Equilíbrio em torno da dobradiça de batimento Eixo de rotação Direcção de batimento positiva Dobradiça de batimento Slide

Tamanho: px
Começar a partir da página:

Download "Equilíbrio em torno da dobradiça de batimento Eixo de rotação Direcção de batimento positiva Dobradiça de batimento Slide"

Transcrição

1 Movimento da pá em rotação Como vimos as pás estão pivotadas na raiz de maneira a aliviar os momentos flectores nesta zona. Isto permite às pás subir e descer (batimento) As forças aerodinâmicas causam a batimento ascendente. As forças centrifugas provocam o batimento descendente São geradas forcas inerciais na direcção oposta à respectiva aceleração. No movimento horizontal, é encontrada uma posição de equilíbrio onde o somatório dos momentos devido a estas três forças é nulo. Slide

2 Equilíbrio em torno da dobradiça de batimento Eixo de rotação Direcção de batimento positiva Dobradiça de batimento Slide

3 Equilíbrio em torno da dobradiça de batimento Elemento com massa por unidade de comprimento m Distanciado de y do eixo de rotação Fazendo um movimento circular com velocidade A força centrifuga será : d ( F ) ( mdy) a ( mdy) y CF r Slide

4 Equilíbrio em torno da dobradiça de batimento Assumindo por agora que não existe offset a força centrifuga total é: F CF m ydy m Onde M é a massa total da pá M Dado que a pá tem um ângulo de coning de a componente da força centrifuga perpendicular à pá é: ( F ) sin ( mdy) y sin d m ydy CF Slide

5 M Equilíbrio em torno da dobradiça de batimento O momento em relação à dobradiça de batimento é: CF m y dy y mdy M Ou podemos também escrever: M CF m F CF y mdy I b Onde I b é o momento de inércia da pá em relação à dobradiça de batimento Slide 5

6 Equilíbrio em torno da dobradiça de batimento O momento aerodinâmico em relação ao mesmo ponto é: M Lydy No equilíbrio M CF M por isso : M Lydy o Lydy M Slide 6

7 Equilíbrio em torno da dobradiça de batimento Dado que a dobradiça pode ter um offset correspondente a e(<.5) podemos obter a expressão: M CF e m y m ( e ) dy M ( e) ( ) o e elembrandomm(-e)m(-e) Slide 7

8 Equilíbrio em torno da dobradiça de batimento O momento aerodinâmico é: M Lydy e E o ângulo de coning de equilíbrio é: o Lydy e M ( e) Slide 8

9 Eixo de rotação Dobradiça de batimento M(F dm ydl CF inercial ) Direcção de batimento positiva Slide 9

10 Já obtivemos as expressões para os momentos de : dm CF m y dy dm Lydy E o momento inercial é: ( mdy ) y inercial dm inercial Assumindo um offset nulo: m y dy my dy Lydy Slide

11 Escrevendo na forma: my dy ( ) Lydy E dado que o primeiro termo é I b : ( ) I I b b Lydy Slide

12 Introduzindo uma mudança de variável d dt E também d d d dt t d d d d ** dt d * Slide

13 E a equação do movimento pode ser escrita na forma: d ( ) * * b Lydy I d d ( ) b Lydy I * * Sabendo que (da TEP) T i T l T U v U y cc U L ρ α Slide

14 Então o momento aerodinâmico é: i l T ydy v y cc U Lydy ρ α T T l T U U α i v ρ i l dy y y cc ρ α 8 i cc l λ ρ α Slide

15 E a equação de batimento : ( ) 8 * * i cc l λ ρ α 8 l b I α l ρcc λ ( ) 8 * * * i b l I λ ρ α Definindo o número de Lock como: b l I cc α ρ γ Slide 5 b

16 A forma final da equação do movimento de batimento é: * * * i λ γ γ 8 8 * * * i λ γ γ Se o momento aerodinâmico não fosse calculado: com γ M ** l Lydy cc M α ρ Slide 6

17 Comparando a equação obtida: γ γ λ ** * i 8 8 Com o sistema massa-mola-amortecedor: m x cx kx Podemos concluir que a frequência natural nãoamortecida da pá é: ϖ n ( ) k m ou F / rev rad / s Slide 7

18 Para o estudo da equação de batimento vamos considerar o caso do rotor em vácuo (sem forças aerodinâmicas) ** com a solução cos c s sin O rotor actua como um giroscópio Com a introdução das forças aerodinâmicas o rotor irá entrar em precessão para uma nova orientação até que o equilíbrio é novamente atingido através do amortecimento aerodinâmico Slide 8

19 Assumindo uma velocidade induzida uniforme (em voo horizontal) e uma pá idealmente torcida: U U U dr U U U r ydf cc M T P T z l ρ α Substituindo U T e U P com as expressões obtidas com TEP e calculando o integral ( ) ( ) ( ) ( ) ( ) µ λ µ µ µ µ µ µ µ sin cos sin sin sin sin sin sin * tw M Slide 9 ( ) ( ) ( ) µ λ

20 Em voo horizontal µ e a equação de batimento não tem uma solução analítica O termo de amortecimento (associado com * ) é de origem aerodinâmica. ( µ sin ) γ 8 Para voo pairado e sabendo que por exemplo γ8 obtemos um amortecimento de 5% do valor crítico. Concluímos que o movimento de batimento é amortecido e estável. Slide

21 Para resolver a equação podemos : Prescrever os valores de: Ângulo de picada colectivo Cíclico lateral c Cíclico Longitudinal s ácio da velocidade induzida λ i Integrar numericamente No entanto não nos dá a percepção de como o batimento da pá é afectado pelos vários parâmetros. Slide

22 Alternativamente podemos: Encontrar uma solução periódica Solução periódica estável na forma de uma série de Fourier Não é válida para situações transientes tais como manobras. Assumindo a primeira solução harmónica : ( ) cos sin c cos s Slide

23 Encontrando o par harmónico da parte constante e periódica em ambos os lados da equação: ( ) ( ) µ µ µ γ λ s tw ( ) ( ) 6 µ µ c s ( )[ ] ( ) 8 µ µ λ µ tw s s c Slide

24 A pairar µ: s c c s E se assumirmos que o movimento de picada tem a forma: cos sin c s A resposta de batimento é: ( ) cos π π ( ) ( ) c s sin Ou seja a resposta de batimento tem um atraso de 9º em relação à variação de entrada do ângulo de picada. Slide

25 Vimos que o movimento de batimento tem a forma: ( ) cos sin c s Em que o termo é a média ou o valor médio do movimento de batimento e é independente para posição azimutal da pá. Slide 5

26 O termo c é a amplitude do movimento (coseno) epresenta a inclinação longitudinal do plano de trajectória das pontas das pás. Veio do rotor Inclinação longitudinal pura (sem coning) Veio do rotor Inclinação longitudinal (com coning) Slide 6

27 O termo s é a amplitude do movimento em seno. s epresenta a inclinação lateral do plano de trajectória das pontas das pás. Inclinação lateral pura (sem coning) Inclinação Lateral (com coning) Slide 7

28 Podemos fazer uma análise semelhante para o caso de existir um offset na dobradiça. As diferenças são: A força inercial m(y-e) dy actua a uma distância (y- e) da dobradiça A força centrifuga my dy actua a uma distância (ye) da dobradiça A forças aerodinâmicas Ldy actuam a uma distancia (y-e) da dobradiça Slide 8

29 A equação dos momentos em relação à dobradiça: e m y ( ) ( ) y e dy m y e dy L( y e) dy e e Neste caso o momento de inércia em relação ao eixo da dobradiça é: I b ( y e) m e Slide 9 dy

30 A equação de batimento da pá é: e m( y e) dy e I b I b ou e { * v } L( y e) * Ib e dy ( y e) L dy Slide

31 Nesta expressão m( y e) e e v Ib E com a análoga com o sistema mass-molaamortecedor, a frequência não amortecida do rotor é: e e v ϖ n ( e) Dados os valores de e serem pequenos a frequência natural não amortecida é ligeiramente maior do que /rev Slide dy

32 Isto também quer dizer que o atraso entre a entrada e resposta em batimento do rotor tem que ser menor do que 9º. Nesta caso como a equação de batimento é: ** v A resposta de batimento ao uma entrada do ângulo de picada é: ( ) v γ γ c s c 8 8 ( ) s c s v γ γ 8 8 Slide γ M

33 O que dá o ângulo longitudinal de batimento c ( ) v s 8 γ ( ) 8 v γ c Slide

34 E o ângulo lateral de batimento s ( ) v c γ 8 s ( ) 8 v γ Slide

35 Finalmente a frequência forçada /rev é menor que a frequência natural de batimento e pode ser demonstrado que o atraso (menor que 9º) é dado por: φ 8e γ γ tan tan 8 8 v v ( ) ( ) ) Slide 5

1.1 Rotor totalmente articulado

1.1 Rotor totalmente articulado 1 Movimento da pá Antes de estudar as equações que governam o movimento da pá vamos primeiro ver com é que esse movimento é conseguido. As pás dos helicópteros estão ligadas ao veio do rotor com uma série

Leia mais

Movimento conjunto batimento-atraso

Movimento conjunto batimento-atraso Movimento conjunto batimento-atraso Vamos agora estudar a pá com dois tipos de movimento simultâneo: Batimento Atraso Vamos assumir que ambas as dobradiças são coincidentes De notar que, devido à conjugação

Leia mais

1 Teoria de elementos de pá

1 Teoria de elementos de pá 1 Teoria de elementos de pá A teoria do momento linear é um método simples e rápido para estimar a potência e a velocidade induzida no rotor, baseando apenas na área total do rotor, no peso do helicóptero

Leia mais

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros /

Este referencial, apesar se complicado, tem a vantagem de estar ligado a um elemento físico com helicóptero. Helicópteros / Eixos de referência do rotor Até agora utilizamos sempre os mesmos eixos: Z alinhado com o veio do rotor Y perpendicular com Z e ao longo da pá (no plano do rotor). X no plano do rotor e perpendicular

Leia mais

1.1 Geração de Propulsão

1.1 Geração de Propulsão 1 oções básicas sobre o helicóptero. No capítulo anterior foi explicado de um modo sumário os grandes problemas que os pioneiros da aviação tiveram no desenvolvimento de um aparelho prático com capacidade

Leia mais

Adimensionalizando a expressão acima utilizando mais uma vês a velocidade da ponta da pá e o comprimento da pá: 4 1.3

Adimensionalizando a expressão acima utilizando mais uma vês a velocidade da ponta da pá e o comprimento da pá: 4 1.3 1 Teoria conjunta elementos de pá e momento linear A teoria de elementos de pá parte de um determinado número de simplificações sendo que a maior (e pior) é que a velocidade induzida é uniforme. Na realidade

Leia mais

Teoria de elementos de pá em voo horizontal

Teoria de elementos de pá em voo horizontal Teoria de elementos de pá em voo horizontal Modelar o voo horizontal utilizando a teoria de elementos de pá é extremamente difícil. No entanto, com algumas simplificações, pode-se obter os termos importantes

Leia mais

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf

Vibrações Mecânicas. Sistemas Contínuos. DEMEC UFPE Ramiro Willmersdorf Vibrações Mecânicas DEMEC UFPE Ramiro Willmersdorf ramiro@willmersdor.net Sistemas contínuos ou distribuídos Equações diferenciais parciais; Cabos, cordas, vigas, etc.; Membranas, placas, etc; Processo

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Força total de resistência

Força total de resistência Introdução As pás dos helicópteros estão ligadas ao veio do rotor com uma série de dobradiças: Dobradiças de batimento, que permite o movimento para cima e para baixo (batimento). Assim que apenas forças

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Mecânica Geral 2012/13

Mecânica Geral 2012/13 Mecânica Geral 2012/13 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido C / Semana 04 15/03/2013 (Tensor de inércia e eixos principais, movimento do girocompasso,

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções

Física Geral I. 1º semestre /05. Nas primeiras seis perguntas de escolha múltipla indique apenas uma das opções Física Geral I 1º semestre - 2004/05 2 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 9 de Dezembro 2004 Duração: 2 horas + 30 min tolerância Nas

Leia mais

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica Olimpíadas de Física 006 Selecção para as provas internacionais Prova Teórica Sociedade Portuguesa de Física 6/Maio/006 Olimpíadas Internacionais de Física 006 Selecção para as provas internacionais Resolução

Leia mais

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012. EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2011/2012 EIC0010 FÍSICA I 1o ANO 2 o SEMESTRE Prova com consulta de formulário e uso de computador. Duração 2 horas. Nome do estudante: Pode consultar

Leia mais

e rápido para estimar a potência. do rotor (i.e. seleccionar a sua área) para um

e rápido para estimar a potência. do rotor (i.e. seleccionar a sua área) para um A teoria do momento inear é um método simpes e rápido para estimar a potência. Este método é suficiente para projectar o tamanho do rotor (i.e. seeccionar a sua área) para um determinado motor e para um

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019

Física III Escola Politécnica GABARITO DA P3 13 de junho de 2019 Física III - 43303 Escola Politécnica - 019 GABARITO DA P3 13 de junho de 019 Questão 1 Considere um fio infinito transportando uma corrente elétrica I(t = I 0 cos(ωt ao longo do eixo x e uma espira quadrada

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

12. o ano - Física

12. o ano - Física 1. o ano - Física - 00 Ponto 115-1. a chamada I Versão 1 Versão 1. (D) (B). (B) (D) 3. (C) (B) 4. (B) (C) 5 (B) (C) 6. (C) (D) II 1. 1.1. Vamos considerar que ambas as janelas estão na mesma linha vertical,

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

Teoria para Pequenas Perturbações

Teoria para Pequenas Perturbações Teoria para Pequenas Perturbações João Oliveira Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira (SMA,

Leia mais

Revisão II: Sistemas de Referência

Revisão II: Sistemas de Referência Revisão II: Sistemas de Referência sistema terrestre fixo (ex.: NED) origem: ponto fixo sobre a superfície da Terra zi : vertical, apontando para o centro da Terra xi e y I : repousam sobre o plano horizontal

Leia mais

Campo Magnético - Lei de Biot-Savart

Campo Magnético - Lei de Biot-Savart Campo Magnético - Lei de Biot-Savart Evandro Bastos dos Santos 22 de Maio de 2017 1 Campo Magnético Na aula anterior vimos que uma carga elétrica, quando em movimento, sofre uma força devido a um campo

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular Física I 2010/2011 Aula 16 Momento de uma Força e Momento Angular Sumário O Momento angular A 2.ª Lei de Newton na forma angular O Momento Angular de um Sistema de Partículas O Momento Angular de um Corpo

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

Mecânica Geral 2016/17

Mecânica Geral 2016/17 Mecânica Geral 2016/17 MEFT Responsável: Eduardo V. Castro Departamento de Física, Instituto Superior Técnico Corpo Rígido B (Vectores velocidade angular e momento angular e movimento giroscópico.) 1.

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

1º Exame de Mecânica e Ondas

1º Exame de Mecânica e Ondas º Exame de Mecânica e Ondas (LEMat, LQ, MEBiol, MEAmbi, MEQ) Quar 09:00 - :30 3 de Junho 00. Três objectos de massas m m m e m 3 4 m deslizam sem atrito numa superfície como indicado na fiura. Assumindo

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Física aplicada à engenharia I

Física aplicada à engenharia I Física aplicada à engenharia I Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013 PÊNDULOS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 15 de março de 013 Roteiro 1 Harmônicas Roteiro Harmônicas 1 Harmônicas Harmônicas Sistemas que vibram: constituem uma classe de problemas

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;

Leia mais

Dinâmica rotacional

Dinâmica rotacional 1 oteiro elaborado com base na documentação que acompanha o conjunto por: Otavio A.T. Dias IFT-S & Elias da Silva UC-S Tópicos elacionados Momento de inércia, torque, momento angular, precessão, nutação.

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Estabilidade de Voo, Eng. Aeroespacial 1 Ângulos de Euler 1.1 Referenciais Referenciais: fixo na Terra e do avião (Ox E y E z E ) : referencial «inercial», fixo na Terra;

Leia mais

Equações do Movimento

Equações do Movimento Equações do Movimento João Oliveira Departamento de Engenharia Mecânica Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame.

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. I. CINEMÁTICA DO PONTO MATERIAL Posição: r = x e x + y e y + z e z Velocidade média/instantânea: v m = r

Leia mais

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial Órbita no Espaço Paulo J. S. Gil Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Cadeira de Satélites, Lic. Eng. Aeroespacial Paulo J. S. Gil (SMA, IST)

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................

Leia mais

Complementos de Fluidos

Complementos de Fluidos Complementos de Fluidos A consequência mais visível da viscosidade de um fluido é o seu perfil de velocidades no interior de um tubo: Ver nota 1 A equação de Bernoulli é, então, substituída pela expressão:

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

Resistência dos Materiais

Resistência dos Materiais - Torção Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e V. Dias da Silva Índice Tensões de corte nas secções circulares Rotação das secções Torção em veios circulares

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

11 Cinemática de partículas 605

11 Cinemática de partículas 605 SUMÁRIO 11 Cinemática de partículas 605 11.1 Introdução à dinâmica 606 Movimento retilíneo de partículas 607 11.2 Posição, velocidade e aceleração 607 11.3 Determinação do movimento de uma partícula 611

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Física para Zootecnia

Física para Zootecnia Física para Zootecnia Rotação - I 10.2 As Variáveis da Rotação Um corpo rígido é um corpo que gira com todas as partes ligadas entre si e sem mudar de forma. Um eixo fixo é um eixo de rotação cuja posição

Leia mais

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000]

Física I para a Escola Politécnica ( ) - SUB (03/07/2015) [0000] Física I para a Escola Politécnica (330) - SUB (03/0/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II MECÂNC Exame (época de recurso) 11/0/003 NOME: Não esqueça 1) (4 VL.) de escrever o nome a) Diga, numa frase, o que entende por Centro nstantâneo de Rotação (CR). Sabendo que um corpo rígido efectua um

Leia mais

Física I para Engenharia IFUSP REC - 01/08/2014

Física I para Engenharia IFUSP REC - 01/08/2014 Física para Engenharia FUSP - 43195 REC - 01/08/014 A prova tem duração de 10 minutos. Resolva cada questão na folha correspondente. Use o verso se necessário. Escreva de forma legível, a lápis ou tinta.

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Capítulo 18 Movimento ondulatório

Capítulo 18 Movimento ondulatório Capítulo 18 Movimento ondulatório 18.1 Ondas mecânicas Onda: perturbação que se propaga Ondas mecânicas: Por exemplo: som, ondas na água, ondas sísmicas, etc. Se propagam em um meio material. No entanto,

Leia mais

Linearização das equações do movimento completo

Linearização das equações do movimento completo Linearização das equações do movimento completo AB-722 Flávio Luiz Cardoso Ribeiro http://flavioluiz.github.io flaviocr@ita.br Departamento de Mecânica do Voo Divisão de Engenharia Aeronáutica e Aeroespacial

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior.

Física. B) Determine a distância x entre o ponto em que o bloco foi posicionado e a extremidade em que a reação é maior. Física 01. Uma haste de comprimento L e massa m uniformemente distribuída repousa sobre dois apoios localizados em suas extremidades. Um bloco de massa m uniformemente distribuída encontra-se sobre a barra

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

Estabilidade Dinâmica

Estabilidade Dinâmica Estabilidade Dinâmica João Oliveira Departamento de Engenharia Mecânica, Área Científica de Mecânica Aplicada e Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial Versão de

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário

Leia mais

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos

Leia mais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais Física e Tecnologia dos Plasmas Movimento de par.culas individuais Mestrado em Engenharia Física Tecnológica Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra As perguntas fundamentais

Leia mais

2º Teste (Repescagem) de Mecânica Aplicada II

2º Teste (Repescagem) de Mecânica Aplicada II 2º Teste (Repescagem) de Mecânica Aplicada II Este teste é constituído por 3 problemas e tem a duração de uma hora e meia. Justifique convenientemente todas as respostas apresentando cálculos intermédios.

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: CADERNO I (60 minutos com calculadora) 1 Em R, a equação ( π) cos x = π : (A) admite a solução x = π ; (B)

Leia mais

B e sabendo que.( ) = 0 B = A (A é o vector potencial magnético) ( A) A t

B e sabendo que.( ) = 0 B = A (A é o vector potencial magnético) ( A) A t Campos variáveis no tempo e equações de Maxwell - 1 o Funções potenciais A divergência de um campo magnético é zero. 0 podemos escrever: B e sabendo que.( ) 0 B A (A é o vector potencial magnético) ( A)

Leia mais

Notas de Física - Mecânica Trabalho e Energia. P. S. Volpiani

Notas de Física - Mecânica Trabalho e Energia. P. S. Volpiani Resumo Exercício 1 Exercício Exercício Exercício 4 Exercício 5 Exercício 6 Notas de Física - Mecânica Trabalho e Energia P. S. Volpiani www.psvolpiani.com Aula 05 P. S. Volpiani Física Mecânica www.psvolpiani.com

Leia mais

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008

Mecânica Geral. Prof. Evandro Bittencourt (Dr.) Engenharia de Produção e Sistemas UDESC. 27 de fevereiro de 2008 Mecânica Geral Prof Evandro Bittencourt (Dr) Engenharia de Produção e Sistemas UDESC 7 de fevereiro de 008 Sumário 1 Prof Evandro Bittencourt - Mecânica Geral - 007 1 Introdução 11 Princípios Fundamentais

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017

Física III Escola Politécnica GABARITO DA PR 27 de julho de 2017 Física - 4323203 Escola Politécnica - 2017 GABARTO DA PR 27 de julho de 2017 Questão 1 A superfície matemática fechada S no formato de um cubo de lado a mostrada na figura está numa região do espaço onde

Leia mais

Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP

Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-SP, Elias da Silva e Osvaldo Guimaraes - PUC-SP 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Otávio A.T. Dias IFT-S, Elias da Silva e Osvaldo Guimaraes - UC-S Este conjunto explora os dispositivos usados para se obter orientação

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Voo Nivelado. Voo Nivelado

Voo Nivelado. Voo Nivelado Mecânica de oo I Mecânica de oo I 763 º Ano da Licenciatura em ngenharia Aeronáutica Pedro. Gamboa - 008 Mecânica de oo I. quações de Movimento linha de referência do avião α ε T, linha de tracção γ L

Leia mais

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 MAT 340 - EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 Bulmer Mejía García 2010-II Universidade Federal de Viçosa EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n

Leia mais

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.

Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo. MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário

Leia mais

i + sin φ 2 j ), a amplitude resultante será j = (A 1 cos φ 1 + A 2 cos φ 2 ) i +(A 1 sin φ 1 + A 2 sin φ 2 ) j, logo o seu módulo será

i + sin φ 2 j ), a amplitude resultante será j = (A 1 cos φ 1 + A 2 cos φ 2 ) i +(A 1 sin φ 1 + A 2 sin φ 2 ) j, logo o seu módulo será Universidade Federal do Amazonas Departamento de Física 2 a Prova de Física IIIE 1 o Semestre de 2017 Prof. Ricardo de Sousa GABARITO 1-(peso 2,5) Duas ondas senoidais de mesma frequência (w =2πf) ecom-

Leia mais

ONDAS. é solução da equação de propagação de onda

ONDAS. é solução da equação de propagação de onda ONDAS 1. Uma estação de rádio emite a uma frequência de 760 khz. A velocidade das ondas de rádio é igual a 3 10 8 m/s. Determine o respectivo comprimento de onda (c.d.o.). 2. Um diapasão oscila com a frequência

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

x + x x 3 + (a + x) x = 0

x + x x 3 + (a + x) x = 0 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 07/08 EIC000 FÍSIC I º NO, º SEMESTRE 7 de junho de 08 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar

Leia mais

Revisão III: Dinâmica Estrutural Linear: Superposição Modal

Revisão III: Dinâmica Estrutural Linear: Superposição Modal Revisão III: Dinâmica Estrutural Linear: Superposição Modal Como calcular a parcela elástica da posição do elemento de massa: p d Hipótese: flexibilidade moderada pequenos deslocamentos elásticos comportamento

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESCA PITÉCNICA DA UNIVERSIDADE DE SÃ PAU Avenida Professor Mello Moraes, nº 31. cep 558-9, São Paulo, SP. Telefone: (xx11) 391 5337 Fax: (xx11) 3813 188 MECÂNICA II - PME 3 Primeira Prova de abril de 17

Leia mais

Teoria de Vórtices. Circulação agarrada à pá. Distribuição de sustentação na pá. Folha de vórtices atrás da pá. Enrolamento do

Teoria de Vórtices. Circulação agarrada à pá. Distribuição de sustentação na pá. Folha de vórtices atrás da pá. Enrolamento do Circulação agarrada à pá Distribuição de sustentação na pá Folha de vórtices atrás da pá Enrolamento do vórtice da ponta Vorticidade emanada Vorticidade da esteira Vórtice da ponta da pá Vórtice da ponta

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

1.1.4 Trabalho do peso

1.1.4 Trabalho do peso 1.1.4 Trabalho do peso Adaptado pelo rof. Luís erna eso ou força gravítica O peso, ou a força gravítica, é a força exercida pela Terra sobre todos os corpos. O peso de um corpo depende: da sua massa, m;

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15

Mestrado Integrado em Engenharia Mecânica Aerodinâmica 1º Semestre 2014/15 Mestrado Integrado em Engenharia Mecânica Aerodinâmica º Semestre 4/5 Exame de ª época, 3 de Janeiro de 5 Nome : Hora : 8: Número: Duração : 3 horas ª Parte : Sem consulta ª Parte : onsulta limitada a

Leia mais