Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Conceitos Geométricos Básicos. Oitavo Ano. Prof. Ulisses Lima Parente"

Transcrição

1 Mateial Teóico - Módulo Elemento áico de Geometia Plana - Pate 1 Conceito Geomético áico itavo no Pof. Ulie Lima Paente

2 1 Conceito pimitivo ideia de ponto, eta e plano apaecem natualmente quando obevamo a geometia em noo cotidiano. Po exemplo, numa patida de futebol, podemo pena o vinte e doi jogadoe em campo como ponto, a linha que dividem o campo como eta, e o campo de jogo como um plano. ( = ) ( ) Figua 3: poiçõe elativa de doi ponto. Em elação a um ponto e uma eta, dua coia podem acontece: ou o ponto etá obe a eta, ou não. quado abaixo coloca ea dua poibilidade com um pouco mai de detalhe. Figua 1: a geometia num campo de futebol. Matematicamente falando, um conceito pimitivo é um conceito que não neceita de uma definição fomal. Em Geometia, admitimo a noçõe de ponto, eta e plano como conceito pimitivo. Denotaemo o ponto do plano po leta latina maiúcula e a eta po leta latina minúcula. im é que, na figua 2,, e C ão ponto, ao pao que, e t ão eta. C t Dado, no plano, um ponto e uma eta, ou petence à eta, em cujo cao ecevemo, ou não petence à eta, em cujo cao ecevemo /. figua 4 iluta o doi cao acima. ( ) ( / ) Figua 4: poiçõe elativa de uma eta e um ponto. Figua 2: ponto e eta no plano. Começamo noo etudo de Geometia examinando a poiçõe elativa de doi ponto: Dado doi ponto e no plano, ou e ão coincidente (i.e., e denotam um memo ponto) ou ditinto (i.e., difeente). No pimeio cao, ecevemo = ; no egundo, ecevemo. figua 3 iluta ea dua poibilidade: à equeda, temo o ponto coincidente e, ao pao que à dieita e ão ponto ditinto. Dado doi ponto ditinto no plano, noa expeiência com a geometia do dia-a-dia ugee que deve exiti uma eta que paa po ambo, e que tal eta deve e única. Ee é de fato o cao, e tal popiedade é uma da bae paa todo o deenvolvimento da Geometia. Po io, a iolamo no quado a egui: Dado ponto no plano, exite uma única eta que o contém, e que eá denotada, po veze, po. figua 5 mota a eta =, deteminada pelo ponto ditinto e do plano. 1

3 Figua 5: eta deteminada pelo ponto e. Figua 7: egmento de eta. 2 Semieta e egmento de eta Dado uma eta e um ponto, temo que divide em doi pedaço, conhecido como a emieta de oigem. Se ecolhemo ponto e em cada uma dea emieta, podeemo denotá-la po e, de tal foma que é o pedaço de que começa em e contém, enquanto é o pedaço que começa em e contém. Veja a figua 6. Dado, no plano, doi ponto ditinto e, definimo a ditância ente ele como a medida do egmento. ponto médio de um egmento é o ponto M, tal que M = M. (Veja a figua 8.) M Figua 8: ponto médio do egmento. Figua 6: emieta definida po. Dado ponto, podemo conidea a eta que o contém. egmento de eta é a poção da eta delimitada pelo ponto e. Em paticula, conideamo o ponto e como integante do egmento. ponto e ão a extemidade do egmento. Na figua 7, macamo de peto a poção da eta coepondente ao egmento. medida ou compimento do egmento de eta é denotada po. Paa compaa a medida de doi egmento dado, podemo pocede confome decito a egui. Dado doi egmento de eta, paa abe qual dele tem medida maio, ou e o doi têm medida iguai, bata toma a medida de um dele utilizando um compao e compaa com a medida do outo. 3 Poiçõe elativa de dua eta o analiamo a poívei poiçõe elativa de dua eta ditinta e no plano, obevamo dua poibilidade podem ocoe: ou e têm algum ponto em comum, ou e não têm ponto em comum. Se a eta ditinta e têm algum ponto em comum, afimamo que ela têm exatamente um ponto em comum. ealmente, e ee não foe o cao, então e teiam pelo meno doi ponto em comum, e, digamo. Ma, confome vimo anteiomente, exite uma única eta paando po doi ponto ditinto, de foma que deveíamo te = =. Como ee não é o cao, concluímo que e têm exatamente um ponto em comum. doi quado a egui detacam a dua poiçõe elativa poívei de dua eta ditinta do plano. Se a eta e não têm ponto em comum, dizemo que ela ão eta paalela. Ecevemo paa denota que e ão paalela. 2

4 4 Cicunfeência e cículo Dadoumegmento, cujamedida é, e umponto no plano, definimo o cículo λ (lê-e lambda), de cento e aio, como o conjunto fomado pelo ponto P do plano, tai que a medida do egmento P é igual à medida do egmento. De outa foma, λ = {P; P é ponto do plano e P = }. Figua 9: a eta paalela e. Se a eta e pouem um único ponto em comum, digamo = {}, dizemo que e ão concoente em. Io equivale a dize que o cículo λ, de cento e aio é o conjunto do ponto do plano cuja ditância ao ponto vale. figua12eboçaocículoλ, decento eaio. Paa taçá-lo maque, com a ajuda de um compao, a abetua doegmento; emeguida, centeocompaoem e, mantendo a abetua, faça o lápi do compao deceve uma cuva em tono de, a qual é, peciamente, o cículo λ. λ P Figua 10: eta e, concoente em. Se e não foem neceaiamente ditinta, há ainda a poibilidade de que ejam coincidente, ito é, que ejam uma mema eta, denotada de dua maneia difeente: Se a eta e têm mai de um ponto em comum, então ela ão, neceaiamente, iguai. Nete cao, dizemo também que e ão coincidente, e ecevemo =. = Figua 11: a eta coincidente e. Figua 12: cículo λ, de cento e aio. inteio do cículo λ, de cento e aio, é o conjunto do ponto P do plano cuja ditância ao cento é meno do que. exteio de λ é o conjunto do ponto do plano cuja ditância a é maio do que. figua 13 mota o inteio e o exteio de λ. dico de cento e aio é a eunião do cículo de cento e aio com eu inteio, ou eja, é o conjunto do ponto do plano cuja ditância ao ponto é meno ou igual a. Uma coda do cículo λ é qualque egmento de eta cujo extemo petençam a λ. Um diâmeto de λ é qualque coda que contenha o cento de λ. beve que a medida de um diâmeto é o dobo do aio do cículo. Na figua 14, o egmento e CD ão coda do cículo deenhado, endo que é um diâmeto. Um diâmeto de um cículo o cículo em dua pate iguai, denominada o emicículo de diâmeto. Mai gealmente, doi ponto obe um cículo λ deteminam doi aco de cículo. Um dele é chamado aco meno e o outo aco maio, e ambo eão denotado po. Cao haja peigo de confuão obe a qual 3

5 λ Exteio de λ Inteio de λ Dica paa o Pofeo ecomendamo que eja utilizada uma eão de 50min paa a eçõe 1 e 2, e outa eão de 50min paa a eçõe 3e4. olongodetodaaaula, pocuecompaaoconceito geomético apeentado com objeto da vida cotidiana do aluno, explicando como ituaçõe que no ocoem na vida diáia podem e epeentada geometicamente. poveite paa apeenta o aluno à égua e ao compao, eninando-o a faze uo de tai intumento, uma vez que ele eão de gande utilidade na aula ubequente. Figua 13: inteio e exteio do cículo λ. Sugetõe de Leitua Complementa C D 1.. Caminha. Tópico de Matemática Elementa, Volume 2: Geometia Euclidiana Plana. io de Janeio, Editoa S..M., Caminha. Geometia. io de Janeio, Editoa S..M., Dolce e J. N. Pompeo. Fundamento da Matemática Elementa, Volume 9: Geometia Plana. São Paulo, tual Editoa, Figua 14: coda em um cículo. aco etamo no efeindo, podemo ecolhe um outo ponto obe o aco ao qual queemo no efei. Po exemplo, na figua 15, Y denota o aco maio. X denota o aco meno X e Y Figua 15: aco em um cículo. 4

Geometria de Posição. Continuação. Prof. Jarbas

Geometria de Posição. Continuação. Prof. Jarbas Geometia de Poição Continuação Pof. Jaba POSIÇÕES RELATIVAS ENTRE DUAS RETAS NO ESPAÇO O que ão eta coplanae? São eta contida num memo plano. O que ão eta evea? São eta que não etão contida num memo plano.

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Geometia no Epaço NOME: Nº TURMA: Geometia é o amo da Matemática que etuda a popiedade e a elaçõe ente ponto, ecta,

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio ateial Teóico - ódulo de Geometia Epacial 1 - Fundamento Ponto, Reta e Plano - Pate 1 Teceio Ano do Enino édio Auto: Pof. Angelo Papa Neto Revio: Pof. Antonio Caminha 1 Axioma da geometia no epaço Em noo

Leia mais

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 1. Terceiro Ano do Ensino Médio ateial Teóico - ódulo de Geometia Epacial 1 - Fundamento Ponto, Reta e Plano - Pate 1 Teceio Ano do Enino édio Auto: Pof. Angelo Papa Neto Revio: Pof. Antonio Caminha 1 Axioma da geometia no epaço Em noo

Leia mais

CONSTRUÇÕES FUNDAMENTAIS

CONSTRUÇÕES FUNDAMENTAIS COLÉGIO EDRO II Camp RELENGO II Diciplina: DESENHO ª Séie (EM) of. Sonia Sá CONSTRUÇÕES FUNDMENTIS São contçõe báica feita com axílio do intmento de Deenho. Taçado de RLELS e ERENDICULRES com pa de ESQUDROS

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

GEOMETRIA. Noções básicas de Geometria que deves reter:

GEOMETRIA. Noções básicas de Geometria que deves reter: Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur

suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Retas Cortadas por uma Transversal. Oitavo Ano Maeial Teóico - Módulo Elemeno áico de Geomeia Plana - Pae 1 Rea oada po uma Tanveal Oiavo no uo: Pof. Ulie Lima Paene Revio: Pof. nonio aminha M. Neo 1 Rea coada po uma anveal Sejam e dua ea iuada em

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Conteúdos Exame Final e Avaliação Especial 2016

Conteúdos Exame Final e Avaliação Especial 2016 Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe

Leia mais

FLUXO ELÉTRICO E LEI DE GAUSS

FLUXO ELÉTRICO E LEI DE GAUSS 11 FLUXO ELÉTRICO E LEI E GAUSS.1 - A LEI E GAUSS Eta lei é egida po pincípio muito imple e de fácil entendimento. O conceito geal de fluxo como endo o ecoamento de um campo vetoial que atavea uma ecção

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano

Material Teórico - Módulo Elementos Básicos de Geometria Plana - Parte 1. Ângulos - Parte 1. Oitavo Ano Material Teórico - Módulo Elementos ásicos de Geometria Plana - Parte 1 Ângulos - Parte 1 itavo no utor: Prof. Ulisses Lima Parente Revisor: Prof. ntonio aminha 1 Ângulos Uma região R do plano é convexa

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

TEOREMA DE TALES PROF. JOÃO BATISTA

TEOREMA DE TALES PROF. JOÃO BATISTA PROF. JOÃO BATISTA TEOREMA DE TALES Se um feie de paalela deemina egmeno conguene obe uma anveal, enão ee feie deemina egmeno conguene obe qualque oua anveal. Aim, um feie de paalela deemina, em dua anveai

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

PARNAMIRIM - RN. Data: / / 2016

PARNAMIRIM - RN. Data: / / 2016 PARNAMIRIM - RN Aluno (a) Nº: 8º ano Tuma: Daa: / / 2016 NOTA: Eecício de evião de maemáica II Timee Pofeo (a): Joeane Fenande Agoa vamo coloca em páica o eu conhecimeno maemáico e udo o que eudamo em

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO EXAME FINAL NACINAL D ENSIN SECUNDÁRI Pova Escita de Matemática A 1.º Ano de Escolaidade Deceto-Lei n.º 19/01, de 5 de julho Pova 65/.ª Fase 15 Páginas Duação da Pova: 150 minutos. Toleância: 0 minutos.

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x?

EOREMA DE TALES. Assim, um feixe de paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Exemplo: Quanto vale x? EOREMA DE TALES Se um feixe de paalela deemina egmeno conguene obe uma anveal, enão ee feixe deemina egmeno conguene obe qualque oua anveal. Aim, um feixe de paalela deemina, em dua anveai quaique, egmeno

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

CD 031 Desenho Geométrico

CD 031 Desenho Geométrico UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CD 031 Desenho Geomético I Tuma B 2011 Apostila elaboada po: Pofª. Da. Deise Maia Betholdi Costa e Pofª M.Sc. Elen

Leia mais

Aula 5 Perpendicularidade e paralelismo

Aula 5 Perpendicularidade e paralelismo MÓULO 1 - UL 5 ula 5 Pependiculaidade e paalelimo Objetivo Intoduzi o conceito de pependiculaidade e de paalelimo. Intoduzi o quinto potulado de uclide, ealtando ua gande impotância hitóica e teóica. peenta

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E.

01- A figura ABCD é um quadrado de lado 2 cm e ACE um triângulo equilátero. Calcule a distância entre os vértices B e E. PROFESSOR: Macelo Soae NO E QUESTÕES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉIO ============================================================================================= GEOMETRI Pae 1 01- figua é um quadado

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Processamento de Imagens

Processamento de Imagens Poceamento de Imagen By Vania V. Etela UFF-TELECOM, Joaquim T. de AiIPRJ-UERJ Técnica de Modificação de Hitogama O hitogama de uma imagem, que é uma oiedade do conteúdo da infomação contida na mema, é

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera.

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera. 30/08/06 Tanfeência de calo Condução de calo º. emete, 06 Geometia mai uuai Paede plana Efea Cilindo longo 30/08/06 Condução de calo em paede plana: ditibuição de tempeatua Balanço de enegia Taxa decondução

Leia mais

17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.

17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y. Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho . Resolve e classifica os sistemas: x + y = x + y = x + y = B x y = Matemática Ficha de Tabalho Revisões 9ºano módulo inicial ( ) x + 4 = 5 y C 4x + y = 8 ( ) y = 6 x D ( 6x + 0) = y 5. Considea o pisma

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

Pof. Pauo Cesa Costa 01. (ENEM) O goveno cedeu teenos paa que famíias constuíssem suas esidências com a condição de que no mínimo 9% da áea do teeno fosse mantida como áea de pesevação ambienta. Ao ecebe

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

Campo Magnético, Campo Eléctrico de Indução Devido ao Movimento e Binário da Máquina de Corrente Contínua

Campo Magnético, Campo Eléctrico de Indução Devido ao Movimento e Binário da Máquina de Corrente Contínua Campo Magnético, Campo Eléctico de Indução evido ao Movimento e Bináio da Máquina de Coente Contínua V. Maló Machado, I.S.T., Maio de 2008 A máquina de coente contínua, epeentada de foma etilizada na Fig.

Leia mais