Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Tamanho: px
Começar a partir da página:

Download "Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito."

Transcrição

1 ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é consideado po muitos como a foma geomética plana mais pefeita possível. Relacionados aos cículos estão gandes poblemas da Geometia, como o da quadatua do cículo e o da deteminação do valo do númeo π. Daemos, agoa, a definição fomal de cículo. Definição 18 ículo é uma figua geomética fomada po todos os pontos do plano que estão a uma mesma distância de um ponto fixado no plano. ponto fixado é chamado cento do cículo, e a distância de qualque ponto do cículo ao cento é chamada aio do cículo. Também chamamos de aio a qualque segmento que liga o cento a um ponto do cículo. Veja a figua 11. c Fig. 11: ículo de cento e aio c 79 EDERJ

2 ículos Qualque segmento ligando dois pontos de um cículo é chamado de coda. Uma coda que passa pelo cento é chamada de diâmeto. medida de um diâmeto é também chamada de diâmeto. Veja a figua 113. D númeo π e a quadatua do cículo π é um númeo com caacteísticas muito especiais. Uma delas é se tanscendente, ou seja, não é um númeo algébico, pois não é aiz de nenhum polinômio com coeficientes acionais. possibilidade de constução com égua e compasso de um quadado de áea igual a de um cículo dado é chamado de poblema da quadatua do cículo. solução desse poblema dependia inteiamente de o π se ou não algébico. teoema de Lindemann povou então a tanscendência do π e que o poblema da quadatua do cículo é impossível pelas egas da Geometia gega. Potanto, a tanscendência do π implica que não existe uma constução com égua e compasso paa constui um quadado com áea igual à de um cículo dado. Fig. 113: odas de um cículo. Um cículo divide o plano em duas egiões: inteio do cículo e exteio do cículo. Um ponto está no inteio (ou dento) de um cículo de aio se a distância desse ponto ao cento do cículo fo meno do que. Se essa distância fo maio do que, o ponto está no exteio (ou foa) do cículo. cos e medida de acos onsidee um ângulo aio qualque, como na figua 114. ˆ e, com cento em, tace um cículo de 1 1 Fig. 114: ângulo  divide o cículo em dois acos. Esse cículo intesecta os lados de ˆ em pontos 1 e 1. ângulo ˆ divide o cículo em dois acos. omo denota cada um desses acos? Note que os dois têm como extemidade os mesmos pontos 1 e 1. Quando houve dúvida, consideaemos dois outos pontos, X e Y, um em cada aco, e usaemos a notação 1 X 1 paa designa o aco que contém X, e 1 Y 1 paa designa o aco que contém Y (veja a figua 115). EDERJ 80

3 ículos MÓDUL 1 - UL 7 Y 1 X Você sabia que... 1 Quando Fig. 115: cos deteminados pelo ângulo Â. ˆ mede 180 o, dizemos que o aco 1 X 1 (e também 1 Y 1 ) assim deteminado é um semicículo. Melho dizendo, cada um dos acos deteminados po uma eta que cota o cículo passando pelo cento é um semicículo. medida de um semicículo, po definição, é 180 o e de um cículo inteio (de aio qualque) é 360 o. É clao que essa maneia de medi não dá o compimento do cículo (que cetamente depende do tamanho do aio, e que está elacionado com o númeo π que mencionamos anteiomente - paa entende melho, veja a figua 116). X 180 o 1 1 al Louis Fedinand von Lindemann d.. lemanha. Lindemann foi o pimeio a pova que π é tanscendental. Naquela época já havia sido povado que o númeo e é tanscendental. Usando métodos similaes aos usados paa o númeo e, Lindemann povou que π é tanscendental. onsulte: st-nd.ac.uk/~histoy/ Mathematicians/Lindemann. html Y Fig. 116: Medida em gaus de um cículo: 360 o. Definiemos, a segui, a medida de um aco qualque. Definição 19 Dado um ângulo agudo  e um cículo centado em, a medida do meno aco deteminado po  é a mesma medida de  e a medida do maio aco deteminado po  é 360o Â. Usaemos a mesma notação paa designa o aco e a sua medida. Po exemplo, chamaemos a medida do aco 1 X 1 de 1 X EDERJ

4 ículos Posições elativas ente etas e cículos Você sabia que... Dados uma eta e um cículo no plano, existem tês possibilidades: não intesecta ( é exteio a ), intesecta em dois pontos ( é secante a ) ou intesecta em apenas um ponto ( é tangente a ). Veja essas possibilidades na figua 117. Hippakhus (ou Hipaco) nasceu em Nicéia, na itínia, viveu em lexandia, mas tabalhou sobetudo em Rodes, ente 161 e 16 a.. Destacou-se pelo método e igo de suas obsevações. Hippakhus foi um dos cientistas mais epesentativos da época alexandina. omo os babilônios, ele também aceditava que a melho base paa ealiza contagens ea a base 60. s babilônios não haviam escolhido a base 60 po acaso. númeo 60 tem muitos divisoes e pode se facilmente decomposto num poduto de fatoes, o que facilita muito os cálculos, pincipalmente as divisões. onsulte: st-and.ac.uk/~histoy/ Mathematicians/ Hippachus.html (a) (b) (c) Fig. 117: a) Reta exteio. b) Reta tangente. c)reta secante. onsidee agoa um cículo de cento no ponto, um ponto e o segmento que liga o cento do cículo ao ponto. Seja a eta que passa po e é pependicula ao segmento (veja figua 118). Vamos mosta a segui que é tangente ao cículo. De fato, se tomamos qualque outo ponto em e consideamos o tiângulo, veemos que o ângulo Â, que mede 90o, é o seu maio ângulo. omo o lado oposto a ele é, esse segmento é maio que. omo a medida de é o aio do cículo, o ponto está foa de. Mostamos então que um ponto de que não seja está foa de, ou seja, que é o único ponto na inteseção de e. Potanto é tangente a. Fig. 118: Reta que passa po e é pependicula a. Qualque eta que passe po difeente de intesecta em dois pontos. Emboa esse fato seja bastante intuitivo, ele necessita de uma pova. No pêndice apesentamos uma pova deste fato. Podemos então afima que uma eta passando po é tangente a se, e somente se, é pependicula a. Destacamos este esultado logo a segui. EDERJ 8

5 ículos MÓDUL 1 - UL 7 Toda eta tangente a um cículo é pependicula ao aio no ponto de tangência. Toda eta pependicula a um aio em sua extemidade é tangente ao cículo. Tataemos, agoa, das posições elativas ente cículos. Posições elativas ente cículos Dados dois cículos, temos as seguintes possibilidades: os dois cículos não se intesectam, os dois cículos se intesectam em um ponto ou os dois cículos se intesectam em dois pontos. Poém, cada um desses casos pode se subdividido, como veemos a segui. ículos que não se intesectam Paa o caso em que os cículos não se intesectam, há duas possibilidades: cada cículo está contido no exteio do outo (veja figua 119) ou um dos cículos está contido no inteio do outo (veja figua 10). 1 ' Fig. 119: ículo exteio a outo cículo. 1 ' Fig. 10: ículo inteio a outo cículo. ículos secantes Dizemos que dois cículos são secantes quando eles se intesectam em dois pontos (veja figua 11). 83 EDERJ

6 ículos 1 ' Fig. 11: ículos secantes. Nesse caso, pova-se que a eta que liga os dois centos e é a mediatiz do segmento deteminado pelos pontos de inteseção dos cículos. om efeito, taçando-se os segmentos,,, e, fomamos os tiângulos isósceles e, ambos de base (veja figua 1). Mas sabemos do execício 15 da aula 6 que num tiângulo isósceles a mediatiz da base passa pelo vétice oposto. ssim, a mediatiz de passa po e po, ou seja, a eta é mediatiz de. 1 ' 1 ' 1 ' Fig. 1: eta contendo e é mediatiz de. ículos tangentes Dizemos que dois cículos são tangentes quando eles se intesectam em um ponto. Paa cículos tangentes temos dois casos a considea: cículos tangentes exteiomente e cículos tangentes inteiomente. No pimeio caso, os dois cículos intesectam-se em um ponto e todos os outos pontos de cada um deles está no exteio do outo (veja figua 13). 1 ' Fig. 13: ículos tangentes exteiomente. EDERJ 84

7 ículos MÓDUL 1 - UL 7 Nesse caso, o ponto de enconto petence ao segmento e a eta pependicula à eta no ponto de enconto é tangente aos dois cículos (veja o execício 7). ponto de enconto é chamado de ponto de tangência. Veja a figua T ' Fig. 14: é tangente aos dois cículos. No caso de cículos tangentes inteiomente, os dois cículos intesectamse em um ponto e todos os outos pontos de um deles está no inteio do outo (veja a figua 15). 1 ' Fig. 15: ículos tangentes inteiomente. Nesse caso,, e o ponto de enconto são colineaes e a eta tangente a um dos cículos no ponto de enconto é também tangente ao outo (veja o execício 8). ponto de enconto é chamado ponto de tangência (veja a figua 16). 1 ' T Fig. 16: é tangente aos dois cículos. 85 EDERJ

8 ículos Ângulos centais e ângulos inscitos Vamos agoa ve algumas definições de ângulos elacionadas a cículos. Você sabia que... Definição 0 (Ângulo cental) Um ângulo cental de um cículo é um ângulo com vétice no cento do cículo. Definição 1 (Ângulo inscito) Um ângulo inscito é um ângulo com vétice sobe o cículo e cujos lados são semi-etas tangentes ou secantes ao cículo (veja a figua 17). Eatóstenes a.. iene, Gécia. Geógafo, matemático, astônomo, poeta e filósofo gego. Eatóstenes viveu pate da juventude em tenas. Foi um atleta bastante popula, destacando-se em váias modalidades espotivas. uto de muitos livos de stonomia e Geometia, esceveu ainda poesias e textos paa teato. Nenhuma de suas obas, poém, chegou até nós. Tudo o que sabemos sobe Eatóstenes é atavés de outos autoes. Uma das questões que desafiaam os matemáticos e astônomos da ntigüidade foi a deteminação do tamanho do Sol e da Lua. Paa chega a essas medidas, ea necessáio conhece o tamanho da cicunfeência da Tea. Muitos matemáticos daquela época se dedicaam a medi a Tea, mas foi Eatóstenes quem fez a demonstação mais inteessante. onsulte: st-and.ac.uk/~histoy/ Mathematicians/ Eastostenes.html Fig. 17: Ângulos inscitos. Dado um ângulo inscito  de um cículo, o aco de cículo contido na união do inteio com os lados de  é chamado aco subentendido po Â. Diz-se também que  subentende tal aco (veja figua 18). Fig. 18: D é o aco subentendido po D ˆ. EDERJ 86

9 ículos MÓDUL 1 - UL 7 Medida do ângulo inscito Podemos agoa detemina a medida de um ângulo inscito atavés da seguinte poposição: Poposição 15 medida de um ângulo inscito é a metade da medida do aco que ele subentende. Pova: Seja  um ângulo inscito em um cículo centado em. Dividiemos a pova em váios casos, dados pela figua 19. Faemos a pova de alguns casos e deixaemos os demais como execício. Fig. 19: Divesas configuações de ângulos inscitos. aso 1: Um dos lados do ângulo  é tangente ao cículo e o outo passa pelo cento. Suponha que seja o lado tangente e o lado que passa po. Nesse caso já vimos que  mede 90o. omo o aco subentendido po  é um semicículo (mede 180o ), não há o que pova. aso : s dois lados de  são secantes ao cículo e um deles passa pelo cento. Suponha que seja o lado que passa po e tace o segmento, como na figua EDERJ

10 ículos Fig. 130: aso. Sabemos que  + ˆ + Ô = 180o. ssim,  + ˆ = 180 o Ô = Ô omo Ô é um ângulo cental, sua medida é a mesma do aco que ele subentende. omo o tiângulo é isósceles com base (pois e são aios), temos que  = ˆ, e, potanto,  mede a metade do aco que ele subentende. aso 3: Um dos lados de  é tangente ao cículo e o ponto está foa de Â. Suponha que seja o lado tangente e tace a semi-eta. Seja D o ponto em que essa semi-eta intesecta e escolha um ponto X em que esteja no inteio de D ˆ (figua 131). X D Fig. 131: aso 3. ˆ = Pelo caso 1, D ˆ D ˆ = 90 o. Pelo caso, D, ˆ temos ˆ D = m( XD ). Daí, como m( ˆ = 90 o D ) m( D) m( XD) =. Daí concluímos que a medida de  é a metade da medida do aco que ele subentende. EDERJ 88

11 ículos MÓDUL 1 - UL 7 aso 4: Um dos lados de  é tangente ao cículo e o ponto petence ao inteio de Â. Suponha que seja o lado tangente e tace a semi-eta. hame de D ao outo ponto onde intesecta (figua 13). Y X D Fig. 13: aso 4. Segue dos casos 1 e desta demonstação que ÂD = 90o e m( DX), onde X é um ponto de no inteio do ângulo DÂ. Logo,  = ÂD + D = 90 o + m( DX) = m( Y D) m( D) =. + m( DX) ˆ D = s dois póximos casos têm demonstação muito paecida com a deste caso: em ambos deve se taçada a semi-eta. Vamos deixa as demonstações como execício. Pocue usa os casos anteioes paa pová-los. baixo seguem os enunciados. aso 5: s dois lados de no inteio de  (figua 19). aso 6: s dois lados de no exteio de  (figua 19).  são secantes e o ponto está ˆ são secantes e o ponto está aso 7: s dois lados de  são tangentes a. Nesse caso, ˆ é um ângulo aso (180 o ) e o aco subentendido po  é a cicunfeência inteia (3600 ). Veja a figua EDERJ

12 ículos Resumo Nesta aula você apendeu... Quais as posições elativas ente etas e cículos. Quais as posições elativas ente dois cículos. Que uma eta é tangente a um cículo em um ponto se, e somente se, ela é pependicula ao aio que passa po esse ponto. Qual a medida de um ângulo inscito. Execícios 1. Faça as povas dos casos 5 e 6 da poposição 15.. Na figua 156, o aco XD mede 110 o e o aco Y mede 40 o. Detemine a medida do ângulo Ê. E Y D X Fig. 133: Execício. 3. Na figua 157, o aco XD mede 90 o e o aco Y mede 40 o. Detemine a medida do ângulo ˆ ED. Y E X D Fig. 134: Execício 3. EDERJ 90

13 ículos MÓDUL 1 - UL 7 4. Detemine o valo do ângulo  na figua 135, sabendo que é tangente ao cículo o o D Fig. 135: Execício Detemine os valoes dos ângulos  e ˆ da figua 136. D 60o 70 o Fig. 136: Execício Na figua 158, é o cento do cículo,, e P R são tangentes ao cículo e  = 8o. Detemine P R. ˆ P Q R Fig. 137: Execício EDERJ

14 ículos 7. Sejam 1 e cículos tangentes exteiomente em um ponto T. Sejam o cento de 1 e o cento de. Pove que T petence ao segmento e que a eta pependicula a em T é tangente aos dois cículos. 8. Sejam 1 e cículos tangentes inteiomente em um ponto T. Sejam o cento de 1 e o cento de. Pove que, e T são colineaes e que a eta tangente a 1 em T é também tangente a. 9. Seja uma coda (que não é um diâmeto) de um cículo. Pove que a mediatiz de passa pelo cento do cículo. 10. Sejam uma coda de um cículo centado em e uma coda de um cículo centado em. Se os dois cículos têm o mesmo aio e, pove que os ângulos centais Ô e Ô são conguentes. 11. Sejam um cículo e uma eta. Seja a figua fomada pelos eflexos de todos os pontos de em elação a. Pove que é um cículo. 1. (Desafio) Seja um segmento e uma eta paalela à eta, como na figua 138. Fig. 138: Execício 1. Detemine o ponto paa que o ângulo Ĉ seja o maio possível. EDERJ 9

15 ículos MÓDUL 1 - UL 7 pêndice: Paa sabe mais... Nos agumentos abaixo, você enconta uma pova do seguinte fato: Se uma eta cota um cículo de cento no ponto, e não é pependicula ao segmento então cota o cículo também em um outo ponto. Seja um segmento e seja uma semi-eta tal que  seja um ângulo agudo (figua 139). Moste que existe um ponto em tal que. Fig. 139: omo conseqüência, se é um ponto de um cículo centado em e fo qualque eta que passe po e não seja pependicula a, então cota o cículo em dois pontos (figua 140). Fig. 140: 93 EDERJ

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Resultados Básicos - Parte 2. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mateial Teóico - Módulo Áeas de Figuas Planas Áeas de Figuas Planas: Resultados ásicos - Pate Nono no uto: Pof. Ulisses Lima Paente Reviso: Pof. ntonio aminha M. Neto 8 de outubo de 08 xemplos Nesta segunda

Leia mais

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C.

b) A área sombreada (S) é igual à área do setor AOM subtraída da área do triângulo ODC e da área do setor DCM do círculo de centro C. 13 Geometia I - GRITO VLIÇÃO - 01/ Questão 1. (pontuação: ) o seto O de cento O, aio O = 3 e ângulo O = 60 o está inscita uma cicunfeência como mosta a figua. a) alcule o aio dessa cicunfeência. b) alcule

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070 PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

A área do círculo. que as rodas das bicicletas seriam pintadas com a cor da camisa de cada competidor. A pintura foi feita como na figura abaixo:

A área do círculo. que as rodas das bicicletas seriam pintadas com a cor da camisa de cada competidor. A pintura foi feita como na figura abaixo: Acesse: http://fuvestibula.com.b/ A UUL AL A A áea do cículo Em uma competição de ciclismo, foi decidido que as odas das bicicletas seiam pintadas com a co da camisa de cada competido. A pintua foi feita

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Introdução. capítulo 1. Objetivos de aprendizagem

Introdução. capítulo 1. Objetivos de aprendizagem capítulo 1 Intodução Neste capítulo, apesentamos os entes geométicos fundamentais a sabe, o ponto, a eta e o plano e conceitos elacionados que condicionam a compeensão do estante deste livo. Objetivos

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

ATIVIDADES PARA SALA PÁG. 50

ATIVIDADES PARA SALA PÁG. 50 GTI esoluções apítulo ojeções, ângulos e distâncias estacando o tiângulo, tem-se o 8 0 TIIS SL ÁG. 0 0 0 onte luminosa cm 7 cm 4 7 I. = 7 + II. tg = = 6 49 = + d = 76 4 7 = = = 4 + d 4 + d = 48 d = d 4

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Matemática B. Bannafarsai_Stock / Shutterstock

Matemática B. Bannafarsai_Stock / Shutterstock Matemática annafasai_stock / Shuttestock Matemática aula 1 1 9 1 1 8 F eteminando a natueza do tiângulo F: 1 = < (é um tiângulo acutângulo) 1 + 8 = omo o tiângulo ÊF é acutângulo, o ângulo ÊF é agudo.

Leia mais

apresentar um resultado sem demonstração. Atendendo a que

apresentar um resultado sem demonstração. Atendendo a que Aula Teóica nº 2 LEM-26/27 Equação de ot B Já sabemos que B é um campo não consevativo e, potanto, que existem pontos onde ot B. Queemos agoa calcula este valo: [1] Vamos agoa apesenta um esultado sem

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

1ª etapa Despertando o olhar geométrico

1ª etapa Despertando o olhar geométrico Oficina Geometia Nesta oficina seão tabalhados alguns conceitos geométicos impotantes: Ângulos Paalelismo e pependiculaidade Polígonos e cicunfeência Simetia O mateial tem o objetivo de desenvolve as seguintes

Leia mais

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias Matemática 8A. b A medida de cada lado do pimeio quadado é igual à medida de cada diagonal do segundo quadado. Sendo x a medida de cada lado do segundo quadado, temos: x x x Potanto, a azão da PG é igual

Leia mais

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas

GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--

Leia mais

NÍVEL 3 = (L BS) + L + CY ) = BS

NÍVEL 3 = (L BS) + L + CY ) = BS 009 www.cusoanglo.com.b Teinamento paa limpíadas de atemática ÍVE 3 Resoluções US 3 35 Em lasse T. emonstação o enunciado, podemos constui a figua ao lado: Sejam Z, T, S, Y, K e pontos de tangência. Então,

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/009 RESOLUÇÕES E RESPOSTAS QUESTÃO : a) De f(3) =, temos a + = e, de f() = 0, temos a + = 0. Subtaindo 3 b b membo a membo, temos a + a =, ou = e 3 b b 3 b b ( b) (3 b) = ( b)(3 b),

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

78

78 0 As medianas taçadas dos ângulos agudos de um tiângulo etângulo medem medida da mediana taçada do ângulo eto é : (A) 5 cm (B) cm (C) cm (D) cm (E) cm 7 cm e cm. A 0 Os lados de um tiângulo medem AB 0,

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

CPV - o cursinho que mais aprova na GV

CPV - o cursinho que mais aprova na GV FGV 1 a Fase conomia novembo/00 MTMÁTI PV - o cusinho que mais apova na GV 01. ois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja etensão total é de, km. nquanto

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

Plano de Aulas. Matemática. Módulo 20 Corpos redondos

Plano de Aulas. Matemática. Módulo 20 Corpos redondos Plano de Aulas Matemática Módulo 0 Copos edondos Resolução dos execícios popostos Retomada dos conceitos 8 CAPÍTULO 1 1 No cilindo equiláteo, temos: ] 6 ] cm A lateal s ] A lateal s 6 ] ] A lateal.704s

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

DESENHO GEOMÉTRICO INSTRUCIONAIS DE MATEMÁTICA

DESENHO GEOMÉTRICO INSTRUCIONAIS DE MATEMÁTICA DESENHO GEOMÉTRIO INSTRUIONIS DE MTEMÁTI ONTEXTULIZÇÃO D DISILIN: O seu sucesso na disciplina de desenho geomético está inteiamente ligado ao conhecimento que você tive de Geometia. lao que você pode taça

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 1 ateia Teóico - óduo Tiânguo etânguo, Leis dos ossenos e dos Senos, Poĺıgonos eguaes eações éticas em Poĺıgonos eguaes - Pate 1 Nono no uto: Pof. Uisses Lima Paente eviso: Pof. ntonio aminha. Neto 5 de

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 08/03/14 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: 08/03/14 PROFSSOR: MLTZ QUSTÃO 01 Na figua, a eta e ão pependiculae e a eta m e n ão paalela. m 0º n ntão a medida do ângulo, em gau, é igual a: 0º m alteno

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

carga da esfera: Q densidade volumétrica de carga: ρ = r.

carga da esfera: Q densidade volumétrica de carga: ρ = r. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

Análise Vectorial (revisão)

Análise Vectorial (revisão) nálise ectoial (evisão) OpE - MIB 7/8 Pogama de Óptica e Electomagnetismo nálise ectoial (evisão) aulas Electostática e Magnetostática 7 aulas ampos e Ondas Electomagnéticas 7 aulas Óptica Geomética aulas

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos

XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (3 de agosto de 0) Nível α ( o e 7 o anos do Ensino Fundamental) Gabaitos www.opm.mat.b PROBLEMA a) Na sequência esnúfica, 3,, 3, o quinto temo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera.

carga da esfera: Q. figura 1 Consideramos uma superfície Gaussiana interna e outra superfície externa á esfera. Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída unifomemente pelo seu volume. Dados do poblema caga da esfea:. Esuema do poblema Vamos assumi

Leia mais

Disciplina Metodologia Analítica QUI102 II semestre AULA 01 (parte B) Profa. Maria Auxiliadora Costa Matos

Disciplina Metodologia Analítica QUI102 II semestre AULA 01 (parte B) Profa. Maria Auxiliadora Costa Matos Metodologia nalítica II sem/018 Pofa Ma uxiliadoa - 1 Univesidade Fedeal de Juiz de Foa Instituto de Ciências Exatas Depatamento de Química Disciplina Metodologia nalítica QUI10 II semeste 018 UL 01 (pate

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas)

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas) Sistemas Eléticos de Potência 5. nálise de utos-icuitos ou Faltas 5. omponentes Siméticos (ou Siméticas) Pofesso: D. Raphael ugusto de Souza enedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

Matemática D Extensivo V. 7

Matemática D Extensivo V. 7 Matemática D Extensivo V. 7 Execícios 0) D V V g Potanto, temos que o volume do tonco do cone é dado pelo volume total do cone menos o volume da pate supeio do cone. π.. 6 π.. 8π 6 π... π 8 π 7 6 8 7 7

Leia mais

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluno deve utiliza coetamente a designação efeida, sabendo defini o conceito apesentado como se indica

Leia mais

Aula 13 Apêndice: Parametrizações de curvas planas

Aula 13 Apêndice: Parametrizações de curvas planas MÓDULO 1 - AULA 13 Aula 13 Apêndice: Paametizações de cuvas planas Objetivo Obte equações paaméticas de cuvas planas impotantes. Neste apêndice, vamos estuda algumas cuvas planas que têm sido histoicamente

Leia mais

UNIVERSIDADE FEDERAL DE SÃO CARLOS. Volumes e o Princípio de Cavalieri

UNIVERSIDADE FEDERAL DE SÃO CARLOS. Volumes e o Princípio de Cavalieri UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA LICENCIATURA EM MATEMÁTICA Volumes e o Pincípio de Cavaliei Aluna: Ana Claudia Casagande Tacon - R.A. 313505 Oientado: Pof.

Leia mais

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t ? Equilíbio da estutua PROVA COMENTADA a) Diagama de copo live (DCL): Paa monta o diagama de copo live deve-se inclui todas as foças atuando no bloco de massa m. Obseve que o bloco pode movimenta-se somente

Leia mais

Matemática D Extensivo V. 4

Matemática D Extensivo V. 4 Matemática Etensivo V. Eecícios 0) 0) 0 0) Neste eecício, basta subtai a áea do cícuo meno da do cícuo maio. S M m π R ² π ² π 9π π asta substai a áea do seto cicua da áea do tiânguo O. s 0 π R 0 R sen0

Leia mais

CD 031 Desenho Geométrico

CD 031 Desenho Geométrico UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CD 031 Desenho Geomético I Tuma B 2011 Apostila elaboada po: Pofª. Da. Deise Maia Betholdi Costa e Pofª M.Sc. Elen

Leia mais

Aula Invariantes Adiabáticos

Aula Invariantes Adiabáticos Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO?

DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO? DE ONDE VEM A UNIDADE RADIANO E POR QUE SEU USO É NECESSÁRIO? Welleson Quintaneio wellesonsilva@ig.com.b CEFET - RJ / Pogama de Pós-Gaduação em Ensino de Matemática - UFRJ Victo Gialdo Instituto de Matemática

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Introdução à Geometria Hiperbólica Plana e atividades via o Modelo do Disco de Poincaré no software GeoGebra - Parte Teórica

Introdução à Geometria Hiperbólica Plana e atividades via o Modelo do Disco de Poincaré no software GeoGebra - Parte Teórica Intodução à Geometia Hipebólica lana e atividades via o Modelo do Disco de oincaé no softwae GeoGeba - ate Teóica Edson gustini Univesidade Fedeal de Ubelândia IILCE - UNES São José do Rio eto Outubo de

Leia mais

Conteúdos Exame Final e Avaliação Especial 2016

Conteúdos Exame Final e Avaliação Especial 2016 Componente Cuicula: Matemática Séie/Ano: 8º ANO Tuma: 18B, 18C e 18D Pofeoa: Liiane Mulick Betoluci Conteúdo Eame Final e Avaliação Epecial 16 1. Geometia. Monômio e Polinômio 3. Fatoação Algébica 4. Façõe

Leia mais

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora.

Caderno 2: 75 minutos. Tolerância: 15 minutos. Não é permitido o uso de calculadora. Eame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 018 1.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Duação da Pova (Cadeno 1 + Cadeno ): 150 minutos. Toleância:

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2,

f (x) (1 + (f (x)) 2 ) 3/2. κ(x) = f(x) = log x, f(x) = a cosh x a, a 0 (catenaria), f(x) = sen ax 2, Univesidade Fedeal do Rio de Janeio INSTITUTO DE MATEMÁTICA Depatamento de Métodos Matemáticos Pimeia Lista de Execícios - Geometia Difeencial 010/0 1. Calcula o veto tangente unitáio, a nomal pincipal

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais