GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO"

Transcrição

1 GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ INTRDUÇÃ: CÍRCULS, SECANTES E TANGENTES Seja C(, A) o cículo (ou cicunfeência) com cento no ponto e passando pelo ponto A. Uma secante ao cículo C(, A) é uma eta que contém algum ponto de C(, A). A figua 1 mosta uma secante a C(, A) passando pelo ponto. A Figua 1: Reta secante a uma cicunfeência. É evidente que pelo ponto passa uma infinidade de secantes ao cículo. aa ve isto, basta toma um outo ponto sobe C(, A). aa cada ponto que escolhemos, a eta deteminada pelos pontos e é uma secante a essa cuva. bsevações: 1. o esta definição, uma secante intecepta um cículo no máximo em dois pontos. 2. A palava secante é esevada, usualmente, apenas paa etas que inteceptam o cículo em exatamente dois pontos. No decoe deste texto, vamos esclaece nossas azões paa a nossa escolha difeente da usual. Suponha que mantemos fixo o ponto, escolhemos um outo ponto sobe o cículo C(, A), e constuímos a secante que passa po e. odemos nos pegunta o que ocoeia se fizemos o ponto se apoxima mais e mais de?

2 2 odemos imagina que um poblema ocoe se levamos a coincidi exatamente com : são necessáios dois pontos (distintos) paa defini uma eta. No entanto, se tentamos o expeimento como fizemos com a figua constuída na tela do Tabulæ, o poblema, apaentemente, não se apesenta. (A explicação é que, devido à pouca esolução do mouse, é muito difícil coloca a ponto suficientemente peto de ). Existe uma foma de efomula a constução da secante que não apenas elimina o poblema, mas que também pemite deduzi mais facilmente uma seie de popiedades úteis. Considee, na figua 2, o tiângulo isósceles (quais são os lados iguais desse tiângulo?). M A Figua 2: onto médio de uma coda. Se M é o ponto médio da base, sabemos que M seá a altua coespondente a essa base (poque isso não vale, po exemplo, paa o lado?). Consequentemente, a eta é pependicula a M. Assim, a secante que passa pelos pontos e coincide com a eta que passa po M e é pependicula à eta M. que ganhamos com isto? bseve o que acontece quando se apoxima de. ponto médio M sempe existe, e coincide com quando e coincidiem. A pependicula a M, nesse caso, coincide com a pependicula a. odemos então dize que essa eta (a pependicula em a ) é o limite, quando tende a, das etas. Isto motiva uma definição de tangente que vai vale paa todas as cuvas: Definição: Dada uma cuva Γ, um ponto sobe essa cuva, mantido fixo, e um outo ponto, que se move livemente sobe Γ, se existi uma eta limite das etas secantes que passam po e, quando se apoxima de, diemos que essa eta é a tangente em à cuva Γ.

3 3 bsevação: No caso paticula em que Γ é o cículo C(, A), a tangente em um ponto sempe existe, e tem que se pependicula ao aio. o outo lado, como essa pependicula é única, podemos afima também que a pependicula ao aio é a tangente a C(, A) no ponto. CNSTRUÇÕES DE RETAS TANGENTES A UM CÍRCUL Agoa suponha que temos dados um cículo C(, A), e um ponto, situado no exteio desse cículo. Vamos discuti tês difeentes fomas de esolve o seguinte poblema: Constui as tangentes a C(, A) que passam pelo ponto. imeia Solução: aa ve a pimeia, considee inicialmente uma secante a C(, A), que passa pelo ponto, e cota C(, A) nos pontos e ' ( ve a tela Tangentes po um ponto 1, ilustada na figua 3). Seja agoa M o ponto médio de '. Já vimos que M é pependicula à secante, e potanto o tiângulo M é etângulo em M, com hipotenusa. Imagine todos os tiângulos etângulos que se podeia constui, tendo como hipotenusa. Você podeia dize qual é o luga geomético de todas as posições possíveis paa o teceio vétice M? ' M Figua 3: Reta secante ao cículo pelo ponto. Esse luga geomético é um cículo, tendo como diâmeto (poque?). Este cículo, como tem um ponto () foa de C(, A), e outo (o ponto ) no inteio de C(, A), intecepta C(, A) em dois pontos, que chamaemos de T e T ', como ilustado na figua 4.

4 4 ' T M T' Figua 4: Deteminação das etas tangentes ao cículo passando pelo ponto. o que podemos afima que a eta T é tangente à cicunfeência? bseve que as etas T e T' são tangentes a C(, A) poque, pela constução, os tiângulos T e T' são etângulos, em T e em T' espectivamente (veja a obsevação feita logo após a definição de tangente). otanto, paa constui as etas tangentes a C(, A) que passam pelo ponto, podemos pocede da seguinte foma: constua o cículo auxilia que tem o segmento como diâmeto. Constua as etas que ligam aos pontos de inteseção T e T, desse cículo com C(, A). Essas etas são as tangentes pocuadas. odemos nos pegunta o que ocoe quando o ponto é levado paa o inteio de C(, A). Nesse caso, o cículo com como diâmeto fica inteiamente contido no inteio de C(, A), e não há intecessão com a cicunfeência. A constução feita no Tabulæ se compota coetamente: não existem tangentes a C(, A) que passem po um ponto em seu inteio. Mas existe também uma posição intemediáia: quando está situado exatamente sobe a cicunfeência C(, A). Vamos nos dete um pouco mais sobe este caso. Teemos então dois cículos, C(, A) e o cículo com diâmeto, como ilustado na figua 5. Seja ' o cento desta última, de modo que podemos denotá-la po C(', ). s pontos, ', e são colineaes, poque é diâmeto. otanto, a tangente em a C(, A) é também tangente a C(', ) em. A cicunfeência C(', ) não toca C(, A) em nenhum outo ponto além de (po que?). ' Figua 5: Deteminação da eta tangente quando o ponto petence à cicunfeência. Definição: dizemos que duas cicunfeências são tangentes em um ponto (ou que se tocam em ) se a eta tangente em a uma delas é também tangente à outa.

5 5 aciocínio empegado paa enconta a segunda e a teceia solução paa o poblema de enconta as tangentes a C(, A) po um ponto dado utiliza tansfomações: espectivamente, uma otação e uma eflexão. Segunda Solução: Considee o ponto, exteno à cicunfeência C(, A) (ve tela Tangentes po um ponto 2 ). segmento intecepta C(, A) em um ponto. Como ilustado na figua 6, Sabemos constui a tangente a C(, A) pelo ponto : basta taça a eta, pependicula a passando po. Sejam ' e os dois pontos em que intecepta a cicunfeência C(, ), com cento em e passando po. ponto pode se giado em tono de, até que ele coincida com. Se, ao fazemos isto, imaginamos a eta também giando em tono de, vemos que ela se mantém tangente a C(, A), e vai passa po quando e coincidiem, isto é, teemos uma tangente a C(, A) passando po. Mas obseve que esta mesma otação leva em ', e sobe um dos pontos de tangência pocuados. Concluí-se que os pontos de tangência que buscamos são os pontos de inteseção dos segmentos ' e com C(, A). ' " Figua 6: Reta tangente ao cículo passando pelo ponto. aa obte os pontos de tangência, basta liga, na figua acima, o ponto aos pontos e. s pontos de T e T, inteseções desses segmentos com C(, A) são os pontos que deteminam as tangentes a esse cículo passando pelo ponto. Teceia Solução:

6 6 Imagine o poblema esolvido, seja T um dos pontos de tangência pocuados, e seja T a tangente coespondente (ve tela Tangentes po um ponto 3 ). Suponha que efletimos o ponto com elação a T, obtendo o ponto '. segmento ' é pependicula a T, e T é o seu ponto médio. Consequentemente, e ' estão à mesma distância de, isto é, estão sobe a cicunfeência com cento em e passando pelo ponto. o outo lado, o ponto ', como é o esultado da eflexão de com elação a T, está também sobe a cicunfeência de cento e aio 2. otanto, os pontos de inteseção da cicunfeência de cento e aio 2 com a cicunfeência de cento em e passando po, nos dão os pontos de tangência desejados, como ilustado na figua 7. aa obte os pontos de tangência: constua as cículos de cento e passando po, e de cento e aio igual ao dobo da cicunfeência oiginal. btenha os pontos de inteseção e dessas duas cicunfeências, e constua os segmentos e. s pontos de inteseção desses dois segmentos com a cicunfeência oiginal C(, A) nos dão os pontos de tangência T e T pocuados. " T' 2. T ' Figua 7: Teceia constução paa as etas tangentes a um cículo RBLEMAS RESLVIDS UTILIZAND GEMETRIA DINÂMICA oblema 1: Suponha que são dadas duas etas e, e um ponto sobe. Constua um cículo que passa po, e é tangente simultaneamente a e a.

7 7 imeia solução: Sabemos que o cento do cículo pocuado está sobe a pependicula à eta taçada a pati do ponto (poque?). Se as etas são concoentes, o execício 6, acima, nos diz que o cento do cículo pocuado está também sobe uma das bissetizes das etas e. As inteseções dessas etas com a pependicula a constuída a pati de nos dão os centos dos cículos pocuados, como ilustado na figua 9. 1 ' 2 Figua 9: imeia solução paa o poblema I. bseve que se e não são concoentes, essa solução tem que se modificada, levando em conta o execício 7. Abaixo apesentamos uma outa solução, que se aplica paa quaisque pa de etas e. Segunda solução: Constua um cículo auxilia, tangente a em (ve a tela oblema 1 ). Constua as duas tangentes a esse cículo, 1 e 2, que são paalelas a (execício A. 5), como ilustado na figua 10. Agoa sejam, e os pontos em que a pependicula a taçada a pati de intecepta espectivamente, 1 e 2. A azão h = / define uma homotetia, com cento em, que leva a eta 1 em, e o cículo auxilia em um dos cículos que buscamos (poque?).

8 8 ' 1 ' 2 " Figua 10: Segunda solução paa o poblema I A azão h = / define uma segunda homotetia com cento em, desta vez levando a eta 2 em, e o cículo auxilia no segundo cículo que buscamos (poque?). Discuta ainda poque essa constução é válida mesmo quando e se tonam paalelas. oblema 2: Suponha que são dadas duas etas e, e um ponto. Constua um cículo que passa po, e é tangente simultaneamente a e a. Solução: Constua um cículo auxilia, tangente simultaneamente a e a (aba a tela oblema 1 ). Existem dois casos possíveis, coespondendo a centos sobe cada uma das bissetizes (ve figua 11). Agoa sejam e os pontos de inteseção da eta com um desses cículos. As azões h =/, e h = / definem duas homotetias de cento, que levam espectivamente e sobe. Cada uma dessas homotetias tansfoma o cículo auxilia sobe um dos cículos pocuados no poblema. '

9 9 Figua 11: Solução paa o poblema 2. bsevação: discuta ainda poque essa solução não é válida no caso em que as duas etas são paalelas. Constua uma solução paa esse caso. oblema 3: Suponha que são dadas tês etas, e. Constua os cículos que são tangentes simultaneamente a essas tês etas. Solução: Vamos desenvolve apenas o caso mais geal, em que as tês etas se inteceptam duas a duas em tês pontos, deteminando o tiângulo ABC mostado na figua 12. bseve que a tangência a duas das etas detemina a condição de que o cento do cículo está sobe uma das bissetizes destas etas. A " B C ' Figua 12: Solução paa o caso mais geal do poblema 3. Considee agoa uma dessas etas e a teceia, e teemos a posição de um dos centos: o ponto de inteseção das duas bissetizes deteminadas pelos dois paes de etas. Isto vai nos da, neste caso, quato posições possíveis paa o cento dos cículos buscados: uma delas é ilustada na figua. Constua uma tela no Tabulæ com todas as soluções, e discuta os demais casos, dependendo da disposição elativa das etas. bsevação: este poblema tem inteesse também no estudo de tiângulos. s cículos que deteminamos coespondem aos tês cículos ex-inscitos, tangentes extenamente a dois dos tês lados (a figua ilusta um deles) e ao cículo inscito ao tiângulo.

10 10 oblema 4: Suponha que temos dada uma eta, e dois pontos A e B. Constua um cículo que passa po A e po B, e é tangente à eta. Solução: aa pocede a análise do poblema, considee o poblema esolvido, como na figua 13 (ve também a tela oblema 4.). Sabemos que o cento do cículo buscado está sobe a mediatiz de AB (po que?), mas desconhecemos a posição do ponto de tangência T, que pemitiia detemina a posição do cento do cículo que buscamos. B T A I Figua 13: Solução paa o poblema 4. o outo lado, é fácil se convence de que a mediatiz de AB é um eixo de simetia do poblema: se efletimos a eta com espeito a essa mediatiz, a eta esultante deve ainda se tangente ao cículo que buscamos. odemos desta foma eduzi o poblema ao poblema 2: constua a mediatiz de AB, obtenha a eta, simética a com espeito a essa mediatiz, e constua os cículos que passam po A e são tangentes a e a. ALAVRAS CHAVE: Geometia Dinâmica, Geometia, Tangentes. REFERÊNCIAS GUIMARÃES, L.C.; BELFRT, E. Roteios de Laboatóio de Geometia. Rio de Janeio: IM-UFRJ, GUIMARÃES, L.C.; BELFRT, E. Geometia Dinâmica no Ensino Básico. São José do Rio eto, S: SBMAC, 2003.

11 11 HADAMARD, J. Leçons de Géométie Elementaie (2 volumes). ais: Jacques Gabay, 1988 HEATH, Thomas L. Euclid - The Thiteen Books of The Elements. 2ª edição. New Yok: Dove LEGENDRE, A. M. Elementos de Geometia Tadução da 5 a. edição fancesa (1801, ais: Libaie de Fimin Didot Fèes). Rio de Janeio: Impensa Régia, 1809.

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

NÍVEL 3 = (L BS) + L + CY ) = BS

NÍVEL 3 = (L BS) + L + CY ) = BS 009 www.cusoanglo.com.b Teinamento paa limpíadas de atemática ÍVE 3 Resoluções US 3 35 Em lasse T. emonstação o enunciado, podemos constui a figua ao lado: Sejam Z, T, S, Y, K e pontos de tangência. Então,

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

CD 031 Desenho Geométrico

CD 031 Desenho Geométrico UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CD 031 Desenho Geomético I Tuma B 2011 Apostila elaboada po: Pofª. Da. Deise Maia Betholdi Costa e Pofª M.Sc. Elen

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB

Guia do Professor Objeto de aprendizagem: Fluxo e Lei de Gauss NOA UFPB Guia do Pofesso Objeto de apendizagem: Fluxo e Lei de Gauss NOA UFPB 1. Intodução Apesentamos adiante instuções sobe como utiliza esse objeto de apendizagem com a intenção de facilita a constução de significados

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Renato Frade Eliane Scheid Gazire

Renato Frade Eliane Scheid Gazire APÊNDICE A CADENO DE ATIVIDADES PONTIFÍCIA UNIVESIDADE CATÓLICA DE MINAS GEAIS Mestado em Ensino de Ciências e Matemática COMPOSIÇÃO E/OU DECOMPOSIÇÃO DE FIGUAS PLANAS NO ENSINO MÉDIO: VAN HIELE, UMA OPÇÃO

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Módulo 17 Geometria espacial métrica Pirâmides

Módulo 17 Geometria espacial métrica Pirâmides 9 Matemática 6 9 Módulo 7 Geometia espacial mética Piâmides. efinição onsideemos um plano α, uma eião polional convea S e um ponto foa de α. Piâmide é a eunião de todos os sementos com uma etemidade em

Leia mais

Equações de Fresnel e Ângulo de Brewster

Equações de Fresnel e Ângulo de Brewster Instituto de Física de São Calos Laboatóio de Óptica: Ângulo de Bewste e Equações de Fesnel Equações de Fesnel e Ângulo de Bewste Nesta pática, vamos estuda a eflexão e a efação da luz na inteface ente

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO EXAME FINAL NACINAL D ENSIN SECUNDÁRI Pova Escita de Matemática A 1.º Ano de Escolaidade Deceto-Lei n.º 19/01, de 5 de julho Pova 65/.ª Fase 15 Páginas Duação da Pova: 150 minutos. Toleância: 0 minutos.

Leia mais

Cinemática de Mecanismos

Cinemática de Mecanismos Cinemática de Mecanismos. nálise de Posição e Deslocamento Paulo Floes J.C. Pimenta Clao Univesidade do Minho Escola de Engenhaia Guimaães 007 ÍNDICE. nálise de Posição e Deslocamento..... Definição.....

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho . Resolve e classifica os sistemas: x + y = x + y = x + y = B x y = Matemática Ficha de Tabalho Revisões 9ºano módulo inicial ( ) x + 4 = 5 y C 4x + y = 8 ( ) y = 6 x D ( 6x + 0) = y 5. Considea o pisma

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Aula 13 Apêndice: Parametrizações de curvas planas

Aula 13 Apêndice: Parametrizações de curvas planas MÓDULO 1 - AULA 13 Aula 13 Apêndice: Paametizações de cuvas planas Objetivo Obte equações paaméticas de cuvas planas impotantes. Neste apêndice, vamos estuda algumas cuvas planas que têm sido histoicamente

Leia mais

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87.

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87. Sumáio Pefácio à quata edição, ix CAPÍTULO 1 Vetoes, 1 1.1 Peliminaes, 1 1.2 Vetoes, 2 1.3 Adição de Vetoes, 3 1.4 Poduto po Escalaes, 6 1.5 Dependência e Independência Lineaes, 9 1.6 O Poduto Inteno,

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais