CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO"

Transcrição

1 Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis das juntas. No pesente capítulo seá estudado como esolve o poblema inveso, ou seja, acha as vaiáveis das juntas em temos da posição e oientação do ógão teminal: x 0, y 0, z 0 Cinemática ângulos do sistema do OT c/ θ i, i = 1,,..., 6 Invesa sistema da base de Posição O poblema da cinemática invesa é, em geal, mais difícil de esolve, em foma fechada. Como exemplo, considee-se um manipulado de Stanfod. A solução do poblema da cinemática dieta de posição (confome solicitado no poblema 3. do capítulo 3) é dada pelo conjunto de 1 equações com 6 incógnitas (4.1.1) onde os membos da dieita são os elementos da matiz que fonece a posição e a oientação do ógão teminal:

2 Capítulo 4 - Cinemática Invesa de Posição 43 (4.1.) Paa acha as vaiáveis das juntas θ 1, θ, d 3, θ 4, θ 5 e θ 6, deve-se esolve o sistema (4.1.1), o que é bastante difícil de consegui em foma fechada, pois se tata de um sistema altamente não-linea. Além disso, enquanto a cinemática dieta tem sempe uma única solução, a cinemática invesa pode te ou não solução (p. ex., quando a posição desejada cai foa do volume de tabalho) e, no caso de existi solução, pode a mesma se ou não única. Paa contona o poblema deve-se, então, desenvolve técnicas sistemáticas eficientes que exploem a estutua cinemática paticula do manipulado. Seá consideado, daqui em diante, que a matiz homogênea dada pela eq. (4.1.) coesponde a uma configuação no inteio do volume de tabalho do manipulado, o que gaante a existência de pelo menos uma solução. 4. DESACOPLAMENTO CINEMÁTICO Felizmente, paa manipuladoes com seis juntas, nos quais os eixos das tês últimas juntas se inteceptam em um ponto (como no caso do manipulado de Stanfod acima), é possível desacopla o poblema da cinemática invesa em dois poblemas mais simples, conhecidos po cinemática invesa de posição e cinemática invesa de oientação, espectivamente. Ou seja, paa um manipulado com seis gaus de libedade munido de um punho esféico, pode-se inicialmente acha a posição do cento do punho (inteseção dos tês eixos do punho esféico) e, após, enconta a oientação do punho. Considee-se, pois, que existam exatamente seis gaus de libedade e que os eixos das últimas tês juntas, os eixos z 4, z 5 e z 6, se inteceptem no ponto O (cento do punho), no qual se localizam as oigens O 4 e O 5 e, na maioia das vezes, emboa não necessaiamente, a oigem O 3, confome fig A posição do cento do punho é função apenas das tês pimeias coodenadas, não dependendo das tês últimas coodenadas. A oigem O 6 do sistema do ógão teminal é obtida po uma tanslação d 6 ao longo do eixo z 5, a pati do cento do punho O. Chamando p c o veto que vai da oigem do sistema da base O 0 x 0 y 0 z 0 ao cento do punho, tem-se (ve fig. 4.1): ou d = p c + d 6 Rk p c = d - d 6 Rk (4..1)

3 Capítulo 4 - Cinemática Invesa de Posição 44 Fig. 4.1 Desacoplamento cinemático onde a oientação do sistema do ógão teminal é dada pela matiz R e a posição do mesmo é dada pelo veto d. Em foma expandida, pode-se esceve a eq. (4..1) como (4..) onde 13, 3 e 33 são elementos de R, a qual é conhecida (dada). Assim, usando a eq. (4..), pode-se calcula as coodenadas do cento do punho e, depois, acha as tês pimeias vaiáveis das juntas, q 1, q e q 3, atavés de elações etiadas da geometia do manipulado, confome seá ilustado mais adiante. Podese, após, detemina a oientação do ógão teminal em elação ao sistema O 3 x 3 y 3 z 3 (extemidade do punho) a pati da expessão R = R 3 0 R 6 3 (4..3) ou R 6 3 = (R 3 0) -1 R R 6 3 = (R 3 0) T R (4..4) pois R 3 0 é otogonal. As tês últimas vaiáveis das juntas, q 4, q 5 e q 6, (que, no caso do punho esféico, seão sempe θ 4, θ 5 e θ 6 ), são então encontadas como um conjunto de ângulos de Eule coespondentes a R 6 3. Note-se que o membo dieito da eq. (4..4) é conhecido, pois R é dada e R 3 0 pode se calculada, já que as tês pimeias vaiáveis das juntas, q 1, q e q 3, são conhecidas, a pati da geometia do manipulado. A seção seguinte ilusta o pocedimento.

4 Capítulo 4 - Cinemática Invesa de Posição CINEMÁTICA INVERSA DE POSIÇÃO. ENFOQUE GEOMÉTRICO Nesta seção seá apesentado apenas o enfoque geomético paa a cinemática invesa de posição po duas azões. Pimeio, poque as configuações cinemáticas dos obôs industiais são elativamente simples, confome foi visto no capítulo 1. Segundo, poque existem poucas técnicas disponíveis paa tata o poblema geal da cinemática invesa de configuações quaisque. A maioia dos obôs industiais é composta de seis gaus de libedade, com tês vaiáveis de juntas no tonco e tês no punho, em geal esféico. Além disso, confome já foi visto anteiomente, muitos dos paâmetos DH a i e d i são nulos, enquanto que os paâmetos α i são 0 ou ± π/. Nesses casos, o desacoplamento é bastante facilitado, confome seá ilustado a segui. Seja o manipulado aticulado da fig. 4., onde p x, p y e p z, já foam obtidos atavés da eq. (4..): Fig. 4. Manipulado aticulado O veto p c, que liga O 0 a O (não mostado na figua), apaece pojetado (veto ) sobe o plano hoizontal que passa pela oigem do sistema O 1 x 1 y 1 z 1 (note-se que é a mesma oigem do sistema O 0 x 0 y 0 z 0 ). Da figua: θ = actg p y 1 px Obseve-se que existe uma segunda solução válida paa θ 1, que é (4.3.1) θ1 = actg p y + π p x (4.3.) As soluções paa θ 1, dadas pelas eqs. (4.3.1) e (4.3.), não são válidas paa p x = p y = 0 poque, nesse caso, actg p p y x é indeteminado e o manipulado enconta-se em uma posição singula, na qual o cento do punho está sobe o eixo z 0 e, potanto, qualque valo de θ 1 satisfaz esta configuação, existindo, pois, uma infinidade de soluções, confome ilusta a fig. 4.3:

5 Capítulo 4 - Cinemática Invesa de Posição 46 Fig. 4.3 Configuação singula Paa sana esse poblema, pode-se intoduzi uma excenticidade no ombo, d 1, como mosta a fig Nesse caso, o cento do punho não caiá sobe o eixo z 0, havendo então somente duas soluções paa θ 1. Fig. 4.4 Manipulado aticulado com excenticidade no ombo Tais soluções coespondem às chamadas configuações baço esquedo e baço dieito, confome mostam as vistas supeioes das fig. 4.5 e 4.6, espectivamente: Fig. 4.5 Configuação baço esquedo

6 Capítulo 4 - Cinemática Invesa de Posição 47 Fig. 4.6 Configuação baço dieito Da fig. 4.5 tia-se a pimeia solução, paa a configuação baço esquedo: onde θ 1 = φ - α (4.3.3) p φ = actg p y x α = actg d 1 d 1 = actg p x d 1 + p d1 y A segunda solução, obtida a pati da configuação baço dieito da fig. 4.6 é dada po py d1 θ = actg + actg (4.3.4) 1 px p + p d1 Paa acha os ângulos θ e θ 3, dado θ 1, considee-se o plano fomado pelo baço e pelo antebaço, confome fig. 4.7: x y Fig. 4.7 Plano vetical fomado pelo baço e antebaço

7 Capítulo 4 - Cinemática Invesa de Posição 48 Tendo em vista que o movimento do baço e do antebaço é plana, a solução é análoga à desenvolvida paa o manipulado plana do cap. 1. Assim, apoveitando aqueles esultados (eqs. (1.7.4) a (1.7.7)) e fazendo as devidas adaptações, pode-se esceve (compaa as figs e 4.7): onde d 1 aqui é o paâmeto DH e não a excenticidade ecém descita. (4.3.5) Potanto, θ 3 é dado po θ = ± actg 3 1- D D (4.3.6) onde as duas soluções paa θ 3 coespondem às posições cotovelo acima e cotovelo abaixo, espectivamente. 1 Analogamente, θ é dado po θ = actg s actg a S3 = a + a C3 actg p 3 z d 3 3 p + p x y actg a S3 3 a + a C3 3 3 (4.3.7) Um exemplo de manipulado aticulado com excenticidade é o obô PUMA mostado na fig Existem quato soluções, confome ilusta a figua. Seá visto mais adiante que existem duas soluções paa a oientação do punho esféico, dando, assim, um total de oito soluções paa a cinemática invesa desse tipo de manipulado.

8 Capítulo 4 - Cinemática Invesa de Posição 49 Fig. 4.8 Quato soluções da cinemática invesa de posição do manipulado PUMA 4.4 CINEMÁTICA INVERSA DE ORIENTAÇÃO No item anteio foi utilizado o enfoque geomético paa a obtenção das tês pimeias vaiáveis das juntas, coespondentes a uma dada posição do cento do punho. Resta, agoa, esolve o poblema da cinemática invesa de oientação, ou seja, enconta os valoes das tês últimas vaiáveis das juntas, coespondentes a uma dada oientação do ógão teminal, com elação ao sistema O 3 x 3 y 3 z 3. Paa um punho esféico, isso significa acha um conjunto de ângulos de Eule coespondentes a uma dada matiz de otação R, confome exposto no capítulo 3.

9 Capítulo 4 - Cinemática Invesa de Posição 50 Seja dada a matiz de oientação U = u ij, obtida a pati do membo dieito da eq. (4..4) e seja R 6 3 a matiz de tansfomação, obtida atavés da eq. (.4.1). O poblema consiste, então, em enconta os ângulos de Eule φ, θ e ψ, que satisfazem a equação maticial Dois casos podem se apesenta. 1 o caso: u 13 e u 3 não são simultaneamente nulos. Então, da eq. (4.4.1), vemos que Cφ Sθ = u 13 0 Sφ Sθ = u 3 0 de onde se conclui que Sθ 0, logo Sθ 0 u 31 0 u 3 0 u 33 = Cθ ± 1 (4.4.1) Logo, podemos esceve θ = actg (Sθ/Cθ), ou seja, θ = actg 1- u u (4.4.) ou θ = actg 1- u u (4.4.3) Se fo escolhido o pimeio valo paa θ, então Sθ > 0 e a pimeia solução é dada po φ = actg u u13 3 (4.4.4) e ψ = actg u -u31 3 (4.4.5) Po outo lado, se fo escolhido o segundo valo paa θ, então Sθ < 0 e a segunda solução é dada po φ = actg -u 3 (4.4.6) -u13 e ψ = actg -u u31 3 (4.4.7)

10 Capítulo 4 - Cinemática Invesa de Posição 51 o caso: u 13 e u 3 são simultaneamente nulos. Se u 13 = u 3 = 0, então, pela eq. (4.4.1), Sθ = 0 e a matiz de otação U passa a te a foma onde u 33 = ± 1 pois Cθ = ± (1 - S θ) 1/ = ± 1. A segui, seão examinadas cada uma das possibilidades paa u 33. Cθ = 1 (1) Se u 33 = + 1 θ = 0 e a eq. (4.4.1) se tona Sθ = 0 Assim, a soma φ + ψ pode se deteminada como φ + ψ = actg u u 1 = actg -u u 1 (4.4.8) Como, nesse caso, apenas a soma φ + ψ pode se deteminada, existe um númeo infinito de soluções. Pode-se, po convenção, toma φ = 0 e acha ψ atavés da eq. (4.4.8). Cθ = - 1 () Se u 33 = - 1 θ = π e a eq. (4.4.1) se tona Sθ = 0 Assim, a difeença φ - ψ pode se deteminada como φ - ψ = actg -u -u 1 11 = actg -u -u 1 (4.4.9) Como, nesse caso, apenas a difeença φ - ψ pode se deteminada, existe um númeo infinito de soluções. Podemos, po convenção, toma φ = 0 e acha ψ atavés da eq. (4.4.9).

11 Capítulo 4 - Cinemática Invesa de Posição 5 Exemplo ilustativo: manipulado aticulado com punho esféico. A cinemática invesa de posição já foi esolvida, confome eqs. (4.3.1) a (4.3.7). Paa esolve a cinemática invesa de oientação, podemos inicia deteminando R 3 0, pois R 3 0 = A 1 0 A 1 A 3 onde as matizes A i i-1 são dadas pela eq. (3.5.). Fazendo tal cálculo, chega-se facilmente a (a) Po outo lado, a matiz R 6 3, efeente ao punho esféico, já foi fonecida pela eq. (3.8.1), aqui epetida: Potanto, dada a matiz de otação total R: R = (b) (c) tata-se de esolve R 6 3 = (R 3 0) T R = U (d) Substituindo as eqs. (a), (b) e (c) na eq. (d), obtemos uma equação maticial da qual tiamos as seguintes equações algébicas elevantes paa a aplicação do pocedimento exposto anteiomente: - elementos (1,3): C4S5 = C1C S1C3 3 - S3 33 = u 13 - elementos (,3): S4S5 = -C1S S1S3 3 - C3 33 = u 3 - elementos (3,3): C5 = -S C caso: u 13 e u 3 não são simultaneamente nulos C4S5 0 Então: S5 0 S4S5 0

12 Capítulo 4 - Cinemática Invesa de Posição 53 e pode-se usa as eqs. (4.4.) a (4.4.7) paa obte os ângulos θ 5 (ângulo de Eule θ), θ 4 (ângulo de Eule φ) e θ 6 (ângulo de Eule ψ). 0 caso: u 13 e u 3 são simultaneamente nulos C4S5 = 0 Então: S5 = 0 eixos das juntas 3 e 5 são colineaes e somente S4S5 = 0 a soma θ 4 + θ 6 pode se deteminada. Uma solução é escolhe θ 4 abitaiamente e então detemina θ 6 usando a eq. (4.4.8) ou a eq. (4.4.9). PROBLEMAS 4.1 Resolve o poblema da cinemática invesa de posição e de oientação de um obô catesiano dotado de punho esféico, cujas pimeias tês coodenadas das juntas são d1, d e d3. 4. Idem 4.1, paa um obô cilíndico RPP com punho esféico. 4.3 Completa o exemplo ilustativo do item 4.4, detalhando todas as passagens matemáticas. 4.4 De posse de todas as expessões paa a cinemática invesa do manipulado aticulado, obtidas no poblema anteio, esceve um pogama de computado paa esolve o poblema completo da cinemática invesa. Inclui pocedimentos paa identifica configuações singulaes e escolhe uma solução paticula quando a configuação é singula. Testa o pogama paa váios casos especiais (incluindo configuações singulaes) de fácil veificação.

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t ? Equilíbio da estutua PROVA COMENTADA a) Diagama de copo live (DCL): Paa monta o diagama de copo live deve-se inclui todas as foças atuando no bloco de massa m. Obseve que o bloco pode movimenta-se somente

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Cinemática de Mecanismos

Cinemática de Mecanismos Cinemática de Mecanismos. nálise de Posição e Deslocamento Paulo Floes J.C. Pimenta Clao Univesidade do Minho Escola de Engenhaia Guimaães 007 ÍNDICE. nálise de Posição e Deslocamento..... Definição.....

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ª Questão ( pontos. Um caetel de massa M cento e aios (exteno e (inteno está aticulado a uma baa de massa m e compimento L confome indicado na figua. Mediante a aplicação de uma foça (constante a um cabo

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

3 Formulação Matemática

3 Formulação Matemática 3 Fomulação Matemática 3. Descição do poblema O poblema a se analisado é mostado na fig. 3.. O fluido escoa atavés de um duto cicula de diâmeto d, passa atavés de um duto maio ( diâmeto D ) e sofe uma

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite

INSTRUÇOES: Responda no espaço próprio da questão e use o verso da página como rascunho. lim(1 + x) = e (limites fundamentais) calcule o limite a FASE DO CONCURSO VESTIBULAR DO BACHARELADO EM ESTATÍSTICA a PROVA DA DISCIPLINA: CE65 ELEMENTOS BÁSICOS PARA ESTATÍSTICA 6/5/8 INSTRUÇOES: Responda no espaço pópio da questão e use o veso da página como

Leia mais

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras)

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras) PME Mecânica B ª Pova 3/3/9 Duação: minutos (Não é pemitido o uso de calculadoas) ª Questão (3, pontos) O eixo esbelto de compimento 3L e massa m é apoiado na aticulação e no anel B e possui discos de

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas)

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas) Sistemas Eléticos de Potência 5. nálise de utos-icuitos ou Faltas 5. omponentes Siméticos (ou Siméticas) Pofesso: D. Raphael ugusto de Souza enedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

apresentar um resultado sem demonstração. Atendendo a que

apresentar um resultado sem demonstração. Atendendo a que Aula Teóica nº 2 LEM-26/27 Equação de ot B Já sabemos que B é um campo não consevativo e, potanto, que existem pontos onde ot B. Queemos agoa calcula este valo: [1] Vamos agoa apesenta um esultado sem

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Modelo quântico do átomo de hidrogénio

Modelo quântico do átomo de hidrogénio U Modelo quântico do átomo de hidogénio Hidogénio ou átomos hidogenóides (núcleo nº atómico Z com um único electão) confinado num poço de potencial de Coulomb ( x, y, z) U ( ) 4πε Ze Equação de Schödinge

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2.

Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2. 1 1. Análise das elocidades Figua 1 - Sólido obseado simultaneamente de dois efeenciais Consideemos um ponto P, petencente a um espaço ígido em moimento, S 2. Suponhamos que este ponto está a se isto po

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

QUESTÃO 1. r z = b. a) y

QUESTÃO 1. r z = b. a) y QUESTÃO 1 Uma longa baa cilíndica condutoa, de aio R, está centada ao longo do eixo z. A baa possui um cote muito fino em z = b. A baa conduz em toda sua extensão e no sentido de z positivo, uma coente

Leia mais

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas.

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas. MECÂNICA DOS FLUIDOS I Engenhaia Mecânica e Naval Exame de ª Época 0 de Feveeio de 00, 7h 00m Duação: hoas Se não consegui esolve alguma das questões passe a outas que lhe paeçam mais fáceis abitando,

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

LICENCIATURA. a) Corpuscular e ondulatória. (valor: 1,0 ponto)

LICENCIATURA. a) Corpuscular e ondulatória. (valor: 1,0 ponto) ICENCIATURA Questão n o. 1 a) Copuscula e ondulatóia. b) O modelo copuscula. Poque, paa que o aio de luz se apoxime da nomal, como ocoe na passagem da luz do a paa a água seia necessáia a existência de

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletomagnetismo II 1 o Semeste de 7 Notuno - Pof. Alvao annui 5 a aula 13/ma/7 imos na aula passada, das Equações de Maxwell: i) Consevação de Enegia 1 ( E H ) nˆ da = E D + B H d E J d t + S S (Poynting)

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ESCA PITÉCNICA DA UNIVESIDADE DE SÃ PAU Avenida Pofesso ello oaes, nº 31. cep 05508-900, São Paulo, SP. Telefone: (011) 3091 5337 Fa: (011) 3813 1886 Depatamento de Engenhaia ecânica ECÂNICA PE 00 Pimeia

Leia mais

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO CRITÉRIOS GERAIS DE CLASSIFICAÇÃO Dado a pova apesenta duas vesões, o examinando teá de indica na sua folha de espostas a vesão a que está a esponde. A ausência dessa indicação implica a atibuição de zeo

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

FUNDAMENTOS DE ROBÓTICA. Localização Espacial de um Corpo Rígido

FUNDAMENTOS DE ROBÓTICA. Localização Espacial de um Corpo Rígido FUNDAMENOS DE ROBÓICA Localiação Esacial de um Coo Rígido Motivação Pof. Silas do Amaal - UDESC 2 Motivação 2 Pof. Silas do Amaal - UDESC 3 Pof. Silas do Amaal - UDESC 4 Postua = [Posição, Oientação] de

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE FASE PROVA DE FÍSI E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. A pimeia questão é objetiva, e as

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

20, 28rad/s (anti-horário);

20, 28rad/s (anti-horário); Poblema 1 onsidee que a estutua epesentada na figua se enconta num ceto instante de tempo na posição mostada. Sabendo ainda que nesse instante a velocidade no ponto é de m/s (com a diecção e sentido definidos

Leia mais

FUNDAMENTOS DE ROBÓTICA. Localização Espacial de um Corpo Rígido

FUNDAMENTOS DE ROBÓTICA. Localização Espacial de um Corpo Rígido FUNDAMENOS DE ROBÓICA Localiação Esacial de um Coo Rígido Motivação Pof. Silas do Amaal - UDESC 2 Motivação 2 Pof. Silas do Amaal - UDESC 3 Pof. Silas do Amaal - UDESC 4 Localiação Esacial de um Coo Rígido

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época nomal) 17/01/2003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Uma patícula desceve um movimento no espaço definido pelas seguintes tajectóia

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos II 3 a Lista de Exercícios ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME-50 - Mecânica dos Sólidos II a Lista de Eecícios 1) Pode-se mosta ue as elações deslocamentos-defomações, em coodenadas

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito. ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental)

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental) Instuções: XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (14 de agosto de 010) Nível α (6 o e 7 o anos do Ensino Fundamental) Folha de Peguntas A duação da pova é de 3h30min. O tempo mínimo

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Pof. D. Helde Alves Peeia Maço, 9 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS -. Estágio

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais