CAPÍTULO 3 DEPENDÊNCIA LINEAR

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 3 DEPENDÊNCIA LINEAR"

Transcrição

1 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses n etoes, se existiem escalaes a,a2,..., an R tais que n u= a + a ann, ou seja, u = i= a i i. Exemplo (): Considee os etoes u = ( 4,0,5), = (,, 2), 2 =(2,0,3 ) 3 = (,2,3). e a) Escee, se possíel, o eto u como combinação linea dos etoes, 2 e 3. b) Escee, se possíel, o eto u como combinação linea dos etoes 2 e 3. Solução: a) Paa que u seja combinação linea dos etoes {,, } escalaes α, β, γ R tais que u= α +β2 + γ3. Então: 2 3, deem existi α+ 2β γ = 4 ( 4,0,5) = α(,, 2) +β(2,0,3) + γ(,2,3) α+ 2γ = 0. Resolendo o sistema 2α+ 3β+ 3γ = 5 linea amos obte: α = 2, β = e γ = 4. Potanto: u = b) Paa que u seja combinação linea dos etoes 2 e 3, deem existi escalaes m en R tais que u = m2 + n3. Então: 2m n = 4 ( 4,0,5) = m(2,0,3) + n(,2,3) 2n = 0. Da segunda equação obtemos 3m + 3n = 5 n = 5. Substituindo nas outas duas obtemos m = e 2 m = 0. O que é uma 3 contadição. Logo o sistema linea é impossíel e não admite solução eal. Potanto, não existem escalaes m en R tais que u = m2 + n3, ou seja, não é possíel escee o eto u como combinação linea dos etoes 2 e 3.

2 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu 2 Vetoes LI e LD Definição: Dizemos que os etoes,2,..., n são lineamente independentes (etoes LI) se a expessão a + a ann = 0 se eifica somente se os escalaes a,a2,..., an R foem todos nulos, ou seja, a = a2 =... = an = 0. Definição: Dizemos que os etoes,2,..., n são lineamente dependentes (etoes LD) se a expessão a + a ann = 0 se eifica somente se os escalaes a,a2,..., an R foem não todos nulos, ou seja, pelo menos um dos escalaes dee se difeente de zeo. Exemplo (2): Veifica a dependência linea dos etoes abaixo: a) = (,, 2), 2 = (2,0,3) e 3 = (,2,3 ) b) = (,, 2), 2 = (2,0,3) e 3 = (8,2,5 ) Solução: a) Paa eifica a dependência linea ente esses etoes, deemos escee a expessão a + b2 + c3 = 0 e detemina os escalaes. Então: a+ 2b c = 0 a (,, 2) + b(2,0,3) + c(,2,3) = (0,0,0) a+ 2c = 0. Resolendo o sistema 2a+ 3b + 3c = 0 linea homogêneo amos obte: a = 0, b = 0 e c = 0, ou seja, os escalaes todos nulos. Potanto os etoes são LI. b) Analogamente ao item (a), esceemos a expessão a + b2 + c3 = 0. Então: a+ 2b + 8c = 0 a (,, 2) + b(2,0,3) + c(8,2,5) = (0,0,0) a+ 2c = 0. Resolendo o sistema 2a+ 3b + 5c = 0 linea homogêneo amos obte a solução geal: a = 2c e b = 3c, c R. É eidente que paa c=0 segue que a=0 e b=0, mas não é a única solução, ou seja, existem infinitas soluções onde os escalaes não são todos nulos. Potanto os etoes são LD. Teoema (): Os etoes,2,..., n são Lineamente Dependentes (LD) se, e somente se um deles é combinação linea dos demais. OBS: este é um teoema de condição necessáia e suficiente; o temo "se, e

3 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu somente se" significa que o teoema tem duas implicações: () "se um conjunto de etoes é LD, então um deles é combinação linea dos demais etoes", e (2) "se, em um conjunto de etoes, um deles é combinação linea dos demais, então esses etoes são LD". Assim, a demonstação do teoema contém duas pates: uma paa demonsta a condição necessáia () e a outa paa demonsta a condição suficiente (2). Demonstação: () Hipótese: os etoes,2,...,n V são LD Tese: um deles é combinação linea dos demais etoes. Se, po hipótese, os etoes,2,...,n são LD, então, existem escalaes α, α2,..., αn, não todos nulos, tais que: + α α n n = 0 Supondo, po exemplo, que α 0, pode-se escee: α. α... n = 2 α + 3 α n ; α α α chamando: β 2 α 2 = ; α β 3 α 3 = ;... ; α β α n n =, em: α β β + β = L n n, e, potanto, o eto é combinação linea dos demais etoes. Obsee-se que, assim como se supôs que α 0 e se mostou que é combinação linea dos demais etoes, pode-se supo que qualque um dos α i é difeente de zeo e conclui-se que i é combinação linea escalaes ( i n) dos demais etoes. (2) Hipótese: um dos etoes é combinação linea dos demais etoes. Tese: os etoes,2,..., V são LD n Po hipótese, um dos etoes é combinação linea dos demais; pode-se supo, po exemplo, que esse seja o eto. Isso significa que existem escalaes β2, β3,..., βn tais que: β β + β = L n n; pode-se escee, equialentemente: ( ) + + β + + β 0 β L n n = Sendo o escala que multiplica o eto não nulo, já que é igual a -, conclui-se que os etoes,2,...,n são LD.

4 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu É clao que, fazendo-se a suposição de que qualque eto ( i n) i seja combinação linea dos outos etoes, conclui-se-á, de maneia análoga, que os etoes,2,...,n são LD. Exemplo (3): Como imos no exemplo (2) os etoes = (,, 2), 2 =(2,0,3 ) 3 = (8,2,5) são LD. Logo, pelo Teoema (), um deles é combinação linea dos demais. De fato. Suponhamos que 3 = m + n2. Então: 8 = m+ 2n ( 8,2,5) = m(,, 2) + n(2,03) 2 = m. Da segunda equação em que m = 2. 5 = 2m + 3n Substituindo m = 2 nas outas duas equações em que n = 3. Logo, existem os escalaes m = 2 e n = 3 tais que 3 = Potanto, 3 é combinação linea dos etoes e 2. e Teoema (2): Considee,2,..., n, etoes LD, então k desses etoes seão LD, paa k n. Demonstação: Hipótese: os etoes,2,..., V são LD n Tese: os etoes,2,...,k são LD, paa todo k n Po hipótese, os etoes,2,...,n são LD; então, existem escalaes α, α2,..., αn, não todos nulos, tais que: α + α α n n = 0. A esse conjunto de n etoes, acescentem-se mais k n ( k n) considee-se, agoa, o conjunto: {,,...,,,, L, } 2 n n+ n+ 2 k. Esceendo-se a equação: α + α αnn + αn+ n+ + αn+ 2n+ 2 + L + αkk = 0, conclui-se, a pati dela, que os etoes,,..., etoes, isto é,,,, L, 2 n n+ n+ 2 k são LD, pois, mesmo que os escalaes αn +, αn+ 2,..., αk sejam todos nulos, ente os escalaes α, α2,..., αn há pelo menos um deles que não é nulo, já que os etoes,2,..., n são LD. Logo, o conjunto de etoes {,2,...,,, 2, L, } é LD. n n+ n+ k

5 Obseações: CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu ) Po esse teoema, conclui-se que, se um conjunto de etoes é LD, aumentandose o númeo de etoes deste conjunto, o noo conjunto seá LD. 2) Obsee-se que o teoema é apenas de condição necessáia, ou seja, a ecípoca não é edadeia. Isso significa que, se um conjunto de n etoes,2,...,n é LD, isso não implica que o conjunto de etoes m., 2,..., m é LD, paa n Assim, quando se sabe que um conjunto de etoes é LD, se foem etiados desse conjunto um ou mais etoes, não se pode afima que o noo conjunto é LD. Teoema (3): Considee paa k n. Demonstação:,2,..., n etoes LI, então k desses etoes seão LI, Hipótese: os etoes Tese: os etoes Po hipótese, os etoes α + α α n n = 0,2,..., V são LI n,2,...,k são LI, paa todo k n,2,...,n são LI; então, a equação é edadeia somente se α = α2 =... = αn = 0. Tomando-se um índice {,,..., } {,,..., } 2 k 2 n. Da equação: α + α α k k = 0, k n, considee-se o conjunto segue-se que α = α2 =... = αk = 0, pois os etoes,2,...,n são LI e os etoes 2,2,...,k estão ente eles. Potanto, conclui-se que os etoes,,..., k são LI, o que demonsta o teoema. OBS: ) Po esse teoema, conclui-se que, se um conjunto de etoes é LI, diminuindo-se o númeo de etoes deste conjunto, o noo conjunto também seá LI. 2) O teoema é apenas de condição necessáia, isto é, a ecípoca não é edadeia. Isso significa que, se um conjunto de n etoes,2,...,n é LI, isso não implica que o conjunto de etoes, 2,..., m é LI, paa m n. Assim, quando se sabe que um conjunto de etoes é LI, se foem acescentados a esse

6 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu conjunto um ou mais etoes, não se pode afima que o noo conjunto é LI. Conseqüências: (a) As afimações abaixo são álidas paa etoes no R 2. ) O eto nulo { 0 } é LD. 2) O { }, com 0, é LI. 3) Dois etoes {, } 2, com 0 e 2 0, são LD se os etoes foem paalelos (são múltiplos escalaes). Caso contáio são LI (não paalelos, não são múltiplos). 4) Tês ou mais etoes {,,,...} 2 3 são sempe LD. (b) As afimações abaixo são álidas paa etoes no R 3. ) O eto nulo { 0 } é LD. 2) O { }, com 0, é LI. 2, com 0 e 2 0, são LD se os etoes foem paalelos 3) Dois etoes {, } (são múltipos escalaes). Caso contáio são LI (não paalelos, não são múltiplos). 4) Tês etoes {,, } 2 3 são sempe LD se foem coplanaes. Caso contáio são LI (não coplanaes). 5) Quato ou mais etoes {,,,,...} são sempe LD. 3 Base Definição: Seja B {,,..., } = 2 n um conjunto de etoes de um espaço qualque (R 2 ou R 3 ). Dizemos que B é uma base desse espaço se: a) B é um conjunto LI. b) B gea o espaço. OBS: Dize que um conjunto B {,,..., } = 2 n gea o espaço significa que qualque eto u, desse espaço, se escee como combinação linea dos etoes de B, ou seja, existem escalaes a,a2,..., an R tais que u = a + a ann. Exemplo (4): Moste que os conjuntos abaixo são bases dos espectios espaços. a) B = {(,2), (-3,4)} é base do R 2. b) B = {(,,), (,,0), (,0,0)} é base do R 3. Solução:

7 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu a) Sejam = (,2) e 2 = ( 3,4). Vamos mosta que B é um conjunto LI. Como não existe uma popocionalidade ente as coodenadas dos etoes eles não são múltiplos, logo não são paalelos. Potanto são LI. Seja u=(x,y) um eto qualque do R 2. Vamos mosta que u se escee como combinação linea dos etoes de B. Então u = (x,y) = a(,2) + b( 3,4) x = a 3b. Resolendo o sistema temos: y = 2a+ 4b 4x+ 3y a = 0, xey R. Isso mosta que o sistema é possíel e deteminado. Logo 2x+ y b = 0 existem os escalaes a e b R tais que u= (x,y) = a(,2) + b( 3,4), ou seja, o eto u=(x,y) se escee como combinação linea dos etoes e 2, mostando que B gea o R 2. Potanto, B é base do R 2. b) Utilizando a condição de coplanaidade ente tês etoes temos: 0 0 = 0, ou seja, os etoes não são coplanaes. Potanto, são LI. 0 Mostando que B gea o R 3. Seja =(x,y,z) um eto qualque do R 3. Então: x = a+ b+ c ( x,y,z) = a(,,) + b(,,0) + c(,0,0) y = a+ b. Resolendo temos a solução z = a a = z b = y z, x,yez R. Logo, existem escalaes a,be c R tais que c = x y ( x,y,z) = a(,,) + b(,,0) + c(,0,0), ou seja, o eto =(x,y,z) se escee como combinação linea dos etoes de B, mostando que B gea o R 3. Potanto, B é base do R 3. Conseqüências ) O R 2 e o R 3 possuem infinitas bases. 2) Qualque base do R 2 tem a mesma quantidade de etoes. 3) Qualque base do R 3 tem a mesma quantidade de etoes. 4) Das infinitas bases do R 2, uma é consideada a mais simples, chamada de Base i, j, onde i = (,0) e j = (,0). Canônica do R 2. Ela é constituída pelos etoes { } 5) Das infinitas bases do R 3, uma também é consideada a mais simples, chamada de Base Canônica do R 3. Ela é constituída pelos etoes { i, j,k}, onde i = (,0,0), j = (0,,0) e k = (0,0,).

8 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu 2) No R 2, qualque conjunto com dois etoes LI constitui uma base. 3) No R 3, qualque conjunto com tês etoes LI constitui uma base. Execícios Popostos ) Veifica a dependência linea dos etoes: 3 3 a) u =, 3,6 e =,, b) a= (,2,2),b = ( 4,6,0) e c = (3,,2) c) a= (,2, ),b = ( 2,3, ) e c = (0,,2) 2) Escee o eto w = ( 3,5,3 ) a= (,2, ),b = ( 2,3, ) e c = (0,,2) 3) Veifica quais dos conjuntos abaixo é uma base do R 3. a) a= (,0,2),b = ( 2,3,) e c = (3,2, 2) b) u = (,0,0), = (2,3,) e w = (, 6, 2) Resp: a) LD b) LD c)li como combinação linea dos etoes Resp: w = a+ 2b + 3c Resp: a) é base b) não é base 4) Detemine m paa que os etoes u = (2,m,2), = (3, m,0) e w = (, 3,4) fomem uma base do R 3. Resp: m -3 5) Detemine os aloes de m paa que os etoes u = (2, m,8), = (m + 4,,3) e w = (7,4m,3) sejam LD. Resp: m=-3 ou m=2 6) Poe: "{u +,u } são LI { u, } são LI". 7) Dados dois etoes { u, } LI, moste que: "se w é combinação linea de { u, }, então essa combinação linea é única". COMENTÁRIOS IMPORTANTES ) Cuidado com as definições de combinação linea e de etoes LI e LD. Elas são muito paecidas e pode causa confusão. 2) Na pática, discuti se um conjunto de etoes é LI ou LD, quando usamos a definição, sempe amos esole um sistema linea homogêneo. Como os sistemas homogêneos são sempe possíeis, esta discussão se esume em: se o sistema fo SPD (admite somente a solução tiial, todos os escalaes são nulos), então os etoes são LI; se o sistema fo SPI (além da solução tiial admite outas infinitas), então os etoes são LD. 2) Como o pópio nome diz: etoes lineamente dependentes (LD) significa que existe uma dependência ente eles, ou seja, eles se elacionam de alguma foma. Esta dependência é uma combinação linea que, geometicamente, significa que ou dois etoes são paalelos ou tês etoes são coplanaes. Caso os etoes sejam

9 Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu lineamente independentes (LI), isso que dize que não existe elação nenhuma ente eles, ou seja, não são paalelos, não são coplanaes.

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87.

Sumário. CAPÍTULO 1 Vetores, 1. CAPÍTULO 2 Retas e Planos, 31. CAPÍTULO 3 Cônicas e Quádricas, 63. CAPÍTULO 4 Espaços Euclidianos, 87. Sumáio Pefácio à quata edição, ix CAPÍTULO 1 Vetoes, 1 1.1 Peliminaes, 1 1.2 Vetoes, 2 1.3 Adição de Vetoes, 3 1.4 Poduto po Escalaes, 6 1.5 Dependência e Independência Lineaes, 9 1.6 O Poduto Inteno,

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

MAT1514 Matemática na Educação Básica

MAT1514 Matemática na Educação Básica MAT54 Matemática na Educação Básica TG7 Uma Intodução ao Cálculo de olumes Gabaito Demonste que o volume de um bloco etangula cujas medidas das aestas são númeos acionais é o poduto das tês dimensões esposta:

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais

Cálculo Vetorial e Geometria Analítica

Cálculo Vetorial e Geometria Analítica Cálclo Vetoial e Geometia Analítica Pof. Ségio de Albqeqe Soza Cso de Licenciata em Matemática UFPBVIRTUAL Coeio eletônico: segio@mat.fpb.b Sítio:.mat.fpb.b/segio Ambiente Vital de Apendizagem: Moodle.ead.fpb.b

Leia mais

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer

Leia mais

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 7 ISOMORFISMO INRODUÇÃO AO ESUDO DA ÁLGEBRA LINERAR CAPÍULO 7 ISOMORFISMO A pergunta inicial que se faz neste capítulo e que o motiva é: dada uma transformação linear : V W é possível definir uma transformação linear

Leia mais

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1 ANÁLISE MULTIVARIADA APLICADA AS CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CIÊNCIA DO SOLO: CPGA-CS ANÁLISE DE VARIÂNCIA MULTIVARIADA Calos Albeto Alves Vaella ÍNDICE INTRODUÇÃO... MODELO ESTATÍSTICO...

Leia mais

Medidas de Associação.

Medidas de Associação. Medidas de Associação. Medidas de associação quantificam a elação ente uma dada exposição e uma consequência. Medidas de impacto quantificam o impacto da mudança de exposição num dado gupo. Não podemos

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009)

ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 2ª LISTA DE EXERCÍCIOS. (Atualizada em abril de 2009) ENGENHARIA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Pofesso : Humbeo Anônio Baun d Azevedo ª LISTA DE EXERCÍCIOS (Aualizada em abil de 009 1 Dados A (1, 0, -1, B (, 1,, C (1, 3, 4 e D (-3, 0, 4 Deemina: a

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME

Dinâmica de um Sistema de Partículas 4 - MOVIMENTO CIRCULAR UNIFORME Dinâmica de um Sistema de atículas Da. Diana Andade, Da. Angela Kabbe, D. Caius Lucius & D. Ségio illing 4 MOVIMENTO CIRCULAR UNIFORME Se um onto se moe numa cicunfeência, seu moimento é cicula, odendo

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Equações de Fresnel e Ângulo de Brewster

Equações de Fresnel e Ângulo de Brewster Instituto de Física de São Calos Laboatóio de Óptica: Ângulo de Bewste e Equações de Fesnel Equações de Fesnel e Ângulo de Bewste Nesta pática, vamos estuda a eflexão e a efação da luz na inteface ente

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais