veja questões 22 e 23 da página 97 - Tudo vai se esclarecer quando chegarmos lá. Anual de Física para Medicina e Odontologia 005 - www.fisicaju.com.br - rof enato Brito AULA 4 DIÂMICA DO MOVIMETO CUVILÍEO QUESTÕES 1,, 3 e 4 Veja questões e 3 da página 97 - Tudo vai se esclarecer quando

Leia mais

Lista de Exercícios para a P1-2014

Lista de Exercícios para a P1-2014 Lista de Exercícios para a P1-2014 OBJETIVAS www.engenhariafacil.weebly.com 1)(Halliday-Adaptad Uma pessoa saltou do topo de um edifício de H m, caindo em cima da caixa de um ventilador metálico, que afundou

Leia mais

Física I para Engenharia IFUSP P3-18/07/2014

Física I para Engenharia IFUSP P3-18/07/2014 Física I para Engenharia IFUSP - 43195 P3-18/0/014 A prova tem duração de 10 minutos. Resolva cada questão na folha correspondente. Use o verso se necessário. Escreva de forma legível, a lápis ou tinta.

Leia mais

x 1 e o momento linear é calculado a partir de L 2 x 2 dm. L 2

x 1 e o momento linear é calculado a partir de L 2 x 2 dm. L 2 6 Corpo Rígido 6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) Considere a função f definida por f()= + 1. Determine: a) o domínio da função. b) os intervalos onde o gráfico de f é crescente e onde é decrescente.

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E. alternativa B

Questão 46. Questão 48. Questão 47. alternativa D. alternativa E. alternativa B Questão 46 No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a. Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao

Leia mais

BCJ Lista de Exercícios 7

BCJ Lista de Exercícios 7 BCJ0204-2016.1 Lista de Exercícios 7 1. Um dos primeiros métodos para se medir a velocidade da luz utilizava a rotação de uma roda dentada com velocidade angular constante. Um feixe de luz passava através

Leia mais

Exemplo E.3.1. Exemplo E.3.2.

Exemplo E.3.1. Exemplo E.3.2. Exeplo E.1.1. O bloco de 600 kn desliza sobre rodas nu plano horizontal e está ligado ao bloco de 100 kn por u cabo que passa no sistea de roldanas indicado na figura. O sistea parte do repouso e, depois

Leia mais

Lista Básica Aulas 22 e 23 Frente 3

Lista Básica Aulas 22 e 23 Frente 3 TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Mecânica e Ondas Série 3 Docentes da disciplina: João Seixas e Mário Pinheiro MeMEC Department of Physics and Institute for Plasma and Nuclear Fusion, Instituto Superior Técnico, Av. & 1049-001 Lisboa,

Leia mais

Deslocamento, velocidade e aceleração angular. s r

Deslocamento, velocidade e aceleração angular. s r Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

SOLUÇÃO. OBSERVAÇÕES: 01 Prova SEM consulta. 02 A prova PODE ser feita a lápis. 03 PROIBIDO o uso de calculadoras e similares. 04 Duração: 2 HORAS.

SOLUÇÃO. OBSERVAÇÕES: 01 Prova SEM consulta. 02 A prova PODE ser feita a lápis. 03 PROIBIDO o uso de calculadoras e similares. 04 Duração: 2 HORAS. UNVERSDDE FEDERL DE TJUÁ ÁLULO 1 e PROV DE TRNSFERÊN NTERN, EXTERN E PR PORTDOR DE DPLOM DE URSO SUPEROR 1/1/1 NDDTO: URSO PRETENDDO: OSERVÇÕES: 1 Prova SEM consulta prova PODE ser feita a lápis PRODO

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/07/2012

Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/07/2012 4320195-Física Geral e Exp. para a Engenharia I - Prova Substitutiva - 05/0/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora

Leia mais

Questão Valor Grau Revisão 1 a Questão 3,5 2 a Questão 3,0 3 a Questão 3,5 Total 10,0

Questão Valor Grau Revisão 1 a Questão 3,5 2 a Questão 3,0 3 a Questão 3,5 Total 10,0 PUC-RIO CB-CTC G1 DE MECÂNICA NEWTONIANA B 01.04.2013 Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas deste caderno

Leia mais