MEF Aplicado à Análise Estrutural Mecânica

Tamanho: px
Começar a partir da página:

Download "MEF Aplicado à Análise Estrutural Mecânica"

Transcrição

1 PR - âna Compaonal para arôna EF Aplado à Análs Esrral âna A aplação mas radonal d EF na vrdad, ond s no é a smlação d srras mânas. Dssa forma os prómos íns abordam ss assno, o al é rmamn mporan para o ngnhro aalmn dvndo fazr par d ss onhmnos básos m smlação ndpndnmn d sa formação. Sm dúvda nnhma os lmnos mas smpls mas sados na análs srral mâna são os lmnos d rlça, os lmnos d vga os lmnos sóldos b rdmnsonas. Com rlação aos lmnos sóldos, nss rso srão dsdos apnas os lmnos sóldos bdmnsonas ranglar adrláro. Váras srras podm sr modladas omo rlças o vgas. Esrras d rlças vgas já foram sdadas no rso d mâna rssêna dos maras, nss rso srá mosrado omo modlar ssas srras sando m méodo podroso omo o EF. Traa-s d ma formlação d EF smpls mo bm onhda, possblando ao ngnhro, s dsjar, mplmnar falmn m algormo própro para ss fm sando o SCIAB o o ATAB. No nano, sss lmnos não prmm somn modlar srras d vga rlça m s, mas prmm ambém nlsv modlar d forma prlmnar srras onínas. Para sso basa onsrr ma malha om lmnos d rlça o vga onando os nós d forma nrlaçada omo mosrado na fgra abao. Isso forn m rslado razoávl do mo oníno a m so ompaonal bao para o ngnhro. Traa-s porano d mas m mplo do ponal dsss lmnos na smlação srral.

2 PR - âna Compaonal para arôna EF Aplado a Esrras d Trlças A rlça é ma srra m os ss lmnos são sjos somn à ração o omprssão omo mosrado abao. Consdrando o dsloamno na drção da barra d rlça, omo mosrado na fgra abao a açao dfrnal dsrv o omporamno d ma barra d rlça é dada por: A EA ond A é a ára da sção da rlça, a dnsdad E o módlo d lasdad do maral da rlça. Além dsso, mos: P σ Eε ε A ond P é a força normal na rlça, σ a nsão mâna, ε a dformação. Como fnção nrpoladora para o dsloamno é adoado m polnômo d prmra ordm, assm mos: N N : N ; N ond é o omprmno do lmno, N, N são as fnçõs d forma, são os dsloamnos nodas do lmno d rlça. Dfnda a fnção nrpoladora podmos aplar a formlação d EF éodo d Galrkn dsda m ala na ação ama. Para m úno lmno mos: A EA d ond, gras d lbrdad

3 PR - âna Compaonal para arôna após ralzar a ngração por pars,obém-s: ] [ EA d EA A Para, N, sbsndo a fnção nrpoladora d, mos: EA d EA A Para, N, mos: EA d EA A ond são as alraçõs nodas. Após allar as ngras faça omo río! agrpar na forma maral ambas as açõs obém-s: [ ]{ } [ ]{ } { } N N EA EA A C U K U ond [ ], [K ],{U }, { } U {C } são dnomnados marz d massa, marz d rgdz, vor d dsloamnos nodas, vor d alração nodas vor d arrgamno nodal, rspvamn, do lmno. N N são as forças d omprssão o ração na rlça. No no aso d rlças não mos m gral o vor orrspondn a forças dsrbídas porano N N. Para modlar a srra d rlças dvmos monar o ssma global omposo dos város lmnos d rlça d ada lmno dsro ama. A marz d massa [] aprsnada ama é hamada marz d massa onssn. Pod-s sar ambém ma formlação mas nva d marz d massa hamada marz d massa onnrada lmpd m nglês dada por: ] [ A Essa marz é obda apromando-s o lmno d rlça por m ssma massamola omo mosrado na fgra abao. No nano raa-s d ma apromação é sada somn ando s dsja rdzr o so ompaonal da análs.

4 PR - âna Compaonal para arôna No nano, apsar do lmno d rlça sofrr apnas dformação aal, ss nós podm dsloar nas drçõs X Y. Dssa forma o vor d dsloamno, omo mosrado na fgra abao, fa: U v v { } { } T A marz d rgdz fa: [ K ] EA Além dsso, a formlação aprsnada ama spõ o lmno d rlça sá alnhado om m dos os oordnados. No nano, as barras d rlça s aprsnam dsposas formando ânglos om m ssma arsano global XY, omo mosrado na fgra abao.

5 PR - âna Compaonal para arôna Nss aso os dsloamnos v são domposos m omponns U V na drção dos os globas vr fgra. No nano, as marzs d rgdz massa prssas m fnção d v dvm sr ransformadas d forma a srm prssas m fnção d U V. Para sso dvmos srvr a ransformação d oordnadas nr o ssma loal o global. os sn U v sn V os { U } [ T]{ U } sn os U v sn V os ond a marz [T] é hamada marz ransformação d oordnadas é o ânglo d ornação do lmno. Para obr a nova marz d rgdz podmos sar o ono d nrga lása do lmno prssa por: E l { U } T [ K ]{ U } Sbsndo a ransformação d oordnadas: T T T T E l { U} [ T] [ K ][ T]{ U} { U} [ K ]{ U} [ K ] [ T] [ K ][ T] o sja: os ossn os ossn EA [ ] ossn sn ossn sn K os ossn os ossn ossn sn ossn sn T A marz d massa [ ] fa: [ ] [ T] [ ][ T] U ε Além dsso, a prssão da dformação fa: os V sn U os V sn U os Vsn U os Vsn { os sn os sn} U V U V Para o aso m a ára do lmno vara om A, as fórmlas anrors dvm sr rddzdas. Erío rsolvdo: Consdr a rlça da fgra abao. Call os dsloamnos dos nós raçõs sando o EF. 5

6 PR - âna Compaonal para arôna Solção: A abla abao mosra a nmração dos nós d ada lmno o ânglo l forma om a horzonal. As marzs para os lmnos, fam: A marz do lmno na marz do ssma global fa:

7 PR - âna Compaonal para arôna A marz do lmno na marz do ssma global fa: A marz do lmno na marz do ssma global fa: A marz para o lmno fa: 7

8 PR - âna Compaonal para arôna A marz do lmno na marz do ssma global fa: A marz para o lmno fa: 8

9 PR - âna Compaonal para arôna A marz do lmno na marz do ssma global fa: A marz para o lmno 5 fa: A marz do lmno 5 na marz do ssma global fa: onando o ssma global obmos: 9

10 PR - âna Compaonal para arôna smplfando: Aplando as ondçõs d onorno U X, U Y o, U X U Y, o arrgamno F Y -5, F 5Y -5, rdzndo o ssma:

11 PR - âna Compaonal para arôna Com rlação a monagm do vor d forças globas, no a soma das forças nrnas das rlças m ada gra d lbrdad, orrspondrão às açõs d líbro nos nós, porano o srão nlas o srão gas às forças rnas raçõs forças apladas. Rsolvndo obém-s: As raçõs podm sr obdas da sgn forma: rslando m:

12 PR - âna Compaonal para arôna EF Aplado a Esrras d Vgas O lmno d vga sá sjo a sforços d flão. Consdrando o dsloamno na drção prpndlar ao lmno d vga a roação φv, omo mosrado na fgra abao a açao dfrnal dsrv o omporamno d ma vga é dada por:, A ond I é o momno d néra da vga, é ma arga dsrbída as dmas andads já foram dfndas anrormn. Além dsso, mos: ; ; V φ ond V é a força oran o momno flor. A formlação d lmno d vga srá aprsnada é dnomnada vga d Elr-Brnoll, ond s spõ o plano da sção prman smpr normal à lnha nra da vga, o sja, dsprzam-s os fos d nsõs d salhamno na sção da vga, o prm srvr a roação φ omo drvada do dsloamno. Como fnção nrpoladora para o dsloamno é adoado m polnômo d rra ordm, assm mos: φ Podmos srvr os ofns 's omo fnção dos dsloamnos roaçõs nodas,, φ φ : φ φ φ φ é o omprmno do lmno. Rsolvndo o ssma anror para,,, obém-s:

13 PR - âna Compaonal para arôna ond: Essas fnçõs d forma são hamadas fnçõs d forma d rm garanm ano o dsloamno omo a roação φ sjam onínos nr os lmnos vznhos. A fgra abao lsra ma ploagm dssas fnçõs d forma. Dfnda a fnção nrpoladora podmos aplar a formlação d EF éodo d Galrkn dsda m ala na ação da vga. Para m úno lmno mos:, d A ond,, gras d lbrdad Após ralzar a ngração por pars das vzs,obém-s:, V d A ond V é a força oran o momno flor dfndos anrormn. Sbsndo a fnção nrpoladora d as fnçõs na ação ama, rmos:

14 PR - âna Compaonal para arôna { }, V V d A Varando d à, rmos aro açõs d ngras, podm sr ondnsadas na noação maral abao sndo, mos: { }, V V d A ond os snas d V,, V s rfrm aos sndos dos dsloamnos,, ndados na fgra ama. Porano:

15 PR - âna Compaonal para arôna 5 d V V d sméra d d d d d d d d d d sméra d d d d d d d d d A, Após allar as ngras, agrpar as açõs na forma maral, obém-s: [ ]{ } [ ]{ } { } { } F C U K U ond: [ ] [ ] ; A K A marz d massa ama é a hamada marz d massa onssn. Assm omo no aso da rlça podmos lzar ma apromação da marz d massa hamada marz d massa onnrada lmpd. Esm algmas formas d obr a marz d massa onnrada para o lmno d vga rslam nas marzs dsras abao: [ ] [ ] ; A A No são marzs dagonas, sndo ompaonalmn mas fás d manplar do a marz d massa onssn é ma marz ha.

16 PR - âna Compaonal para arôna Com rlação ao vor d arga { } d, F, onsdrando ma prssão nform aplada sobr o lmno obém-s: { } F Já no aso d ma arga onnrada P δ ond δ é a fnção Dla Dra, P é arga onnrada aplada m, obém-s: { } P F A fgra abao lsra oros pos d arrgamnos possívs no lmno d vga. Emplo: Como mplo, onsdrmos ma vga ngasada omo mosrado na fgra abao sja a ma arga onnrada na sa rmdad.

17 PR - âna Compaonal para arôna Qrmos allar o dsloamno na sa rmdad pono d aplação da arga sando o EF. Consdrando a dsrzação d apnas m lmno mos: v V v P P mas v, porano obém-s: v. O sja, o msmo rslado analío obdo no rso d rssêna dos maras. Isso oorr por o prfl ao d dsloamnos d ma vga ngasada sg m polnômo úbo. Como as fnçõs nrpoladoras são úbas, obmos a solção aa, msmo sando m úno lmno na dsrzação. Já onsdrando ma arga dsrbída na vga não obmos a solção aa, pos a msma sg m polnômo d ordm maor do. Assm omo o lmno d rlça, o lmno d vga ambém pod s aprsnar nlnado m rlação aos os oordnados o g sja fa ma ransformação d oordnadas dará orgm a novas marzs, análogo ao ddzdo para o lmno d rlça. A ddção dssa ransformação para o lmno d vga pod sr nonrada nos lvros ndados na rfrêna bblográfa do rso. Na vrdad, mbora os lmnos d rlça vga nham formlação rlavamn smpls m EF, a modlagm m s d srras sando sss lmnos nm smpr é ma arfa fál. O prnpal problma é srras d rlça vga são modlos rmos d srras. Por mplo, raramn s vê ma jnção nr das barras sando ma arlação prfa rlça, o vnalmn ma não onína prfa vga. Em gral, as barras são ndas aravés d parafsos, o rsla nma rgdz d jnção das barras sá nr o modlo d arlação prfa rlça o solda prfa vgas. O orro sra modlar a srra sando molas nas jnçõs das barras, no nano o valor orro dssas molas é dfíl d sr smado, ornando dfíl m algns asos obr rslados ralísos na smlação d srras dss po. 7

2 PROBLEMA ESTRUTURAL ESTÁTICO NÃO-LINEAR

2 PROBLEMA ESTRUTURAL ESTÁTICO NÃO-LINEAR PROBEA ETRUTURA ETÁTICO NÃO-INEAR. INTRODUÇÃO O prsn apíulo m o obvo d fornr os fundamnos para a obnção da raóra d qulíbro d ssmas sruuras sblos aravés do méodo dos lmnos fnos (EF). ab-s qu um dos passos

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

5. MODELOS MECÂNICOS - N GL

5. MODELOS MECÂNICOS - N GL BRAÇÕE MECÂNCA - CAPÍUO 5 - MODEO MECÂNCO 6 5. MODEO MECÂNCO - N G O studo das vbraçõs lvrs orçadas d sstas ânos, o odlos dsrtos, sto é, o N graus d lbrdad, é to a partr d odlos obtdos através d uaçõs

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

3. Medidas de desempenho são combinadas sobre todas as. 2. Medidas de desempenho preditas são obtidas usando modelos de regressão para as respostas:

3. Medidas de desempenho são combinadas sobre todas as. 2. Medidas de desempenho preditas são obtidas usando modelos de regressão para as respostas: Função d rfrêna oal C m Funçõs objo alrnaas ara omzação d xrmnos om múllas rsosas Fláo Foglao Projo d Exrmnos II Abordagns ara omzação mulrsosa Omzação Mulrsosa Prodmno adrão. Rsosas modladas omo função

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares nál Sma Lnar Dnvolvo plo Prof. Dr. Emlon Rocha Olvra, EEE-UFG, 6. Propra a ranformaa Laplac Propra a convolção. propra a convolção no omíno o mpo m ma vaa aplcação na anál o ma lnar. Dao o na () h(), cja

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR

EXPERIÊNCIA 7 MEDIDA DE INDUTÂNCIA POR ONDA RETANGULAR UMCCE Eng. Elérca m - ab. Crco Elérco Prof. Wlon Yamag EXPEÊNC 7 MEDD DE NDUÂNC PO OND ENGU NODUÇÃO O objvo báco da xprênca é mdr a ndânca a rênca d ma bobna zando ma onda ranglar. O prncípo da mdção é

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

condição inicial y ( 0) = 18 condições iniciais condições iniciais

condição inicial y ( 0) = 18 condições iniciais condições iniciais Prblmas d Mamáa IV - Dada a quaçã frnal abax, drmnar as sluçõs arular mlmnar snd qu das as quaçõs sã válda ara. a nçã nal. s. u u b 5 nçã nal s. 7,5,5 u nçã nal s. 5 u d 5 s nçã nal 8 s. s d 5 8 nçõs nas

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

Fenómenos Transitórios

Fenómenos Transitórios 2-7-24 Fnónos Transóros Dfnção fnónos ransóros São fnónos q ocorr crcos lécrcos nr os saos rg rann. Noraln, os fnónos ransóros ocorr crcos lécrcos ran as anobras abrra fcho nrrors. Po abé aconcr vo a oras

Leia mais

Propriedades estruturais de sistemas multivariáveis. Profa. Vilma A. Oliveira USP São Carlos Março Introdução...2

Propriedades estruturais de sistemas multivariáveis. Profa. Vilma A. Oliveira USP São Carlos Março Introdução...2 Proprdads srras d ssmas mlvarávs Profa. Vlma. Olvra USP São Carlos Março Índc Smáro. Inrodção.... Dscrção d ssmas dnâms lnars... 3. Esabldad...3 3. BIBO sabldad...3 UCaso Mlvarávl...4 3.Esabldad d polnômos:

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

4 A Teoria de Filtragem

4 A Teoria de Filtragem 4 A ora d Flragm Ns capíulo srá abordado o conhcmno ncssáro para a mplmnação do lro ulzado ns rabalho, conorm [27]. O lro d Kalman é ormulado mamacamn m rmos d varávs d sado sua solução é compuada rcursvamn,

Leia mais

TÓPICOS. 4. Método de primitivação por partes.

TÓPICOS. 4. Método de primitivação por partes. No bm, a lira dss apoamos ão dispsa d modo alm a lira aa da bibliorafia pricipal da cadira. Nomadam, o rfr ao Módlo 0, Apoamos d Aális Mamáica, Mamáica - E. Mal Mssias páias: 0 a 9 hama-s à ação para a

Leia mais

Os Modelos CA para Pequenos Sinais de Entranda Aula 7

Os Modelos CA para Pequenos Sinais de Entranda Aula 7 Os Molos CA para Pqunos Snas Enrana Aula 7 PS/EPUSP Aula Maéra Cap./págna ª 6/02 2ª 9/02 3ª 23/02 4ª 26/02 5ª 0/03 6ª 04/03 7ª 08/03 8ª /03 9ª 5/03 0ª 8/03 PS/EPUSP Elrônca PS332 Programação para a Prmra

Leia mais

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio.

Aula 6. Sistemas mecânicos discretos e contínuos. Oscilador linear de um grau de liberdade (OL1GL) Princípio de D Alembert. Equação de equilíbrio. Ala 6 Ssmas mcâcos scros coíos. Osclaor lar m ra lbra OLGL rcípo Almbr. Eqação qlíbro. m lvr amorco. NL FCT EC Ehara Sísmca / sposávl: João. Blé Srra Acao 3 r r r r f m ; rcípo Almbr Força aca f f f f

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO.

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. 6.- ESPERANÇA DE UMA FUNÇÃO: CASO DISCRETO: E[g()] i g( i )(i ) CASO CONTÍNUO: E [g()] 6.- MOMENTO: + - g(). () d DEFINIÇÃO DE MOMENTOS: srado Din-s momno d uma

Leia mais

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B:

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B: 1. (2 pontos) Suponha qu o ar ontdo m uma bomba manual d nhr bola possa sr tratado omo um gás dal (γ 1, 4). Consdr nalmnt 210{240} m 3 d ar a uma tmpratura d 20{40} C a uma prssão d 1 atm. S st volum d

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

COMPLEMENTOS DE OPÇÕES MESTRADO EM FINANÇAS - ISCTE EXAME - Resolução 13/07/07 Duração: 2.5 horas

COMPLEMENTOS DE OPÇÕES MESTRADO EM FINANÇAS - ISCTE EXAME - Resolução 13/07/07 Duração: 2.5 horas COPLEENO DE OPÇÕE 6-7 ERADO E INANÇA - ICE EXAE - Rsolção 3/7/7 Dração:.5 horas CAO a) orml, no momno ( ), o állo fair val d ma obrigação d aixa om vnimno no momno q paga nssa msma daa m únio ash flow

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

R V. Ri R d. (figura 1)

R V. Ri R d. (figura 1) Físca Gral Proocolos as Aulas Prácas rcuo m sér DF - Unvrsa o Alarv sumo Um crcuo m sér é prcorro por uma corrn snusoal frquênca varávl Esua-s a nnsa a corrn qu prcorr o crcuo, bm como a nsão aos sus rmnas,

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS Introdução Intrss m modlar algum fnômno alatóro com dos dsfchos possívs ( sucsso ou fracasso ) m função d uma ou mas covarávs. Assoca-s ao rsultado do fnômno uma

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Cap. 7. Prncípo dos trabalhos vrtuas. Enrga d dformação ntrna. Dfnção prssupostos adoptados. Dnsdad da nrga d dformação ntrna.3 Caso partcular: L consttutva é rprsntada pla rcta.4 Enrga d dformação ntrna.

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capíulo 7 Problmas d Valor Incal para Equaçõs Dfrncas Ordnáras Muos problmas m modlagm d procssos químcos são formulados m rmos

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

PILARES. Volume 3 1- INTRODUÇÃO. M 1 d = momento fletor de primeira ordem. = F = momento fletor de segunda ordem.

PILARES. Volume 3 1- INTRODUÇÃO. M 1 d = momento fletor de primeira ordem. = F = momento fletor de segunda ordem. Volum 3 PILARES Prof. José Milton d Araújo - FURG 1 1- INTRODUÇÃO M 1d M 1 d momnto fltor d primira ordm M F momnto fltor d sgunda ordm d d l 1 M 1d / M d M1 d + M d momnto total Dimnsionar para M d N

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

). Quer os eixos de S quer os de S

). Quer os eixos de S quer os de S CAPÍULO RANSFORMAÇÃO LINEAR DE COORDENADAS Nst capítulo é aprsntada a ddução da prssão qu prmt transformar as coordnadas d um ponto no spaço d um rfrncal ( S) para outro ( S ). Qur os os d S qur os d S

Leia mais

sendo classificado como modelo de primeira ordem com (p) variáveis independentes.

sendo classificado como modelo de primeira ordem com (p) variáveis independentes. RGRSSAO MULTIPLA - comlmtação Itrodução O modlo lar d rgrssão múltla é da forma: sdo classfcado como modlo d rmra ordm com () varávs ddts. od: é a varávl d studo (ddt, xlcada, rsosta ou dóga); é o cofct

Leia mais

Apontamentos da disciplina de Complementos de Análise Matemática

Apontamentos da disciplina de Complementos de Análise Matemática ECOLA UPERIOR DE TECNOLOGIA DE VIEU DEPARTAMENTO DE MATEMÁTICA Engnhr d Ambn Aponmnos d dspln d Complmnos d Análs Mmá Isbl Dr Ano lvo 6/7 . Elmnos d Análs Vorl.. Cmpos vors Vmos sdr fnçõs q d pono P do

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

( ) 0. OPÇÕES PÓS-GRADUAÇÃO EM CORPORATE FINANCE E GIF EXAME - RESOLUÇÃO 16/12/04 Duração: 2.5 horas CASO 1 = S S T

( ) 0. OPÇÕES PÓS-GRADUAÇÃO EM CORPORATE FINANCE E GIF EXAME - RESOLUÇÃO 16/12/04 Duração: 2.5 horas CASO 1 = S S T OPÇÕE PÓ-GRADUAÇÃO E CORPORAE FIACE E GIF 4-5 EAE - REOLUÇÃO 6//4 Duração:.5 horas CAO a) ja a rmunração variávl a ofrr na mauria igual a: x% α > < α ) α ) Pu vriall bullish spra: Long pu α ) < > α ) α

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra.

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra. Dscplna: SComLMol Numann, Ulam Mtropols (945-947) Numann Ulam [945] prcbram qu problmas dtrmnístcos podm sr transormados num análogo probablístco qu pod sr rsolvdo com amostragm alatóra. Els studavam dusão

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Exprimno 4 Induors circuios RL com onda quadrada 1. OBJETIVO O objivo dsa aula é sudar o comporamno d induors associados a rsisors m circuios alimnados com onda quadrada. 2. MATERIAL UTILIZADO osciloscópio;

Leia mais

2. Método estático que considera a contribuição do solo

2. Método estático que considera a contribuição do solo Grupo d staas étodos d dmsoamto: 1. étodo státo qu gora prsça d solo A rpartção d forças é dtrmada a partr do qulíbro státo O momto aplado é absorvdo por forças axas quvalts. étodo státo qu osdra a otrbução

Leia mais

Implementação de Filtros Ativos Usando Amplificadores Operacionais de Transcondutância e Capacitores (OTA-C)

Implementação de Filtros Ativos Usando Amplificadores Operacionais de Transcondutância e Capacitores (OTA-C) Implmntação d Filtros Ativos Usando Amplificadors Opracionais d Transcondutância Capacitors (OTA-C) Autoria: Mário Sarcinlli Filho Edição: Flip Dalvi Garcia 2008 1 Amplificador d Transcondutância Os Amplificadors

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

PROFUNDIDADE PELICULAR, REFLEXÃO DE ONDAS, ONDAS ESTACIONÁRIAS

PROFUNDIDADE PELICULAR, REFLEXÃO DE ONDAS, ONDAS ESTACIONÁRIAS 5 PROFUNDIDAD PLICULAR, RFLXÃO D ONDAS, ONDAS STACIONÁRIAS 5. Pofunddad Plcula Mos dsspavos apsnam conduvdad à mdda qu uma onda lomagnéca nl s popaga, sua amplud sof uma anuação, mulplcada plo mo z (quando

Leia mais

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas

PRODUTOS ESTRUTURADOS E INOVAÇÃO FINANCEIRA 2006/07 PÓS-GRADUAÇÃO EM MERCADOS E ACTIVOS FINANCEIROS EXAME (resolução) 06/06/07 Duração: 3 horas PRODUTO ETRUTURADO E IOAÇÃO FIACEIRA /7 PÓ-GRADUAÇÃO EM MERCADO E ACTIO FIACEIRO EXAME (rsolução) //7 Duração: 3 horas CAO (.53 valors) a) Comn a sguin afirmação: O sai hging uma posição ura sobr uma ass-or-nohing

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS St: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmátca A º Ano Fchas d Trabalho Complação Tma Númros

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Este tipo de fundação tem como campo de aplicação as seguintes situações

Este tipo de fundação tem como campo de aplicação as seguintes situações aura m Eghara Cvl Dpla d Fudaçõ Opção d Eruura. Fudaçõ dra.. Irodução fudaçõ dra podm r d dvro po ) Eaa; ) Poço d fudação; ) ro-aa; v) E.... Eaa... Irodução E po d fudação m omo ampo d aplação a gu uaçõ

Leia mais

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

Econometria: Regressão por Variáveis Instrumentais (VI)

Econometria: Regressão por Variáveis Instrumentais (VI) Economtra: Rgrssão por Varávs Instrmntas VI Slds do crso d conomtra d Marco Cavalcant da Pontfíca Unvrsdad Católca do Ro d Janro PUC-Ro Smáro Motvação para o so d VI Prncpas casas do vés do stmador d MQO

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS ONDS LTROMGNÉTICS J.R. Kashn () Físia Gral primnal III Inrodução ao lromagnismo Inrodução m 864 Jams Clrk Mawll publiou o rabalho Toria Dinâmia do Campo lromagnéio (Dnamial Thor of h lromagni Filds) no

Leia mais

n = η = / 2 = 0, c

n = η = / 2 = 0, c PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur,

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

CAPÍTULO 12. Exercícios a) z sen xy, x 3t e y t 2. 1.º Processo: z sen (3t 3 ) e daí dz dt. 2.º Processo: z x. dz dt. dx dt z. dy dt. .

CAPÍTULO 12. Exercícios a) z sen xy, x 3t e y t 2. 1.º Processo: z sen (3t 3 ) e daí dz dt. 2.º Processo: z x. dz dt. dx dt z. dy dt. . CAPTULO Ercícios a) sn, 3t t º Procsso: sn 3t 3 ) daí d 9t cos 3t 3 ) º Procsso: d d d Tmos d cos ; 3; cos ; d t daí d 3 cos cos ) t, o sja, d 3t cos 3t 3 6t cos 3t 3, portanto, d 9t cos 3t 3 b) 3, sn

Leia mais

ELECTROMAGNETISMO. Ondas Planas - 1 o Introdução

ELECTROMAGNETISMO. Ondas Planas - 1 o Introdução LCTROMAGNTISMO Ondas Planas - o Inodução Já vmos qu paa um mo smpls não conduo as quaçõs d Mawll podm s combnadas d modo a foncm quaçõs d onda vcoas homogénas: c ond c µ 8 ε 3 ( m s) s a onda s popaga

Leia mais

Externalidades 1 Introdução

Externalidades 1 Introdução Extrnalidads 1 Introdução Há várias maniras altrnativas d s d nir xtrnalidads. Considrmos algumas dlas. D nição 1: Dizmos qu xist xtrnalidad ou fito xtrno quando as açõs d um agnt aftam dirtamnt as possibilidads

Leia mais

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011 Rprsação d Ssmas Dâmcos Smáro Profa Vlma A Olvra USP São Carlos Março d Ssmas físcos modlos Dscrção rada-saída Eqaçõs d ssmas dâmcos Ssmas rlaados, casas lars dscros por opradors 3 Igral d sprposção 3

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

Circuitos não senoidais

Circuitos não senoidais Crcuos não snodas Objvos Famlarzar-s com os comonns da xansão da sér d Fourr ara qualqur função snodal ou não snodal. Enndr como a aarênca gráfco do xo do mo d uma forma d onda odm dnfcar quas rmos d uma

Leia mais