Credenciamento Portaria MEC 3.613, de D.O.U

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Credenciamento Portaria MEC 3.613, de D.O.U"

Transcrição

1 edenciamento Potaia ME 3.63, de D.O.U MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos básicos Equação geal da eta a b c Foma eduzida da equação da eta m n m = coeficiente angula n = coeficiente linea Obtendo a equação da eta Lembando que dois pontos distintos deteminam uma única eta. Vamos detemina a equação de uma eta a pati de dois pontos, ou seja, a função do pimeio gau = m +n que define essa eta. Paa isso, pimeiamente vamos calcula coeficiente angula m. I. Obtemos o coeficiente angula (azão ente a vaiação dos valoe se e a vaiação dos valoes de ): m m Po eemplo, digamos que uma deteminada eta passe pelos pontos A(, 3) e B(4,7), teemos: Agoa vamos detemina a equação da eta pa os seguintes pontos a) A(3, ) e B(-3, ) b) (, -3) e D (-4, 3) c) P(, ) e Q(-, -3) Equação segmentáia da equação da eta Essa equação nos indica os pontos onde a eta intesecta os eios coodenados. Q(, q) P(p, ) p q, com p e q difeentes de zeo. omo eemplo, detemine a equação segmentáia da eta que passa po P(3, ) e Q(, ). m 7 3 m 4 m 4 m II. om o coeficiente angula definido e um dos pontos, (A ou B), podemos defini a equação da eta, ou seja, a lei da função paa essa eta. m m Atividade - Esceva a equação segmentáia da eta de equação geal =, detemine q e p e esboce a eta no plano catesiano: Substituímos qualque um dos dois pontos (A ou B) em e e também o valo já estabelecido do coeficiente angula m 4

2 Posições elativas de duas etas (popiedades) A) m m e n n l e l são paalelas. oeficientes angulaes iguais e coeficientes lineaes difeentes esultam em etas paalelas. B) m m e n n l e l são coincidentes. oeficientes angulaes iguais e coeficientes lineaes iguais esultam em etas coincidentes. ) m m l e l são concoentes. oeficientes angulaes difeentes esultam em etas concoentes. OBS - paa a equação geal da eta seguintes configuações: º caso : º caso : c b c a alculo da áea de um tiângulo a b temos as, a eta é paalela ao eio (hoizontal)., a eta é paalela ao eio (vetical). D) m m l e As etas fomam 9 ao se cuzaem. l são pependiculaes. Atividade - Identifique cada caso de acodo com as popiedades: É dado pela equação: sendo D D S 3 3 Equação da cicunfeência Popiedade Popiedade Seja uma cicunfeência de dento (a, b) e aio. P(, ) b a Popiedade Popiedade Ângulo ente duas etas não pependiculaes É dado pela equação: O ponto P(, ) petence à cicunfeência se, e somente se: a b d( P, ), então: a b Equação eduzida (na oigem) Se uma das etas é vetical: tg m

3 Posições elativas de e um ponto e uma cicunfeência NÃO SE INTEREPTAM Usando >, < e =, complete as elações indicando se o ponto é inteno, eteno ou petence à cicunfeência: P P d(, ) d(, ) P d(p, ) d(p, ) d(p, ) Posições elativas de uma eta e uma cicunfeência l Usando >, < e = e sendo uma eta, complete as elações indicando a posição da eta como secante, tangente ou etena: Eecícios = d(, ) = A d d T d ) Detemine o coeficiente angula da eta que passa pelos pontos: a) A(, 3) e B(, ) B b) A(-, ) e B(3, 4) d(, ) d(, ) d(, ) c) A(-, -) e B(7, ) Reta secante: d) A(-8, -) e B(, ) Posições elativas ente duas cicunfeências TANGENTES 4 ) dada a equação geal de uma eta, pede-se: a) a sua equação eduzida. b) o seu coeficiente angula. c) o seu coeficiente linea. 3) Esceva as equações eduzidas das etas deteminadas po: a) A(, 3) e B(, ) b) M(-3, -) e N(, ) d(, ) = SEANTES d(, ) = 4) Detemine a equação eduzida da eta epesentada abaio: (, ) (3, ) < d(, ) <

4 ) Repesente a equação segmentáia da eta epesentada: ) Dê a equação da cicunfeência abaio: (, 9) 3 (6, ) - 7 6) A eta cuja equação na foma segmentaia é cota os eios em que pontos? 7) Das figuas abaio, qual epesenta a posição elativa ente duas etas tal que e? m m n n a) c) Respostas: ) a) b) c) 7 d) 8 ) b) d) 4 4 m q a) b) a ou c) b ou 3) a) 4 7 b) 8) Detemine a áea da egião tiangula que tem como vétices os pontos A(, ), B(-, 8) e (, 3). 9) Dê as coodenadas do cento e o aio das cicunfeências apesentadas pelas equações: 8 a) 4) ) 6) (-7, ) e (, ) 7) a b) 4 8) 9 S c) 9 6 9) a) (8, ) b) (, ) c) (-9, ) ) 3 ( ) 4

5 Elipse Denominamos elipse ao luga geomético dos pontos de um plano paa os quais a soma das distâncias a dois pontos dados, F e F, do plano, é igual a uma constante a, maio que a distância F F. Apliquemos a P(, ) a popiedade dos pontos da elipse: Os pontos F e F chamam-se focos e a distância ente eles, que vamos epesenta po c, é a distância focal da elipse. d FF = c (distância focal) O ponto médio O do segmento F F é o cento. A eta F F é um eio de simetia da cuva. Ela intecepta a elipse nos pontos A e A tais que a distância ente eles é a. O seguimento A A é chamado eio maio da elipse. d AA = a (eio maio) A eta pependicula F F, pelo cento O, é outo eio de simetia da cuva. Ela intecepta a elipse nos pontos B e B. O segmento B B é chamado eio meno da elipse e vamos epesenta sua medida po b. d BB = b (eio meno) Do tiângulo etângulo OF B decoe que: a = b + c hamamos ecenticidade da elipse ao númeo e, azão ente a distância focal e o eio maio. Decoe que: e = c a A popiedade caacteística dos pontos P da cuva é d PF + d PF = a Equação da elipse Vamos obte a equação da elipse de cento na oigem do sistema catesiano, O(, ), e os focos no eio das abscissas. Notemos que: F = ( c, ) e F = (c, ) A = ( a, ) e A = (a, ) B = (, b) e B = (, b) d PF + d PF = a ( + c) + + ( c) + = a ( ( + c) + ) = (a ( c) + ) + c + c + = 4a 4a ( c) + + c + c + 4a ( c) + = 4a 4c (a ( c) + ) = (a c) a a c + a c + a = a 4 a c + c (a c ) + a = a 4 a c (a c ) + a = a (a c ) omo a c = b, vem que b + a = a b e dividindo po (a b ) fica a + b = que é a chamada equação eduzida da elipse. Obsevações ) Paa =, na equação acima, obtemos = a ; logo = a, que são as abscissas dos pontos onde a cuva cota o eio. Paa = obtemos = b ; logo, = b, que são as odenadas dos pontos de intesecção com o eio. ) No caso da elipse de cento O(, ) e os focos no eio obtemos a equação b + a =

6 Hipébole Denominamos hipébole ao luga geomético dos pontos de uma plano pa os quais a difeença das distâncias a dois pontos dados, F e F, do plano é em valo absoluto igual a uma constante a, meno que a distância F F. 3) Quando a elipse tem o cento foa da oigem do sistema catesiano ou os eios de simetia não paalelos aos eios coodenados, a equação é mais complicada, poém é ainda uma equação do º. Gau nas vaiáveis e, que se enquada na foma geal A + B + + D + E + F =. A elipse é a cuva que se obtem seccionando-se um cone com um plano que cota o seu eio. Eemplo Obte a equação da elipse de focos F ( 3, ) e F (3, ) e eio maio a =. Obsevemos que os focos estão no eio ; o cento, que é o ponto médio de F F, é a oigem O(, ). Então, a equação é a + b = Os pontos F e F chamam-se focos e d FF = c é a distância focal. O ponto médio O do segmento F F é o cento. A eta F F é um eio de simetia da cuva. Ela intecepta a hipébole nos pontos A e A. O segmento A A é chamado eio eal (ou eio tansveso) e sua medida é d AA = a. A eta pependicula a F F pelo cento O é outo eio de simetia da hipébole. Nela indicamos os pontos B e B que distam c unidades dos pontos A e A. O segmento B B é chamado eio conjugado (ou eio imagináio) e indicamos sua medida po b. Do tiângulo etângulo indicado na figua decoe que: c = a + b A ecenticidade é o númeo e definido po: e = c a A popiedade caacteística dos pontos P da cuva é: d PF - d PF = a Temos a = e c = dff = 3 Da elação a = b + c vem b = a c = 3 = 6 Logo, a equação é + 6 =, ou ainda, 6 + = 4 Na figua indicamos também um etângulo de cento, um lado de medida a paalelo ao eio eal e outo lado da medida b. As etas que contêm as diagonais desse etângulo são as assíntotas da hipébole. (Quando polongamos a cuva, ela se apoima cada vez mais das assíntotas, sem nelas toca). Quando este etângulo tem os lados iguais, isto é, quando a = b, dizemos que a hipébole é equilátea. Uma hipébole equilátea tem ecenticidade e =.

7 Equação da hipébole Vamos obte a equação da hipébole de cento na oigem do sistema catesiano, O(, ), e os focos situados no eio das abscissas. Notemos que: F = ( c, ) e F = (c, ) A = ( a, ) e A = (a, ) Apliquemos a P(, ) a popiedade dos pontos da hipébole: ) No caso da hipébole de cento O(, ) e focos no eio obtemos a equação b + a = 3) Quando a hipébole tem o cento foa da oigem ou os eios de simetia não paalelos aos eios coodenados, a equação é mais complicada, mas é ainda uma equação do o gau que se enquada na foma geal A + B + + D + E + F =. d PF - d PF = a ( + c) + ( c) + = a ( ( + c) + ) = (a + ( c) + ) + c + c + = 4a 4a ( c) + + c + c + 4a ( c) + = 4a 4c (a ( c) + ) = (a c) A hipébole é a cuva que se obtem seccionando-se um cone po um plano paalelo ao seu eio. Eemplo: Obte a equação da hipébole de focos F ( 4, ) e F (4, ) e eio eal a = 4. Notemos que os focos estão no eio e o cento, que é o ponto médio de F F, é O(, ). Então, a equação é a + b = a a c + a c + a = a 4 a c + c (a c ) + a = a 4 a c (a c ) + a = a (a c ) omo a c = b, vem que b + a = a b e dividindo po ( a b ) fica a + b = que é a chamada equação eduzida da hipébole. Obsevações ) Paa =, na equação acima, obtemos = a ; logo, = a, que são abscissas dos pontos de intesecção da hipébole com o eio. Não eiste ponto de intesecção com o eio. Temos a = e c = dff = 4 Da elação c = a + b vem que b = c a = 4 = A equação é 4 + = =, potanto, 4 =, ou ainda, 3

8 Eecícios ) A equação da eta tangente à cicunfeência que passa pelo ponto A (3,4) é: a = b = c = d = e. nda ) Detemine as equações das elipses seguintes: 4) Repesente geometicamente no sistema catesiano O as hipéboles, fonecendo as coodenadas dos vétices e focos e as equações das assíntotas. a) 9 4 b) 4 9 c) = d) = a) 3 Respostas: ) a; ) a) b) b) 3) (Fatec SP) Na figua, tem-se a elipse de equação 3 etângulo é: inscita no etângulo ABD. O peímeto do a. 4 b. 8 c. 3 d. 6 3 e. 3 3

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho . Resolve e classifica os sistemas: x + y = x + y = x + y = B x y = Matemática Ficha de Tabalho Revisões 9ºano módulo inicial ( ) x + 4 = 5 y C 4x + y = 8 ( ) y = 6 x D ( 6x + 0) = y 5. Considea o pisma

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Alinhamento de Três Pontos

Alinhamento de Três Pontos ANO 0 DISIPLINA: Matemática PROFESSORA): Adiano Lima SERIE/TURMA: o Ano VALOR: ATIVIDADE TRABALHO PROVA PARIAL PROVA FINAL REUPERAÇÃO ETAPA: a Etapa SUPERVISORA: Lânia Rezende DATA: NOTA ALUNOA): N. o

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

NÍVEL 3 = (L BS) + L + CY ) = BS

NÍVEL 3 = (L BS) + L + CY ) = BS 009 www.cusoanglo.com.b Teinamento paa limpíadas de atemática ÍVE 3 Resoluções US 3 35 Em lasse T. emonstação o enunciado, podemos constui a figua ao lado: Sejam Z, T, S, Y, K e pontos de tangência. Então,

Leia mais

Generalidades sobres funções. ab, em que a pertence a A e b pertence a B.

Generalidades sobres funções. ab, em que a pertence a A e b pertence a B. mata1 unções Poduto catesiano de A po B Genealidades sobes unções,, conjunto dos paes odenados, A B a b a A b B Gáico de uma unção ab, em que a petence a A e b petence a B. G A B é um gáico de uma unção

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

Conteúdos Exame Final e Avaliação Especial 2016

Conteúdos Exame Final e Avaliação Especial 2016 Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

UNIDADE IV- GEOMETRIA ANALÍTICA I: Estudo do Ponto e da Reta

UNIDADE IV- GEOMETRIA ANALÍTICA I: Estudo do Ponto e da Reta UNIDADE IV- GEOMETRIA ANALÍTICA I: Estudo do Ponto e da Reta - Situando a Teática O ensino da geoetia é de gande inteesse na atualidade A evolução da infoática taz coo ua de suas feaentas ais podeosas

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

CD 031 Desenho Geométrico

CD 031 Desenho Geométrico UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CD 031 Desenho Geomético I Tuma B 2011 Apostila elaboada po: Pofª. Da. Deise Maia Betholdi Costa e Pofª M.Sc. Elen

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas Um pouco de cálculo UM POUCO DE CÁLCULO. Intodução aos vetoes Eistem gandezas físicas que podem se especificadas fonecendo-se apenas um númeo. Assim, po eemplo, quando dizemos que a tempeatua de uma sala

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluno deve utiliza coetamente a designação efeida, sabendo defini o conceito apesentado como se indica

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

GEOMETRIA. Noções básicas de Geometria que deves reter:

GEOMETRIA. Noções básicas de Geometria que deves reter: Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME Dinâmica de um Sistema de atículas Da. Diana Andade, Da. Angela Kabbe, D. Caius Lucius & D. Ségio illing 4 MOVIMENTO CIRCULAR UNIFORME Se um onto se moe numa cicunfeência, seu moimento é cicula, odendo

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Cinemática de Mecanismos

Cinemática de Mecanismos Cinemática de Mecanismos. nálise de Posição e Deslocamento Paulo Floes J.C. Pimenta Clao Univesidade do Minho Escola de Engenhaia Guimaães 007 ÍNDICE. nálise de Posição e Deslocamento..... Definição.....

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Z 1 Z x 2 dydx + Z 2 Z 2. p y x 2 y: 0 y 1 e Z 1 Z 2. y dxdy: A (D) = p y

Z 1 Z x 2 dydx + Z 2 Z 2. p y x 2 y: 0 y 1 e Z 1 Z 2. y dxdy: A (D) = p y Gabaito A - manhã Áea o Integal Dula A áea de uma egião D do lano x é dada o:. Esboce o gá co da egião D. Z Z x ddx + Z Z x ddx: D é a egião do imeio quadante, delimitada elo eixo x, ela aábola = x (ou

Leia mais

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87.

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87. Sumáio Pefácio à quata edição, ix CAPÍTULO 1 Vetoes, 1 1.1 Peliminaes, 1 1.2 Vetoes, 2 1.3 Adição de Vetoes, 3 1.4 Poduto po Escalaes, 6 1.5 Dependência e Independência Lineaes, 9 1.6 O Poduto Inteno,

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 0 INSPER 01/11/00 Seu pé dieito nas melhoes Faculdades 0. Na figua a segui, ABC e DEF são tiângulos equiláteos, ambos de áea S. O ponto D é o baicento do tiângulo ABC e os segmentos BC e DE são paalelos.

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais