setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO"

Transcrição

1 seto ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma caga puntifome em epouso tem, nos pontos e, as dieções e sentidos indicados pelas flechas na figua abaixo. CMPO DE VÁRIS CRGS PUNTIFORMES E p = E 1 E... E n CMPO UNIFORME (DEFINIÇÃO) E tem mesma intensidade, mesma dieção e mesmo sentido em todos os pontos. Execícios 1. (FCESP) Em uma ceta egião do espaço em ue existe vácuo (constante eletostática igual a Nm C ), estabeleceu-se um campo elético, cujo valo é 10 7 N/C. caga ue o oigina tem módulo 8µC. ue distância da caga essa medida de campo elético foi efetuada? a) 1cm d) 8cm b),5 cm e) N.D.. c) 6cm = C E = 10 7 N/C E = K 1 n E 1 n P E n E = O módulo do campo elético no ponto vale 4V/m. O módulo do campo elético no ponto P da figua vale, em volt po meto, a) 3. b) 4. c) 3. d) 6. e) 1. Obsevando-se a figua, a caga puntifome está na intesecção das etas ue deteminam as dieções do campo elético em e. E b = k E p = k como p = p E E p = b 4 = = 6 V 4 4 m P = = 6 10 m = 6 cm LF NGLO VESTIULRES

2 3. (FTEC) Repesenta-se na figua um uadado de lado l = m, possuindo nos seus vétices as cagas 1,, 3 e No inteio de placas planas e paalelas uma caga puntifome ( = µc) ealiza movimento etilíneo e unifome confome figua abaixo. placa I 1 P V g o módulo do veto campo elético esultante no ponto P (cento do uadado) é: a) zeo. d) N/C. b) N/C. e) N/C. c) N/C. 1 = 3 = 4 = = Consideando-se ue 9 N m 1 = 3 = 4 = 1µ C, = 1µ C e K = 9 10 C E 4 E 3 E a) placa II Sendo g = 10N/kg e a massa da caga 10g, pede-se: a) assinala as foças aplicadas na caga e a esultante; b) o veto campo elético em algum ponto no inteio das placas; c) o sinal da caga das placas. F P R = 0, pois a caga executa MRU. b) F = P E = mg E= N/C Sendo o sinal da caga de pova positiva e a foça elética vetical e paa cima, o veto campo elético é vetical e paa cima. c) placa I negativa placa II positiva E 1 Temos: logo: E p = E = K = E p = N/C obs.: = metade da diagonal do uadado. 4. Sendo as cagas 1 e fixas, calcule a ue distância x da caga 1 o veto campo elético é nulo. 1 = 4µC x 0 cm E E 1 0 x = 9µC Livo Unidade I Cadeno de Execícios Unidade VI UL 39 Leia os itens 4 a 8, cap.. Resolva os execícios 5 e 6, séie. UL 40 ORIENTÇÃO DE ESTUDO Taefa Mínima Leia os itens 9 e 10, cap.. Resolva os execícios 7, 13 e 14, séie. Taefa Complementa 1 UL 39 E 1 = E k 1 x = k (0 x) Resolva os execícios 8, 9 e 10, séie. UL 40 x = 8 cm Resolva os execícios 15, 16 e 0, séie. Resolva o execício, séie. LF NGLO VESTIULRES

3 ula 41 TRLHO E ENERGI NO CMPO ELÉTRICO I. TRLHO NO CMPO DE UM CRG PUNTIFORME Consideemos uma caga pontual fixa em um ponto do espaço e dois pontos e ue distam, espectivamente, e de, confome mosta a figua abaixo. II. FORÇ CONSERVTIV Uma foça é dita consevativa uando o tabalho po ela ealizado independe da tajetóia. Concluimos então ue a foça elética é consevativa, pois seu tabalho independe da tajetóia. o deslocamos uma caga de pova de paa segundo a tajetóia indicada, a foça elética ealiza um tabalho dado pela euação: K K = (I) Se levamos esta mesma caga, de paa, po um outo caminho ualue, a foça elética ealiza o mesmo tabalho. De fato: Sejam C e D acos de cicunfeência de cento e aios e, espectivamente. III. ENERGI POTENCIL ELÉTRIC Definimos como enegia potencial elética associada a um sistema de duas cagas puntifomes numa situação, como sendo o tabalho ealizado pela foça elética, paa leva a caga de pova do ponto onde se enconta até um ponto de efeência. É comum adota-se como ponto de efeência, um ponto suficientemente afastado da caga fixa, de tal sote ue as ações do campo sejam impeceptíveis. Dizemos então, ue o ponto enconta-se no infinito. Desta foma temos: K K (ε p ) = PR logo: (ε p ) = PR Como PR K PR 0 e potanto: ( ε p ) K = C C De modo análogo: uando estive em temos: ( ε p ) K = Mas sempe nomal a tajetóia. ssim: C D C C D = = D C = 0, pois o veto foça elética é Da euação (I) vem: C D K K =, como = C e = D, temos: C D = D = CD CD CD D D C D K K = = IV. TEOREM D ENERGI POTENCIL Definida e calculada a enegia potencial do sistema fomado po duas cagas puntifomes, podemos dize ue: Ou seja, εp ε = p O TRLHO RELIZDO PEL FORÇ ELÉTRIC UNDO SE DESLOC NUM CMPO ELÉTRICO UM CRG DE UM PONTO PR UM PONTO, É IGUL ENERGI POTENCIL INICIL MENOS ENERGI POTENCIL FINL. LF NGLO VESTIULRES

4 Execícios y (cm) 1. Os pontos, e C estão no campo elético de uma caga puntifome fixa. C = 15µC 50 cm (30, 40) Paa tanspota uma caga de pova de até pela tajetóia as foças eléticas ealizam o tabalho. O tabalho ue ealizaiam paa tanspota a mesma caga, nas mesmas condições anteioes, ao longo da tajetóia C, seia: a) d) b) 3 e) / c) = F elét. F elét., pois, F elét. não depende da tajetóia. 3 O = O = 50 cm a) ε p = K ; mas = 30 cm então, ε p = ε p = 4,5 J ( ) b) ε p = K ; mas = 50 cm 30 (30, 0) x (cm) então, ε p = ( ) ε p =,7 J. Uma caga puntifome de 15µC é fixada na oigem de um sistema catesiano otogonal imeso no a. y(cm) (30, 40) c) F e = ε p ε p F e = 4,5,7 F e = 1,8 J = 15µC ORIENTÇÃO DE ESTUDO (30, 0) x(cm) Livo Unidade I Cadeno de Execícios Unidade VI Detemina: a) a enegia potencial do sistema uando se coloca no ponto (30cm, 0) uma caga de 10µC. b) a enegia potencial do sistema uando se coloca no ponto (30cm; 40cm) uma caga 10µC. c) o tabalho ealizado pela foça elética uando se leva a caga de até. Leia os itens 1 e, cap. 3. Resolva o execício 11, séie 3. Taefa Mínima Taefa Complementa Resolva o execício 1, séie 3. Resolva o execício 17, séie 3 e leia o texto abaixo do enunciado. LF NGLO VESTIULRES

5 ulas 4 e 43 POTENCIL ELÉTRICO DE UM PONTO I. INTRODUÇÃO Em aulas anteioes, vimos ue o veto campo elético desceve (sob o aspecto vetoial) um campo elético. goa sabemos ue além da caacteística vetoial (foças nas cagas de pova) suge também associado ao campo, uma caacteística escala, (Enegia Potencial) uando se coloca na egião uma caga de pova. Há então a necessidade de se desceve o campo sob o aspecto escala. Faemos isso, definindo Potencial Elético de um ponto. II. POTENCIL ELÉTRICO DE UM PONTO Seja um ponto petencente a um campo elético. Se levamos a sucessivamente cagas de pova 1,.... o sistema se associaão as enegias potenciais ε p1, ε p... ε p. ε ε p ε Veifica-se ue a elação, 1 p p = =L, é uma constante caacteística do ponto. Definimos potencial elético de um 1 ponto de um campo elético como a enegia potencial po unidade de caga de pova colocada nesse ponto. Isto é: e III. UNIDDE DE POTENCIL ELÉTRICO [ ] [ V ] = εp [ V ] [] = J C 1J Em homenagem ao físico Volta, denomina-se a elação 1C de volts. beviatua (V). Um volt é o potencial elético de um ponto capaz de associa ao sistema uma enegia potencial de 1J se nele chega uma caga de 1C. IV. POTENCIL ELÉTRICO NUM CMPO DEVIDO UM CRG PUNTIFORME então: V p = ( ε ) K V = V. TRLHO NO CMPO ELÉTRICO = ε ε p p V p = ( ε ) ( εp) K V = V = VI. OSERVÇÕES RELTIVS O POTENCIL ELÉTRICO Potencial elético é gandeza escala. unidade de potencial no SI é o volt (V). uando váias cagas ciam campo em um ponto, o potencial nesse ponto é a soma algébica dos potenciais ciados individualmente pelas cagas. O potencial pode se utilizado como gandeza auxilia paa o cálculo da enegia potencial e do tabalho no campo elético como segue: Execícios com U = V V. 1. (UNESP) Na configuação de cagas abaixo, ual é a expessão ue epesenta o potencial eletostático no ponto P? a) K d) 3a 4 b) K e) K 3a 3a c) V p = K K K = = ( V V ) (ε p ) = V U = 4 K 3a 3a K a K 3a K 3 K V p = V p = K 3a 3 a = ( V V ) a (ε p ) = V P a K K = LF NGLO VESTIULRES

6 . Considee ue, no sistema de cagas da figua, = µc e = 1m. V N = ( ) 5 V N = ( ) 5 Detemine: a) o potencial elético do ponto P. b) o veto campo elético no ponto P. ( ) a) V p = K K V p = 0 P ( ) V N = V N = 1, V M N b) lét. = (VM V N ) = ( , ) = ( 1, 10 4 ) = 60 J. b) p E p E E = K hoizontal paa dieita E p = E = k 3. (Santa Casa-SP-Modificado) Nos pontos e existem cagas fixas de 5 C e 15 C, ente os pontos M e N, um peueno copúsculo de caga elética 5mC pode se desloca segundo uma tajetóia senoidal. 3m M 3m MN = 4m ORIENTÇÃO DE ESTUDO Livo Unidade I Cadeno de Execícios Unidade VI Taefa Mínima UL 4 a) Detemine o potencial elético dos pontos M e N, devido às cagas fixas de e. b) Detemine o tabalho das foças eléticas no deslocamento do peueno copúsculo, ente os pontos M e N. a) V M = K K 3 V M = ( ) 3 V M = V N Leia os itens 3 e 5, cap. 3. Resolva os execícios 1 e 3, séie 3. UL 43 Leia os itens 4, 6 e 7 cap. 3. Resolva os execícios 5 e 6, séie 3. UL 4 Resolva o execício 7, séie 3. UL 43 Taefa Complementa Resolva os execícios 4, 8 e 9, séie 3. LF NGLO VESTIULRES

7 ula 44 PROPRIEDDES GERIS DOS CMPOS ELÉTRICOS I. LINHS DE FORÇ CONCEITO Linhas de Foça (LF) são linhas desenhadas de tal foma ue: a) a tangente, em ualue ponto da linha, caacteiza a dieção do veto E. b) a oientação da LF define o sentido do veto E. c) a densidade das LF numa dada egião, dá uma idéia da intensidade de E, na egião. II. LINHS DE FORÇ DOS CMPOS ELÉTRICOS MIS COMUNS expessão do potencial elético V p = K, os mesmos pontos possuem mesmo potencial elético V p devem esta à mesma distância de. linha de foça V V V C supefície euipotencial No campo de uma caga puntifome, as supefícies euipotenciais são esféicas. Note ue: s linhas de Foça são pependiculaes às Supefícies Euipotenciais. Esta popiedade é válida em ualue campo elético. Num campo unifome, as supefícies euipotenciais, po seem pependiculaes às linhas de foça, são planos paalelos ente si (Fig. a segui). CMPO ELÉTRICO UNIFORME V V V C V D V V V C V D supefície euipotencial linha de foça III. SUPERFÍCIE EUIPOTENCIL Supefície euipotencial, em um campo elético, é toda supefície, nos pontos da ual o potencial elético é constante. No campo de uma caga pontual, as supefícies euipotenciais são esféicas e concênticas com a caga (Fig. a segui) da Num campo unifome, as supefícies euipotenciais são planas. LF NGLO VESTIULRES

8 Execícios 1. figua abaixo epesenta as linhas de foça do campo oiginado po duas cagas pontuais fixas nos pontos e. a) Copie a figua, epesentando o veto campo elético nos pontos e. b) ual o tabalho ealizado pelo campo paa leva uma caga, de 10 6 C, do ponto ao ponto? a) E E Pode-se afima ue: a) é positiva e é negativa. b) é positiva e é negativa. c) tanto como podem se positivas. d) tanto como podem se negativas. e) nada ue se afimou é coeto.. No execício anteio sendo a intensidade de foça elética: a) aplicada em seá maio ue a aplicada em. b) aplicada em seá meno ue a aplicada em. c) aplicada em seá igual à aplicada em. d) não dependeá da distância ente elas. e) nenhuma das anteioes é coeta. 3. (FUVEST) figua epesenta algumas supefícies euipotenciais de um campo eletostático e os valoes dos potenciais coespondentes. 0V 10V 0 b) F elét. = (V V ) 10 6 [0 ( 10)] J ORIENTÇÃO DE ESTUDO Livo Unidade I Cadeno de Execícios Unidade VI Taefa Mínima Leia os itens 1 a 6, cap. 4. Resolva os execícios 1 e, séie 4. 10V 0V 0V 10V 10V 0V Taefa Complementa Resolva os execícios 10 e 13, séie 3. LF NGLO VESTIULRES

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

ENERGIA POTENCIAL ELÉTRICA

ENERGIA POTENCIAL ELÉTRICA Pof(a) Stela Maia de Cavalho Fenandes 1 NRGIA POTNCIAL LÉTRICA O que é enegia otencial elética? Comaando-se o modelo mecânico da mola, onde uma mola comimida ossui enegia otencial elástica é, devido a

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO

CARGA ELÉTRICA ELETRIZAÇÃO POR FRICÇÃO CRG LÉTRIC caga elética é uma popiedade, dos mateiais, esponsável pelas inteações eletostáticas. xistem dois tipos de caga elética a que se convencionou chama caga positiva e caga negativa. LTRIZÇÃO POR

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

o anglo resolve a prova da 2ª fase da FUVEST

o anglo resolve a prova da 2ª fase da FUVEST o anglo esolve É tabalho pioneio. estação de seviços com tadição de confiabilidade. Constutivo, pocua colaboa com as ancas Examinadoas em sua taefa de não comete injustiças. Didático, mais do que um simples

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

Aula 4: Campo Elétrico de um Sistema de Cargas Puntiformes

Aula 4: Campo Elétrico de um Sistema de Cargas Puntiformes Univesiae Feeal o Paaná Seto e Ciências xatas Depatamento e Física Física III Pof. D. Ricao Lui Viana Refeências bibliogáficas: H. 4-4, 4-5, 4-6, 4-9 S. -7, -9 T. 8-6, 8-7, 9- Aula 4: Campo lético e um

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Física II Aula A08. Prof. Marim

Física II Aula A08. Prof. Marim Físic II Aul A8 Prof. Mrim FÍSICA 2 A8 POTENCIAL ELÉTRICO Trlho relizdo por um forç: W = F.d L = F.c o s.d L Trlho relizdo por um forç conservtiv: W = U - U = - U - U = - ΔU Prof. Mrim Energi Potencil

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios

ELETROMAGNETISMO 1 o Semestre de 2014 Prof. Maurício Fabbri. Campo elétrico e a lei de Gauss Leitura e Exercícios LTROMAGNTIMO 1 o emeste e 01 of. Mauício Fabbi Campo elético e a lei e Gauss Leitua e xecícios 01 O CAMO LÉTRICO (I) O conceito e campo (em inglês, fiel) é um os mais úteis já inventao na física. Imaginamos

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

Introdução à Física. Principio da pesquisa física

Introdução à Física. Principio da pesquisa física Intodução à Física S.J.Toise iência é a ate de estuda a natueza e este estudo pode se feito sob difeentes aspectos. ada um destes aspectos define um dos tês gandes amos da ciência: a iologia, a uímica

Leia mais

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss

Eletromagnetismo. As leis da Eletrostática: A lei de Gauss Eletomagnetismo As leis da Eletostática: A lei de Gauss Eletomagnetismo» As leis da Eletostática: A lei de Gauss 1 São duas as leis que egem o compotamento do campo elético nas condições especificadas

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

Potencial Elétrico 2017

Potencial Elétrico 2017 Potencial Elético 017 1. (Mackenzie 017) A intensiae o campo elético (E) e o potencial elético (V) em um ponto P geao pela caga puntifome Q são, espectivamente, que a caga puntifome se enconta o ponto

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais

setor 1214 Aulas 35 e 36

setor 1214 Aulas 35 e 36 seto 114 1140509 1140509-SP Aulas 35 e 36 LANÇAMENTO HORIZONTAL E OBLÍQUO O oviento de u copo lançado hoizontalente no vácuo (ou e cicunstâncias tais que a esistência do a possa se despezada) é a coposição

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais