Descontos desconto racional e desconto comercial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Descontos desconto racional e desconto comercial"

Transcrição

1 Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos básicos da opeação coespondente. Esses títulos é que vão se utilizados em opeações de desconto que são o objeto de estudo deste tópico. Títulos muito utilizados pelos agentes econômicos são: a Nota Pomissóia e a Duplicata Mecantil e de Seviços. Saiba mais... Consulte: divesos/notapomissoia.htm. Capítulo_12_Empesaial_pn.pdf Conceito de desconto O poblema do desconto suge quando o detento de um título de cédito necessita tansfomá-lo em dinheio antes da data do vencimento; nesse caso, ele podeá negocia com um agente financeio que lhe antecipaá um valo infeio ao valo nominal. 43

2 Figua 7: Conceito de Desconto Fonte: elaboada pelo auto. A difeença ente o valo nominal do título e o valo pago po ele, numa ceta data (anteio a data do vencimento), é o que se chama desconto. Assim, D (2.9) onde: D (VN) desconto valo nominal do título (no vencimento); valo atual do título (pago pelo Agente Financeio). Esse conceito pode se mais bem visualizado na figua 7. Exemplo 2.7: seja um título de dívida com as seguintes caacteísticas: data de emissão: 1/1/X7; data de vencimento: 1/1/X8; favoecido: João de Souza; emitente: Albeto José; e valo nominal no vencimento: $ 1.000,00. Em 1/3/ X7, João de Souza vai ao Banco X e popõe ao mesmo desconta esse título. O Banco, após analisa a questão, esolve paga a João a quantia de $ 800,00 pelo título naquela data. Na opeação de desconto o banco não assume a esponsabilidade plena pelo título: João de Souza é solidáio com Albeto José em sua dívida peante o banco. Em caso de inadimplência de Albeto, João deveá paga o título ao banco. 44

3 Paa o exemplo acima, que pode se visualizado na figua 8, tem-se o seguinte esumo de dados: VN = = $ valo pago pelo banco = = $ 800 desconto: D = - = = $ 200 Em outas palavas, o Banco X despendeu $ 800,00 em 1/3/X7 a favo de João e ecebeá $1.000,00 de Albeto em 1/1/X8, pecebendo, potanto, $ 200,00 pela pestação desse seviço. A figua 8 ilusta o poblema. Obseve que na solução deste exemplo o valo inicial à vista que oiginou o título de dívida (o capital) não foi levado em conta; esta é uma situação comum em finanças poque a conjuntua econômica na oigem da opeação financeia é difeente daquela hoje vigente que detemina as novas condições da opeação (o passado não impota). Figua 8: Desconto de título Fonte: elaboada pelo auto. O objetivo desta seção é mosta a você as fomas coentes de cálculo desse desconto em egime de capitalização simples, que são: a) o desconto acional ou po dento e b) o desconto comecial ou po foa; este último, é ainda denominado desconto bancáio. 45

4 Desconto acional (po dento) A opeacionalização do cálculo do desconto pode se feita po dois métodos distintos. O pimeio é o chamado desconto acional ou po dento e paa sua definição seá adotada a seguinte nomenclatua: valo nominal; valo pesente, valo atual ou valo descontado; i taxa de juos de desconto po peíodo n tempo ou tempo de antecipação, em peíodos (tempo que decoe ente a data do desconto e a data de vencimento do título e D desconto acional ou po dento. GLOSSÁRIO *Desconto acional o valo do juo geado pelo valo no tempo n e a uma taxa de juos i. Figua 9: Desconto acional - RJS Fonte: elaboada pelo auto. Define-se o desconto acional* como o valo do juo geado no tempo n e à taxa de juos i, calculado sobe o valo. A figua 9 ilusta as demonstações que seguem. Da definição de desconto acional tem-se: D = * i * n (2.10) Da figua 9, pecebe-se claamente que: D = - que devidamente eodenada poduz: 46

5 D nesta equação, substituindo D po sua expessão em (2.10) vem: *i * n da qual decoe: = * (1+ i * n) (2.11) e também, = (1+ i * n) (2.12) As expessões (2.10) e (2.12) combinadas esultam em: *i * n D = (1+ i * n) (2.13) Em desconto simples acional a base de cálculo é o capital inicial ou valo pesente. Se você obseva cuidadosamente as fómulas acima veá que o desconto acional coesponde ao juo simples (J) da opeação poposta; em outas palavas, o desconto acional se vale de todas as fómulas vistas paa juos simples, po opea exatamente nesse egime. Os poblemas envolvendo D podem se catalogados em tês tipos, como mostado a segui: Tipo 1: conhecidos, i e n, calcula D. Este tipo de poblema é esolvido pela fómula (2.13) *i * n D = (1+ i * n) Exemplo 2.8: um título de valo nominal de $ 5.000,00 que vence daqui 47

6 a 60 dias é levado a um banco paa desconto. O banco opea em desconto acional simples e coba juos de 4% am (ao mês). Qual o valo do desconto e qual o valo ecebido pelo detento do título? Sumáio de dados: = 5.000; n = 2 meses; i = 4% am, D =? Solução: a) Aplicação da fómula: *i * n 5.000*0,04* D = $ 370,37 (1 i * n) (1 0,04* 2) 1,08 b) O potado do título ecebeá: = D = ,37= = $ 4.629,63 Tipo 2: conhecidos D, i e n, calcula. O poblema é esolvido pela mesma fómula anteio, só que devidamente eodenada: D *(1 i * n) i * n Exemplo 2.9: um título que vence daqui a 60 dias foi descontado em um banco e o valo do desconto foi $ 370,37. O banco opea em desconto acional simples e coba juos de 4% am (ao mês). Qual o valo nominal e o valo pesente desse título? Sumáio: =?; D = 370,37; n = 2 meses; i = 4% am Solução: a taxa de juos está expessa em base mensal e po isso o pazo também seá expesso nessa base e n = 2 meses. a) Aplicação da fómula: D *(1 i * n) 370,37 *(1 0,04* 2) i * n 0,04* 2 399, , ,00 0,08 48

7 b) O potado do título ecebeá: - D ,37 $ 4.629,63 Tipo 3: conhecidos ou, D e i, calcula n. O poblema é esolvido com o auxílio das fómulas (2.9) e (2.11): D (1 i * n) Exemplo 2.10: um título de valo nominal $ 5.000,00 foi descontado em um banco e o valo do desconto foi $ 370,37. O banco opea em desconto acional simples e coba juos de 4% am (ao mês). Qual o pazo de antecipação do título? Sumáio: = 5.000,00; D = 370,37; n =?; i = 4% am Solução: a taxa de juos está expessa em base mensal e po isso o pazo n também seá expesso meses. a) Pode-se calcula com a fómula (2.9) e a segui aplica a fómula (2.11): - D ,37 $ 4.629,63 = (1+ i * n) eodenando e substituindo os valoes, tem-se, 1 (1 i * n) = i * n 1 n 1 * i 1 n 1 * i ,63 1 * 1 0,04 1,99999 meses ou 2 meses b) o exemplo pode se solucionado utilizando-se a fómula (2.13) eco- 49

8 mendada paa os tipos 1 e 2. D *(1 i * n) i * n *i * n D D *i * n *i * n - D *i * n D n *(*i - D *i ) D D n *i - D *i D i *( - D ) n i D 370,37 1,99999 ou 2 meses *( - D ) 0,04*( ,37) Execícios esolvidos paa ajudá-lo a fixa conceitos Execício 2.1: detemina o desconto acional e o valo atual das hipóteses seguintes: Valo Nominal Taxa Pazo até Vencimento a)$ ,00 23% a.a. 3 meses b)$ 8.200,00 20,5% a.a. 1 ano e 2 meses Solução: a) Poblema do tipo 1 usa a fómula (2.13), *i * n D = (1+ i * n) substituindo-se os valoes *(0,23/12)*3 D 0,23 (1 *3) ,0575 $ 543,74 O valo pesente ou atual é dado po: D , ,26 b) Poblema do tipo 1 usa a fómula (2.13) D *i * n = (1+ i * n) substituindo-se os valoes 50

9 8.200*(0,205/12)*14 D 0,205 (1 *14) ,16 1, $1.582,65 O valo pesente ou atual é dado po: D , ,35 Obseve que as taxas de juos mensais foam calculadas po popocionalidade e colocadas em foma unitáia. Execício 2.2: o desconto acional paa um título de valo nominal $ 600,00 e pazo de antecipação de 5 meses foi $ 57,63. Qual é a taxa de juos aplicada? Sumáio de dados: D = 57,63; = 600; n = 5 meses; i =? Solução: lemba a elação ente, e D D = - 57,63 = = 542,37 e a segui aplica a fómula do desconto acional: D = * i * n 57,63 = 542,37 * i * 5 i 57,63 542,37 *5 0,02125 am ou 2,125 % am Execício 2.3: um título de valo nominal $ 1.300,00 foi esgatado antes de seu vencimento; o desconto acional foi de $ 238,78. Qual o pazo paa o vencimento desse título se a taxa de juos aplicada foi 27% a.a.? Sumáio de dados: = 1.300; D = 238,78; i = 27% aa; n =? Solução: poblema do tipo 3 paa o qual se usam as fómulas (2.9) e (2.11), 238, , , 22 51

10 Cuso de Gaduação em Administação a Distância Aplica agoa a fómula básica de desconto acional simples, D = *i*n 238,78 = 1.061,22*0,27*n n 238, ,22* 0,27 0,8333 a Convetendo paa meses po ega de tês simples, n = 0,8333*12 =9,9996 ou 10 meses A esposta podeia se obtida dietamente em meses se você utilizasse a taxa de juos expessa em meses (i m = 27/12 = 2,25% am) Execício 2.4: um título foi esgatado 145 dias antes do seu vencimento sendo negociado uma taxa de juos de 23% a.a., tendo sido ecebido um valo de $ 1.921,95. Qual o valo nominal do título? Sumáio: n = 145 d; i = 23% aa; = 1.921,95; =? Solução: poblema de solução dieta - aplica a fómula do montante (2.11), = *(1+ i * n) substituindo os valoes 0, ,95*(1 *145) 360 $ 2.099,99 Você deve obseva o tatamento dado à taxa de juos: a taxa anual foi convetida em taxa diáia consideando o ano de 360 dias (comecial) e a taxa diáia foi aplicada sobe o númeo de dias coidos do título. Atividades de apendizagem 8. Detemina o valo atual acional dos seguintes títulos: i n a) $ ,00 15,9% a.a. 50 dias b) $ ,00 21% a.a. 125 dias c) $ 6.420,00 30% a.a. 8 meses d) $ 5.000,00 26,4% a.a. 181 dias Resp.: a) ,87, b) ,48, c) 5.350,00, d) 4.414,10. 52

11 9. Quanto paga po um título cujo valo nominal é de $ ,00 com vencimento em 150 dias paa que se tenha uma entabilidade de 36% aa? (lembe-se: entabilidade é a taxa de juos do desconto acional). Resp.: , Sabe-se que o desconto acional de um título, cujo valo nominal é $ 600,00, foi de $ 57,63. Qual seá a taxa de juos consideada se o pazo de antecipação foi 5 meses? Resp.: 25,50% aa. 11. O valo descontado de uma pomissóia é de $ 1.449,28 () e a taxa de juos utilizada foi de 18% aa. Sabe-se que o desconto acional foi de $ 50,72. Qual o pazo de antecedência? Resp.: n = 70 dias. 12. O valo nominal de um título é de 17,665 vezes o desconto acional a 24% a.a. Se o desconto acional fo $ 600,00, qual seá o pazo de antecipação? Resp.: n = 3 m. Desconto comecial (desconto bancáio ou po foa) O segundo modo de se opeacionaliza o desconto de títulos é denominado de desconto bancáio, comecial ou po foa. Paa se defini o desconto comecial seá adotada a seguinte nomenclatua: valo nominal; valo atual ou valo descontado; i c n D c taxa de desconto po peíodo; tempo ou tempo de antecipação, em peíodos; e desconto comecial ou po foa. Define-se o desconto comecial* como o valo dos juos geados no tempo n, à taxa de desconto i c, calculado sobe o valo nominal do título. A figua 10, a segui, ilusta a questão. GLOSSÁRIO *Desconto comecial - o valo do juo geado pelo valo no tempo n e a uma taxa de juos i c. 53

12 Da definição de desconto comecial tem-se: Dc *ic * n (2.14) Figua 10 - Desconto comecial RJS Fonte: do auto Em desconto comecial a base de cálculo é o valo nominal ou montante. A dedução de algumas fómulas, a pati dessa elação e da definição geal de desconto, pode se útil paa a solução de alguns poblemas. decoe, Veja que das duas expessões básicas de desconto comecial: = - D ou = + e D *i * n c D c = - *ic * n que tansfomada esulta em, = *(1- ic * n) (2.15) e c c D c *i * n = c (1 i * n) (2.16) c Definido desta maneia, o desconto comecial não segue o modelo puo do egime de capitalização simples sendo, na vedade, uma couptela do mesmo. A taxa de desconto aplicada à descaacteiza o egime de juos simples. 54

13 Você agoa vai veifica que o desconto comecial (D c ) é maio que o desconto acional (D ) quando eles são opeados com a mesma taxa: de desconto paa o desconto comecial e de juos paa o desconto acional. Paa isto, considee o desconto de um título de valo nominal () pelos citéios acional e comecial. O valo nominal em desconto acional é calculado pela fómula (2.13): D *(1 i * n) i * n Obseve: taxa de desconto paa o dsconto comecial e taxa de juos paa o desconto acional. Esse mesmo valo nominal é expesso pela fómula do desconto comecial (2.14): = Dc i c * n consideando que o valo nominal é o mesmo (mesmo título descontado de dois modos difeentes), segue: D *(1+ i * n) D = c i * n i * n c como po hipótese, i = i c = i, segue: Dc = D *(1+ i * n) (2.17) Conclusão: o desconto comecial é igual ao montante geado pelo desconto acional paa uma dada taxa de juos i (igual à taxa de desconto) e paa o tempo n consideado. 55

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

Curso de Extensão: Noções de Macroeconomia para RI (Política Monetária)

Curso de Extensão: Noções de Macroeconomia para RI (Política Monetária) Fedeal Univesity of Roaima, Bazil Fom the SelectedWoks of Elói Matins Senhoas Winte Januay 1, 2008 Cuso de Extensão: Noções de Macoeconomia paa RI (Política Monetáia) Eloi Matins Senhoas Available at:

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular: Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

TRIBUNAL DE CONTAS DA UNIÃO. Índice:

TRIBUNAL DE CONTAS DA UNIÃO. Índice: ANEXO 4 ROTEIRO DE VERIFICAÇÃO DO CÁLCULO DO CUSTO DO CAPITAL Roteio de Veificação do Cálculo do Custo do Capital Índice: Índice: Conceitos Veificações 1 VISÃO GERAL... 3 1.1 O QUE É CUSTO DE CAPITAL...

Leia mais

DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1

DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1 DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1 Eika Cistina Peeia Guimaães; Univesidade Fedeal do Tocantins-email:eikacistina0694@hotmail.com

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

IV SEMEAD TÍTULO SINTÉTICO REPRESENTATIVO DE UM FUNDO DE INVESTIMENTOS. José Roberto Securato 1 RESUMO

IV SEMEAD TÍTULO SINTÉTICO REPRESENTATIVO DE UM FUNDO DE INVESTIMENTOS. José Roberto Securato 1 RESUMO IV SEMEAD TÍTULO SINTÉTIO EPESENTATIVO DE UM FUNDO DE INVESTIMENTOS José obeto Secuato ESUMO O atigo tata da possibilidade de obtemos um título sintético que seja uma mímica em temos de isco e etono de

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

FEA RP USP. Noções sobre Descontos. Prof. Dr. Daphnis Theodoro da Silva Jr. Daphnis Theodoro da Silva Jr 1

FEA RP USP. Noções sobre Descontos. Prof. Dr. Daphnis Theodoro da Silva Jr. Daphnis Theodoro da Silva Jr 1 EA RP USP oções sobe escotos Pof.. aphis Theodoo da Silva J. aphis Theodoo da Silva J 1 escoto de títulos: vocabuláio A opeação de se liquida um título ates do seu vecimeto evolve gealmete uma ecompesa,

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

1 Busca em Amplitude

1 Busca em Amplitude Algoitmos de Busca A modelagem mostada até aqui detemina a configuação do espaço de estados do poblema, mas não mosta como chega à solução, isto é, como enconta um estado final em um tempo azoável. Paa

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

4 Modelos de Predição de Cobertura

4 Modelos de Predição de Cobertura 4 Modelos de Pedição de Cobetua 4.1 Intodução A pedição da áea de cobetua é um passo impotantíssimo no planejamento de qualque sistema de Radiodifusão. Uma gande vaiedade de modelos de canal têm sido utilizados

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

ENSINO DE EQUAÇÕES E FUNÇÕES DE PRIMEIRO E SEGUNDO GRAU COM O AUXÍLIO DOS JOGOS DIDÁTICOS

ENSINO DE EQUAÇÕES E FUNÇÕES DE PRIMEIRO E SEGUNDO GRAU COM O AUXÍLIO DOS JOGOS DIDÁTICOS ENSINO DE EQUAÇÕES E FUNÇÕES DE PRIMEIRO E SEGUNDO GRAU COM O AUXÍLIO DOS JOGOS DIDÁTICOS Atu Cuz de Sousa Acadêmico do 9º peíodo do cuso de Licenciatua em Matemática pela UFT. Bolsista do PIBID (Pogama

Leia mais

Os parâmetros cinéticos da taxa de reação são as constantes cinéticas

Os parâmetros cinéticos da taxa de reação são as constantes cinéticas 3.6 Deteminação dos paâmetos cinéticos Os paâmetos cinéticos da taxa de eação são as constantes cinéticas,, e as odens (a, b, n de eação em elação a cada componente. O efeito da tempeatua está na constante

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas eléticas em altas fequências A gande maioia das medidas eléticas envolve o uso de cabos de ligação ente o ponto de medição e o instumento de medida. Quando o compimento de onda do sinal medido

Leia mais

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS

CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo

Leia mais

O MÍNIMO MÚLTIPLO COMUM E O MÁXIMO DIVISOR COMUM GENERALIZADOS

O MÍNIMO MÚLTIPLO COMUM E O MÁXIMO DIVISOR COMUM GENERALIZADOS O MÍNIMO MÚLTIPLO COMUM E O MÁXIMO DIVISOR COMUM GENERALIZADOS Cydaa C. Ripoll, Jaime B. Ripoll, Alvei A. Sant Ana 1 Intodução Na disciplina Tecnologia de Infomação e Comunicação em Educação Matemática

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais