CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO"

Transcrição

1 Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis das juntas. No pesente capítulo seá estudado como esolve o poblema inveso, ou seja, acha as vaiáveis das juntas em temos da posição e oientação do ógão teminal: x 0, y 0, z 0 Cinemática ângulos do sistema do OT c/ θ i, i = 1,,..., 6 Invesa sistema da base de Posição O poblema da cinemática invesa é, em geal, mais difícil de esolve, em foma fechada. Como exemplo, considee-se um manipulado de Stanfod. A solução do poblema da cinemática dieta de posição (confome solicitado no poblema 3. do capítulo 3) é dada pelo conjunto de 1 equações com 6 incógnitas (4.1.1) onde os membos da dieita são os elementos da matiz que fonece a posição e a oientação do ógão teminal:

2 Capítulo 4 - Cinemática Invesa de Posição 43 (4.1.) Paa acha as vaiáveis das juntas θ 1, θ, d 3, θ 4, θ 5 e θ 6, deve-se esolve o sistema (4.1.1), o que é bastante difícil de consegui em foma fechada, pois se tata de um sistema altamente não-linea. Além disso, enquanto a cinemática dieta tem sempe uma única solução, a cinemática invesa pode te ou não solução (p. ex., quando a posição desejada cai foa do volume de tabalho) e, no caso de existi solução, pode a mesma se ou não única. Paa contona o poblema deve-se, então, desenvolve técnicas sistemáticas eficientes que exploem a estutua cinemática paticula do manipulado. Seá consideado, daqui em diante, que a matiz homogênea dada pela eq. (4.1.) coesponde a uma configuação no inteio do volume de tabalho do manipulado, o que gaante a existência de pelo menos uma solução. 4. DESACOPLAMENTO CINEMÁTICO Felizmente, paa manipuladoes com seis juntas, nos quais os eixos das tês últimas juntas se inteceptam em um ponto (como no caso do manipulado de Stanfod acima), é possível desacopla o poblema da cinemática invesa em dois poblemas mais simples, conhecidos po cinemática invesa de posição e cinemática invesa de oientação, espectivamente. Ou seja, paa um manipulado com seis gaus de libedade munido de um punho esféico, pode-se inicialmente acha a posição do cento do punho (inteseção dos tês eixos do punho esféico) e, após, enconta a oientação do punho. Considee-se, pois, que existam exatamente seis gaus de libedade e que os eixos das últimas tês juntas, os eixos z 4, z 5 e z 6, se inteceptem no ponto O (cento do punho), no qual se localizam as oigens O 4 e O 5 e, na maioia das vezes, emboa não necessaiamente, a oigem O 3, confome fig A posição do cento do punho é função apenas das tês pimeias coodenadas, não dependendo das tês últimas coodenadas. A oigem O 6 do sistema do ógão teminal é obtida po uma tanslação d 6 ao longo do eixo z 5, a pati do cento do punho O. Chamando p c o veto que vai da oigem do sistema da base O 0 x 0 y 0 z 0 ao cento do punho, tem-se (ve fig. 4.1): ou d = p c + d 6 Rk p c = d - d 6 Rk (4..1)

3 Capítulo 4 - Cinemática Invesa de Posição 44 Fig. 4.1 Desacoplamento cinemático onde a oientação do sistema do ógão teminal é dada pela matiz R e a posição do mesmo é dada pelo veto d. Em foma expandida, pode-se esceve a eq. (4..1) como (4..) onde 13, 3 e 33 são elementos de R, a qual é conhecida (dada). Assim, usando a eq. (4..), pode-se calcula as coodenadas do cento do punho e, depois, acha as tês pimeias vaiáveis das juntas, q 1, q e q 3, atavés de elações etiadas da geometia do manipulado, confome seá ilustado mais adiante. Podese, após, detemina a oientação do ógão teminal em elação ao sistema O 3 x 3 y 3 z 3 (extemidade do punho) a pati da expessão R = R 3 0 R 6 3 (4..3) ou R 6 3 = (R 3 0) -1 R R 6 3 = (R 3 0) T R (4..4) pois R 3 0 é otogonal. As tês últimas vaiáveis das juntas, q 4, q 5 e q 6, (que, no caso do punho esféico, seão sempe θ 4, θ 5 e θ 6 ), são então encontadas como um conjunto de ângulos de Eule coespondentes a R 6 3. Note-se que o membo dieito da eq. (4..4) é conhecido, pois R é dada e R 3 0 pode se calculada, já que as tês pimeias vaiáveis das juntas, q 1, q e q 3, são conhecidas, a pati da geometia do manipulado. A seção seguinte ilusta o pocedimento.

4 Capítulo 4 - Cinemática Invesa de Posição CINEMÁTICA INVERSA DE POSIÇÃO. ENFOQUE GEOMÉTRICO Nesta seção seá apesentado apenas o enfoque geomético paa a cinemática invesa de posição po duas azões. Pimeio, poque as configuações cinemáticas dos obôs industiais são elativamente simples, confome foi visto no capítulo 1. Segundo, poque existem poucas técnicas disponíveis paa tata o poblema geal da cinemática invesa de configuações quaisque. A maioia dos obôs industiais é composta de seis gaus de libedade, com tês vaiáveis de juntas no tonco e tês no punho, em geal esféico. Além disso, confome já foi visto anteiomente, muitos dos paâmetos DH a i e d i são nulos, enquanto que os paâmetos α i são 0 ou ± π/. Nesses casos, o desacoplamento é bastante facilitado, confome seá ilustado a segui. Seja o manipulado aticulado da fig. 4., onde p x, p y e p z, já foam obtidos atavés da eq. (4..): Fig. 4. Manipulado aticulado O veto p c, que liga O 0 a O (não mostado na figua), apaece pojetado (veto ) sobe o plano hoizontal que passa pela oigem do sistema O 1 x 1 y 1 z 1 (note-se que é a mesma oigem do sistema O 0 x 0 y 0 z 0 ). Da figua: θ = actg p y 1 px Obseve-se que existe uma segunda solução válida paa θ 1, que é (4.3.1) θ1 = actg p y + π p x (4.3.) As soluções paa θ 1, dadas pelas eqs. (4.3.1) e (4.3.), não são válidas paa p x = p y = 0 poque, nesse caso, actg p p y x é indeteminado e o manipulado enconta-se em uma posição singula, na qual o cento do punho está sobe o eixo z 0 e, potanto, qualque valo de θ 1 satisfaz esta configuação, existindo, pois, uma infinidade de soluções, confome ilusta a fig. 4.3:

5 Capítulo 4 - Cinemática Invesa de Posição 46 Fig. 4.3 Configuação singula Paa sana esse poblema, pode-se intoduzi uma excenticidade no ombo, d 1, como mosta a fig Nesse caso, o cento do punho não caiá sobe o eixo z 0, havendo então somente duas soluções paa θ 1. Fig. 4.4 Manipulado aticulado com excenticidade no ombo Tais soluções coespondem às chamadas configuações baço esquedo e baço dieito, confome mostam as vistas supeioes das fig. 4.5 e 4.6, espectivamente: Fig. 4.5 Configuação baço esquedo

6 Capítulo 4 - Cinemática Invesa de Posição 47 Fig. 4.6 Configuação baço dieito Da fig. 4.5 tia-se a pimeia solução, paa a configuação baço esquedo: onde θ 1 = φ - α (4.3.3) p φ = actg p y x α = actg d 1 d 1 = actg p x d 1 + p d1 y A segunda solução, obtida a pati da configuação baço dieito da fig. 4.6 é dada po py d1 θ = actg + actg (4.3.4) 1 px p + p d1 Paa acha os ângulos θ e θ 3, dado θ 1, considee-se o plano fomado pelo baço e pelo antebaço, confome fig. 4.7: x y Fig. 4.7 Plano vetical fomado pelo baço e antebaço

7 Capítulo 4 - Cinemática Invesa de Posição 48 Tendo em vista que o movimento do baço e do antebaço é plana, a solução é análoga à desenvolvida paa o manipulado plana do cap. 1. Assim, apoveitando aqueles esultados (eqs. (1.7.4) a (1.7.7)) e fazendo as devidas adaptações, pode-se esceve (compaa as figs e 4.7): onde d 1 aqui é o paâmeto DH e não a excenticidade ecém descita. (4.3.5) Potanto, θ 3 é dado po θ = ± actg 3 1- D D (4.3.6) onde as duas soluções paa θ 3 coespondem às posições cotovelo acima e cotovelo abaixo, espectivamente. 1 Analogamente, θ é dado po θ = actg s actg a S3 = a + a C3 actg p 3 z d 3 3 p + p x y actg a S3 3 a + a C3 3 3 (4.3.7) Um exemplo de manipulado aticulado com excenticidade é o obô PUMA mostado na fig Existem quato soluções, confome ilusta a figua. Seá visto mais adiante que existem duas soluções paa a oientação do punho esféico, dando, assim, um total de oito soluções paa a cinemática invesa desse tipo de manipulado.

8 Capítulo 4 - Cinemática Invesa de Posição 49 Fig. 4.8 Quato soluções da cinemática invesa de posição do manipulado PUMA 4.4 CINEMÁTICA INVERSA DE ORIENTAÇÃO No item anteio foi utilizado o enfoque geomético paa a obtenção das tês pimeias vaiáveis das juntas, coespondentes a uma dada posição do cento do punho. Resta, agoa, esolve o poblema da cinemática invesa de oientação, ou seja, enconta os valoes das tês últimas vaiáveis das juntas, coespondentes a uma dada oientação do ógão teminal, com elação ao sistema O 3 x 3 y 3 z 3. Paa um punho esféico, isso significa acha um conjunto de ângulos de Eule coespondentes a uma dada matiz de otação R, confome exposto no capítulo 3.

9 Capítulo 4 - Cinemática Invesa de Posição 50 Seja dada a matiz de oientação U = u ij, obtida a pati do membo dieito da eq. (4..4) e seja R 6 3 a matiz de tansfomação, obtida atavés da eq. (.4.1). O poblema consiste, então, em enconta os ângulos de Eule φ, θ e ψ, que satisfazem a equação maticial Dois casos podem se apesenta. 1 o caso: u 13 e u 3 não são simultaneamente nulos. Então, da eq. (4.4.1), vemos que Cφ Sθ = u 13 0 Sφ Sθ = u 3 0 de onde se conclui que Sθ 0, logo Sθ 0 u 31 0 u 3 0 u 33 = Cθ ± 1 (4.4.1) Logo, podemos esceve θ = actg (Sθ/Cθ), ou seja, θ = actg 1- u u (4.4.) ou θ = actg 1- u u (4.4.3) Se fo escolhido o pimeio valo paa θ, então Sθ > 0 e a pimeia solução é dada po φ = actg u u13 3 (4.4.4) e ψ = actg u -u31 3 (4.4.5) Po outo lado, se fo escolhido o segundo valo paa θ, então Sθ < 0 e a segunda solução é dada po φ = actg -u 3 (4.4.6) -u13 e ψ = actg -u u31 3 (4.4.7)

10 Capítulo 4 - Cinemática Invesa de Posição 51 o caso: u 13 e u 3 são simultaneamente nulos. Se u 13 = u 3 = 0, então, pela eq. (4.4.1), Sθ = 0 e a matiz de otação U passa a te a foma onde u 33 = ± 1 pois Cθ = ± (1 - S θ) 1/ = ± 1. A segui, seão examinadas cada uma das possibilidades paa u 33. Cθ = 1 (1) Se u 33 = + 1 θ = 0 e a eq. (4.4.1) se tona Sθ = 0 Assim, a soma φ + ψ pode se deteminada como φ + ψ = actg u u 1 = actg -u u 1 (4.4.8) Como, nesse caso, apenas a soma φ + ψ pode se deteminada, existe um númeo infinito de soluções. Pode-se, po convenção, toma φ = 0 e acha ψ atavés da eq. (4.4.8). Cθ = - 1 () Se u 33 = - 1 θ = π e a eq. (4.4.1) se tona Sθ = 0 Assim, a difeença φ - ψ pode se deteminada como φ - ψ = actg -u -u 1 11 = actg -u -u 1 (4.4.9) Como, nesse caso, apenas a difeença φ - ψ pode se deteminada, existe um númeo infinito de soluções. Podemos, po convenção, toma φ = 0 e acha ψ atavés da eq. (4.4.9).

11 Capítulo 4 - Cinemática Invesa de Posição 5 Exemplo ilustativo: manipulado aticulado com punho esféico. A cinemática invesa de posição já foi esolvida, confome eqs. (4.3.1) a (4.3.7). Paa esolve a cinemática invesa de oientação, podemos inicia deteminando R 3 0, pois R 3 0 = A 1 0 A 1 A 3 onde as matizes A i i-1 são dadas pela eq. (3.5.). Fazendo tal cálculo, chega-se facilmente a (a) Po outo lado, a matiz R 6 3, efeente ao punho esféico, já foi fonecida pela eq. (3.8.1), aqui epetida: Potanto, dada a matiz de otação total R: R = (b) (c) tata-se de esolve R 6 3 = (R 3 0) T R = U (d) Substituindo as eqs. (a), (b) e (c) na eq. (d), obtemos uma equação maticial da qual tiamos as seguintes equações algébicas elevantes paa a aplicação do pocedimento exposto anteiomente: - elementos (1,3): C4S5 = C1C S1C3 3 - S3 33 = u 13 - elementos (,3): S4S5 = -C1S S1S3 3 - C3 33 = u 3 - elementos (3,3): C5 = -S C caso: u 13 e u 3 não são simultaneamente nulos C4S5 0 Então: S5 0 S4S5 0

12 Capítulo 4 - Cinemática Invesa de Posição 53 e pode-se usa as eqs. (4.4.) a (4.4.7) paa obte os ângulos θ 5 (ângulo de Eule θ), θ 4 (ângulo de Eule φ) e θ 6 (ângulo de Eule ψ). 0 caso: u 13 e u 3 são simultaneamente nulos C4S5 = 0 Então: S5 = 0 eixos das juntas 3 e 5 são colineaes e somente S4S5 = 0 a soma θ 4 + θ 6 pode se deteminada. Uma solução é escolhe θ 4 abitaiamente e então detemina θ 6 usando a eq. (4.4.8) ou a eq. (4.4.9). PROBLEMAS 4.1 Resolve o poblema da cinemática invesa de posição e de oientação de um obô catesiano dotado de punho esféico, cujas pimeias tês coodenadas das juntas são d1, d e d3. 4. Idem 4.1, paa um obô cilíndico RPP com punho esféico. 4.3 Completa o exemplo ilustativo do item 4.4, detalhando todas as passagens matemáticas. 4.4 De posse de todas as expessões paa a cinemática invesa do manipulado aticulado, obtidas no poblema anteio, esceve um pogama de computado paa esolve o poblema completo da cinemática invesa. Inclui pocedimentos paa identifica configuações singulaes e escolhe uma solução paticula quando a configuação é singula. Testa o pogama paa váios casos especiais (incluindo configuações singulaes) de fácil veificação.

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Cinemática de Mecanismos

Cinemática de Mecanismos Cinemática de Mecanismos. nálise de Posição e Deslocamento Paulo Floes J.C. Pimenta Clao Univesidade do Minho Escola de Engenhaia Guimaães 007 ÍNDICE. nálise de Posição e Deslocamento..... Definição.....

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas)

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas) Sistemas Eléticos de Potência 5. nálise de utos-icuitos ou Faltas 5. omponentes Siméticos (ou Siméticas) Pofesso: D. Raphael ugusto de Souza enedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 8 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito. ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Licenciatura em Engenharia Civil MECÂNICA I

Licenciatura em Engenharia Civil MECÂNICA I Licenciatua em Engenhaia Civil MECÂNIC I Exame de Época Nomal 04/07/2003 NOME: 1) (3 VL.) a) Considee o sistema de foças τ { F,F, } magnitude F 1 = 2kN ; F 2 = 2 2 kn 1 2 F3, de ; F 3 = 2 kn. z 2 F 1 Nota:

Leia mais

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular: Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos

Leia mais

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental)

XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (14 de agosto de 2010) Nível α (6 o e 7 o anos do Ensino Fundamental) Instuções: XXXIV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (14 de agosto de 010) Nível α (6 o e 7 o anos do Ensino Fundamental) Folha de Peguntas A duação da pova é de 3h30min. O tempo mínimo

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1 ANÁLISE MULTIVARIADA APLICADA AS CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CIÊNCIA DO SOLO: CPGA-CS ANÁLISE DE VARIÂNCIA MULTIVARIADA Calos Albeto Alves Vaella ÍNDICE INTRODUÇÃO... MODELO ESTATÍSTICO...

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 19/2012, de 5 de julho Pova 65/1.ª Fase Citéios de Classificação 11 Páginas 2016 Pova 65/1.ª

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

2 Conceitos Básicos. 2.1 Atenuação por Chuvas em Enlaces Rádio

2 Conceitos Básicos. 2.1 Atenuação por Chuvas em Enlaces Rádio Conceitos Básicos. Atenuação po Chuvas em nlaces Rádio A pecipitação de patículas atmosféicas (chuva, ganizo e neve úmida) povoca absoção e espalhamento da enegia eletomagnética em popagação, quando o

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA Título Análise de Patida de Motoes de Indução em Redes de Distibuição Utilizando Cicuito Elético Equivalente Obtido po Algoitmo Evolutivo Nº de Registo (Resumen 134 Empesa o Entidad Daimon Engenhaia e

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais