Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Tamanho: px
Começar a partir da página:

Download "Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:"

Transcrição

1 Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários dois rsrvatórios térmicos com tmpraturas difrnts. Máquina térmica é qualqur dispositivo qu prmit a um dado sistma ralizar um procsso cíclico dss tipo. Uma máquina térmica rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico d tmpratura alta T, cd uma quantidad d nrgia mnor, também por calor, a um rsrvatório térmico d tmpratura baixa T cd uma quantidad d nrgia, por trabalho, à vizinhança (Fig.6). Em cada ciclo, o sistma rtorna ao stado inicial: U 0. Então, quantidad d nrgia, cdida, por trabalho, à vizinhança, pod sr scrita: + Não podmos squcr qu as quantidads são positivas a quantidad é ngativa. Nss contxto, é intrssant usar apnas quantidads positivas, por isso, vamos substituir por. Com isso, a xprssão acima fica: Agora, todas as grandzas são positivas. É claro qu ssa última xprssão pod sr scrita: +. A vantagm d usar apnas quantidads positivas é qu fica vidnt o balanço nrgético, isto é, a consrvação da nrgia: da quantidad d nrgia, rtirada do rsrvatório d alta tmpratura, a fração é cdida ao rsrvatório d baixa tmpratura a fração é cdida à vizinhança. Para caractrizar a qualidad d uma máquina térmica m transformar a nrgia rtirada do rsrvatório térmico d alta tmpratura por calor m nrgia cdida à vizinhança por trabalho, dfinimos o rndimnto: η ou, lvando m conta a xprssão acima:

2 η Plo nunciado d Klvin para a sgunda li da Trmodinâmica, nnhum sistma pod ralizar qualqur procsso cíclico cujo único fito sja rtirar, por calor, crta quantidad d nrgia d um único rsrvatório térmico cdr, por trabalho, uma quantidad igual d nrgia para a vizinhança. Dssa forma, dvmos tr, smpr, 0, daí, η <. O rndimnto d uma máquina térmica é smpr infrior a 00%. Portanto, pla sgunda li da Trmodinâmica, não podmos construir uma máquina térmica qu transform intgralmnt a nrgia rtirada do rsrvatório térmico d alta tmpratura por calor m nrgia cdida à vizinhança por trabalho através d um procsso cíclico. Rfrigradors Rfrigrador é qualqur dispositivo qu prmit a um dado sistma ralizar um procsso cíclico através do qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico d tmpratura baixa cd outra quantidad d nrgia, também por calor, para um rsrvatório térmico d alta tmpratura. No procsso cíclico, é indispnsávl qu o sistma rcba crta quantidad d nrgia como trabalho. Um rfrigrador rcb crta quantidad d nrgia, por trabalho, da vizinhança, rtira uma quantidad d nrgia, por calor, d um rsrvatório térmico d tmpratura baixa T cd uma quantidad maior d nrgia, também por calor, para um rsrvatório térmico d tmpratura alta T (Fig.63). Em cada ciclo, o sistma rtorna ao stado inicial: U 0. Então, quantidad d nrgia, cdida ao rsrvatório térmico d alta tmpratura, pod sr scrita: + Para caractrizar a qualidad d um rfrigrador m usar a nrgia rcbida da vizinhança por trabalho para rtirar nrgia do rsrvatório térmico d baixa tmpratura por calor, dfinimos a ficiência: ε ou, lvando m conta a xprssão acima:

3 ε Plo nunciado d Clausius para a sgunda li da Trmodinâmica, nnhum sistma pod ralizar qualqur procsso cíclico cujo único fito sja rtirar, por calor, crta quantidad d nrgia d um rsrvatório térmico com tmpratura baixa cdr, também por calor, igual quantidad d nrgia a um rsrvatório térmico com tmpratura alta. Então, dvmos tr, smpr, 0. Portanto, pla sgunda li da Trmodinâmica, não podmos construir um rfrigrador qu transfira a nrgia qu rtira d um rsrvatório térmico d baixa tmpratura para um rsrvatório térmico d alta tmpratura através d um procsso cíclico, sm rcbr nrgia, por trabalho, da vizinhança. Torma d Carnot Por qustõs didáticas, vamos sparar o torma d Carnot m duas parts. Para a primira part, vamos dar o sguint nunciado: Todas as máquinas térmicas qu opram rvrsivlmnt ntr rsrvatórios térmicos com as msmas tmpraturas alta baixa têm o msmo rndimnto. Para dmonstrar ss nunciado, considrmos duas máquinas rvrsívis, A B, com rndimntos η η*, rspctivamnt (Fig.64). Em primiro lugar, vamos fazr a hipóts d qu o rndimnto da máquina A é maior do qu o rndimnto da máquina B: η > η* Como os rndimntos são dados plas xprssõs: η η* * * dvmos tr: > * < *.

4 As máquinas A B são rvrsívis. Podmos, portanto, construir um dispositivo AB, acoplando as máquinas uma à outra, mas com a máquina B funcionando com su ciclo invrso, isto é, como um rfrigrador (Fig.65). O rsultado ftivo do acoplamnto é o sguint. O dispositivo AB mantém o rsrvatório térmico d alta tmpratura inaltrado, rtira, por calor, a quantidad d nrgia * do rsrvatório térmico d baixa tmpratura cd à vizinhança, por trabalho, a quantidad d nrgia *. Portanto, o dispositivo AB opra tndo, como único fito, a rtirada, por calor, d crta quantidad d nrgia d um único rsrvatório térmico a cdência, por trabalho, d uma quantidad igual d nrgia para a vizinhança. Plo nunciado d Klvin, podmos vr qu isso não pod acontcr porqu viola a sgunda li da Trmodinâmica. Portanto, a hipóts inicial, d qu η > η*, não pod sr vrdadira. Agora, vamos fazr a hipóts oposta, d qu o rndimnto da máquina A é mnor do qu o rndimnto da máquina B: η < η* Podmos dsnvolvr nvolvr um argumnto análogo àqul usado acima, apnas trocando ntr si os papéis dsmpnhados plas duas máquinas, isto é, construindo um dispositivo AB, acoplando as máquinas uma à outra, mas com a máquina A funcionando com su ciclo invrso, isto é, como um rfrigrador. Dss modo, chgarmos à conclusão d qu a hipóts formulada, d qu η < η*, não pod sr vrdadira porqu viola a sgunda li da Trmodinâmica. Como a dsigualdad η > η* * não pod sr vrdadira a dsigualdad η < η* também não pod sr vrdadira, só nos rsta uma única possibilidad, qu dv sr vrdadira: η η*. Isto dmonstra a primira part do torma d Carnot. Para a sgunda part do torma d Carnot, vamos dar o sguint nunciado: ualqur máquina térmica qu opra irrvrsivlmnt ntr um rsrvatório térmico d tmpratura alta um rsrvatório térmico d tmpratura baixa tm rndimnto mnor do qu qualqur máquina térmica qu opra rvrsivlmnt ntr rsrvatórios térmicos com as msmas tmpraturas alta baixa. Para dmonstrar ss nunciado, considrmos uma máquina irrvrsívl A, com rndimnto η uma máquina rvrsívl B, com rndimntos η*.

5 Em primiro lugar, vamos fazr, como na dmonstração da primira part do torma, a hipóts d qu o rndimnto da máquina A é maior do qu o rndimnto da máquina B: η > η* Como a máquina A é irrvrsívl a máquina B é rvrsívl, ainda podmos construir o dispositivo AB, acoplando as máquinas uma à outra, mas com a máquina B funcionando com su ciclo invrso, isto é, como um rfrigrador. Sguindo, ntão, o msmo argumnto dsnvolvido na dmonstração da primira part do torma, chgarmos à conclusão d qu ssa hipóts não pod sr vrdadira. Agora, vamos fazr a hipóts oposta, d qu o rndimnto da máquina A é mnor do qu o rndimnto da máquina B: η < η* Como os rndimntos são dados plas xprssõs: η η* * * dvmos tr: < * > *. Contudo, como a máquina A é irrvrsívl a máquina B é rvrsívl, não podmos construir um dispositivo AB, acoplando as máquinas uma à outra, mas com a máquina A funcionando com su ciclo invrso, isto é, como um rfrigrador. D qualqur modo, podmos ficar com o dispositivo AB m qu acoplamos as máquinas uma a outra, mas com a máquina B funcionando com su ciclo rvrso (Fig.65). O rsultado ftivo do acoplamnto é o sguint. O dispositivo AB mantém o rsrvatório térmico d alta tmpratura inaltrado, fornc, por calor, a quantidad d nrgia * para o rsrvatório térmico d baixa tmpratura rcb da vizinhança, por trabalho, a quantidad d nrgia *. Portanto, o dispositivo AB opra tndo, como único fito, o forncimnto, a um único rsrvatório térmico, por calor, da msma quantidad d nrgia qu rcb, por trabalho, da vizinhança. Como já discutimos no contxto do nunciado d Klvin para a sgunda li da Trmodinâmica, ssa opração do dispositivo AB é prfitamnt possívl. Dsta forma, sta sgunda hipóts, d qu η < η*, é vrdadira. Isto dmonstra a sgunda part do torma d Carnot. Aqui cab uma obsrvação. Esta dmonstração da sgunda part do torma d Carnot é a dmonstração formal, d carátr gral, d qu, quando o procsso é rvrsívl, a quantidad d nrgia qu o sistma cd à vizinhança, por trabalho, é máxima. Na sção XIX, dmonstramos o msmo rsultado, mas para um procsso particular.

6 Máquinas Rvrsívis Ciclo d Carnot O procsso d condução d nrgia, isto é, o procsso d transfrência d nrgia através d um mio matrial, sob o fito d uma difrnça d tmpratura sm transport d matéria, é irrvrsívl. Por sta razão, num ciclo rvrsívl, a troca d nrgia, por calor, ntr o sistma o rsrvatório térmico d alta tmpratura, dv acontcr através d um procsso isotérmico, com a tmpratura do sistma igual à tmpratura dss rsrvatório. Do msmo modo, num ciclo rvrsívl, a troca d nrgia, por calor, ntr o sistma o rsrvatório térmico d baixa tmpratura, dv acontcr através d um procsso isotérmico, com a tmpratura do sistma sndo mantida igual à tmpratura dss rsrvatório. Pla msma razão, num ciclo rvrsívl, os procssos plos quais a tmpratura do sistma varia dvm acontcr sm troca d nrgia por calor, isto é, dvm sr adiabáticos. Em outras palavras, uma máquina térmica rvrsívl, qu funciona ntr dois rsrvatórios com tmpraturas difrnts, dv oprar sgundo um ciclo d Carnot. Por isso, as máquinas térmicas rvrsívis são também chamadas máquinas d Carnot. Podmos aplicar a msma conclusão aos rfrigradors. Sndo assim, um rfrigrador rvrsívl, qu funciona ntr dois rsrvatórios com tmpraturas difrnts, dv oprar sgundo um ciclo d Carnot. Por isso, os rfrigradors rvrsívis são também chamados rfrigradors d Carnot. Na vrdad, quando invrtmos o sntido do ciclo d funcionamnto d uma máquina térmica rvrsívl, tmos um rfrigrador rvrsívl quando invrtmos o sntido do ciclo d funcionamnto d um rfrigrador rvrsívl, tmos uma máquina térmica rvrsívl. Estritamnt falando, os rfrigradors não dixam d sr máquinas térmicas. Por outro lado, a dfinição da scala Klvin é indpndnt d qualqur propridad d qualqur substância particular. Por isso, la é uma scala absoluta. Por ssa dfinição usando apnas quantidads positivas, tmos: T T d modo qu o rndimnto d uma máquina térmica rvrsívl pod sr xprsso m função das tmpraturas absolutas dos dois rsrvatórios térmicos: T η T Assim, podmos vr claramnt qu todas as máquinas térmicas rvrsívis qu opram ntr rsrvatórios térmicos com as msmas tmpraturas T T têm o msmo rndimnto. ualqur máquina térmica ral qu opra ntr um rsrvatório térmico d tmpratura alta um rsrvatório térmico d tmpratura baixa tm rndimnto mnor do qu qualqur máquina térmica rvrsívl qu opra ntr rsrvatórios térmicos com as msmas tmpraturas alta baixa. D modo análogo, a ficiência d um rfrigrador rvrsívl pod sr xprssa m função das tmpraturas absolutas dos dois rsrvatórios térmicos:

7 ε T T T Exmplo Vamos calcular a quantidad d nrgia rtirada do rsrvatório térmico d tmpratura alta a quantidad d nrgia cdida ao rsrvatório térmico d tmpratura baixa por uma máquina térmica qu, funcionando ntr 30 o C 50 o C, ntrga 000 J d nrgia útil à vizinhança. Como: T ( 73,5+ 30 )K 303,5K T ( 73,5+ 50 )K 43,5K o rndimnto tórico (máximo) da máquina é: T η T 303,5 K 0,8 43,5 K Podmos dizr qu o rndimnto dssa máquina térmica é d 8%. A quantidad d nrgia rtirada do rsrvatório térmico d tmpratura alta a quantidad d nrgia cdida ao rsrvatório térmico d tmpratura baixa, supondo rndimnto máximo da máquina, ficam, rspctivamnt: η 000 J 357,43 J 0,8 357,43 J 000 J 57,43 J A caloria é uma unidad d nrgia muito usada na Física do Calor. Então, vamos vr como os rsultados acima ficam quando xprssos nssa unidad. Como: vm: cal 4,85 J 357,43 J 853,39 cal 4,85 J/ cal 57,43 J 64,44 cal 4,85 J/ cal Exmplo Vamos calcular a quantidad d nrgia qu dv sr forncida, por trabalho, a um rfrigrador doméstico, para qu l transfira 00 cal do conglador, mantido na tmpratura d 0 o C, para o ambint, cuja tmpratura é d 7 o C. Supondo qu o rfrigrador funcion rvrsivlmnt, a sua ficiência é:

8 ε T T T 73 K 300 K 73 K 0 Podmos dizr qu a ficiência dss rfrigrador é d 000%. Então, para a quantidad d nrgia qu dv sr forncida, por trabalho, tmos: ε 00 cal 0cal 0 Dgradação da Enrgia A xpansão livr d uma amostra d gás rarfito é um bom xmplo d procsso irrvrsívl. A tmpratura da amostra d gás não muda, portanto, também não muda a sua nrgia intrna. Isto é, dpois da xpansão, a amostra d gás tm a msma nrgia qu tinha ants da xpansão. Contudo, para lvar a amostra d gás d volta ao su stado inicial, dvmos ralizar trabalho sobr la. Nss sntido, dizmos qu a xpansão livr da amostra d gás produz crta dgradação trmodinâmica. Esta xprssão significa qu a amostra d gás prd part d sua capacidad d ralizar trabalho. Outro xmplo d dgradação trmodinâmica é o qu acontc quando dois corpos com tmpraturas difrnts são colocados m contato atingm o quilíbrio térmico sm prda d nrgia para a vizinhança. Ants d srm postos m contato, ls podriam tr sido aprovitados para cdr alguma nrgia para a vizinhança, por trabalho, srvindo como rsrvatórios térmicos d uma máquina térmica apropriada. Após o contato, os corpos não podm mais sr aprovitados dsta manira porqu não xist mais difrnça d tmpratura ntr ls. D fato, m todos os procssos irrvrsívis xist, m maior ou mnor grau, crta dgradação trmodinâmica. Como sta dgradação corrspond ao dsprdício d alguma quantidad d nrgia qu, d outro modo, podria tr sido utilizada para algum fim útil, falamos também, nss sntido, m dgradação d nrgia. A ntropia é a grandza física qu, d crta manira, prmit atribuir um valor numérico à dgradação trmodinâmica. Exrcício Calcul o rndimnto máximo d uma máquina a vapor qu absorv nrgia por calor d uma caldira a 00 C libra nrgia também por calor ao ar a 00 C. Exrcício O motor d um rfrigrador tm potência d 00 watts. Calcul a quantidad máxima d nrgia qu pod sr xtraída do conglador, por calor, m 0 minutos, s o compartimnto d conglamnto stá a 3 o C o ar ambint stá a 7 o C. Exrcício 3 Uma máquina térmica, m cada ciclo, rtira 300 jouls d nrgia do rsrvatório térmico d alta tmpratura rjita 40 jouls d nrgia para o

9 rsrvatório térmico d baixa tmpratura. Dtrmin (a) a quantidad d nrgia qu ssa máquina pod cdr, por trabalho, para a vizinhança (b) o su rndimnto. Exrcício 4 O rndimnto d uma máquina térmica qu opra com um gás é d 60%. Em cada ciclo, o gás rcb 800 jouls d nrgia do rsrvatório térmico d tmpratura alta. Dtrmin, para cada ciclo d opração, (a) a nrgia cdida à vizinhança por trabalho (b) a quantidad d nrgia cdida, por calor, para o rsrvatório térmico d baixa tmpratura. Exrcício 5 Uma máquina d Carnot opra ntr rsrvatórios térmicos d tmpraturas T T, com T 300 K T > T. A cada ciclo d opração da máquina, 4000 J d nrgia são rtirados do rsrvatório térmico a tmpratura T 800 J d nrgia são disponibilizados para a vizinhança. Dtrmin T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba Catálogo M404 PowrTrap Mcânica Séri GP Séri GT Rcupração ficaz do Mlhora a ficiência da planta Aumnto da produtividad qualidad dos produtos são, alguns dos bnfícios da drnagm rcupração do, além d rduzir

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Emerson Marcos Furtado

Emerson Marcos Furtado Emrson Marcos Furtado Mstr m Métodos Numéricos pla Univrsidad Fdral do Paraná (UFPR). Graduado m Matmática pla UFPR. Profssor do Ensino Médio nos stados do Paraná Santa Catarina dsd 1992. Profssor do Curso

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

As Abordagens do Lean Seis Sigma

As Abordagens do Lean Seis Sigma As Abordagns do Lan Sis Julho/2010 Por: Márcio Abraham (mabraham@stcnt..br) Dirtor Prsidnt Doutor m Engnharia d Produção pla Escola Politécnica da Univrsidad d São Paulo, ond lcionou por 10 anos. Mastr

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

Encontro na casa de Dona Altina

Encontro na casa de Dona Altina Ano 1 Lagdo, Domingo, 29 d junho d 2014 N o 2 Encontro na casa d Dona Altina Na última visita dos studants da UFMG não foi possívl fazr a runião sobr a água. Houv um ncontro com a Associação Quilombola,

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO I. PRINCÍPIOS: 1. Suprmacia do Intrss Público sobr o Particular Em sndo a finalidad única do Estado o bm comum, m um vntual confronto ntr um intrss individual o intrss coltivo dv prvalcr o sgundo. 2. Indisponibilidad

Leia mais

PROF. MATEUS CONRAD BARCELLOS DA COSTA TÉCNICAS DE PROGRAMAÇÃO AVANÇADA. [ Serra, ES ] [ 2008 ]

PROF. MATEUS CONRAD BARCELLOS DA COSTA TÉCNICAS DE PROGRAMAÇÃO AVANÇADA. [ Serra, ES ] [ 2008 ] PROF. MATEUS CONRAD BARCELLOS DA COSTA TÉCNICAS DE PROGRAMAÇÃO AVANÇADA [ Srra, ES ] [ 2008 ] Rfrências utilizadas na laboração dst matrial Olá, Aluno(a)! 1. LISKOV B. Data Abstraction and Hiararchy. In

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

CTOC - Câmara dos Técnicos Oficiais de Contas Sistema de Informação do Técnico Oficial de Contas

CTOC - Câmara dos Técnicos Oficiais de Contas Sistema de Informação do Técnico Oficial de Contas IAS 17 (1) NORMA INTERNACIONAL DE CONTABILIDADE IAS 17 Locaçõs ÍNDICE Parágrafos Objctivo 1 Âmbito 2-3 Dfiniçõs 4-6 Classificação d locaçõs 7-19 Locaçõs nas dmonstraçõs financiras d locatários 20-35 Locaçõs

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

INSTRUÇÕES. Os formadores deverão reunir pelo menos um dos seguintes requisitos:

INSTRUÇÕES. Os formadores deverão reunir pelo menos um dos seguintes requisitos: INSTRUÇÕES Estas instruçõs srvm d orintação para o trino das atividads planadas no projto Europu Uptak_ICT2lifcycl: digital litracy and inclusion to larnrs with disadvantagd background. Dvrão sr usadas

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

Residência para coletivos na Casa do Povo. Cole tivo

Residência para coletivos na Casa do Povo. Cole tivo Rsidência para coltivos na Casa do Povo Chamada abrta tativo - Rsidência para coltivos na Casa do Povo Há mais d 60 anos, a Casa do Povo atua como lugar d mmória cntro cultural m sintonia com o pnsamnto

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

PENSANDO E DESCOBRINDO!!!

PENSANDO E DESCOBRINDO!!! PENSANDO E DESCOBRINDO!!! Sobr o Chuviro Elétrico... Falarmos agora sobr outra facilidad qu a ltricidad os avanços tcnológicos trouxram, trata-s d um aparlho muito usado m nosso dia a dia, o CHUVEIRO ELÉTRICO!

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG.

Atitudes Sociolinguísticas em cidades de fronteira: o caso de Bernardo de Irigoyen. Célia Niescoriuk Grad/UEPG. Valeska Gracioso Carlos UEPG. Atituds Sociolinguísticas m cidads d frontira: o caso d Brnardo d Irigoyn. Célia Niscoriuk Grad/UEPG. Valska Gracioso Carlos UEPG. 1. Introdução: O Brasil Argntina fazm frontira m crca d 1240 km dsd sua

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Empresa Elétrica Bragantina S.A

Empresa Elétrica Bragantina S.A Emprsa Elétrica Bragantina S.A Programa Anual d Psquisa Dsnvolvimnto - P&D Ciclo 2006-2007 COMUNICADO 002/2007 A Emprsa Elétrica Bragantina S.A, concssionária d srviço público d distribuição d nrgia létrica,

Leia mais

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL

EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL EMPRESA BRASILEIRA DE TELECOMUNICAÇÕES S.A - EMBRATEL PLANO ALTERNATIVO DE SERVIÇO N o 001 - EMBRATEL 1. APLICAÇÃO Est Plano d Srviço ofrc ao usuário do Srviço d Tlfonia Fixa Comutada, a possibilidad d

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Modelo de Oferta e Demanda Agregada (OA-DA)

Modelo de Oferta e Demanda Agregada (OA-DA) Modlo d Ofrta Dmanda Agrgada (OA-DA) Lops Vasconcllos (2008), capítulo 7 Dornbusch, Fischr Startz (2008), capítulos 5 6 Blanchard (2004), capítulo 7 O modlo OA-DA xamina as condiçõs d quilíbrio dos mrcados

Leia mais

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações.

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações. ISSN 1809-5860 ESTUDO DE UMA LIGAÇÃO VIGA-PILAR UTILIZADA EM GALPÕES DE CONCRETO PRÉ- MOLDADO Anamaria Malachini Miotto 1 & Mounir Khalil El Dbs 2 Rsumo Em gral, as ligaçõs ntr lmntos pré-moldados d concrto

Leia mais

QUALIDADE DE SOFTWARE AULA N.6

QUALIDADE DE SOFTWARE AULA N.6 QUALIDADE DE SOFTWARE AULA N.6 Curso: SISTEMAS DE INFORMAÇÃO Discipli: Qualida Softwar Profa. : Kátia Lops Silva Slis adpatados do Prof. Ricardo Almida Falbo Tópicos Espciais Qualida Softwar 007/ Dpartamnto

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

A JUNÇÃO P-N E O DIODO RETIFICADOR

A JUNÇÃO P-N E O DIODO RETIFICADOR A JUNÇÃO P-N E O DIODO RETIFICADOR JOSÉ ARNALDO REDINZ Dpartamnto d Física - Univrsidad Fdral d Viçosa CEP : 36571-, Viçosa MG 8/2 1) A TEORIA DE BANDAS PARA A CONDUÇÃO ELÉTRICA A única toria capaz d xplicar

Leia mais

PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Versão: 27/08/2014 Atualizado em: 27/08/2014

PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Versão: 27/08/2014 Atualizado em: 27/08/2014 F i n a l i d a d O r i n t a r o u s u á r i o p a r a q u s t o b t PRINCÍPIOS E INSTRUÇÕES RELATIVOS ÀS OPERAÇÕES DE CERTIFICADOS DE OPERAÇÕES ESTRUTURADAS (COE) Vrsão: 27/08/2014 Atualizado m: 27/08/2014

Leia mais

Planejamento de capacidade

Planejamento de capacidade Administração da Produção Opraçõs II Planjamnto d capacidad Planjamnto d capacidad Planjamnto d capacidad é uma atividad crítica dsnvolvida parallamnt ao planjamnto d matriais a) Capacidad insuficint lva

Leia mais

FASE - ESCOLA 2º CICLO DO ENSINO BÁSICO

FASE - ESCOLA 2º CICLO DO ENSINO BÁSICO FASE - ESCOLA 2º CICLO DO ENSINO BÁSICO CRONOGRAMA ÍNDICE FASES DATAS APURAMENTOS LOCAL 4 alunos por scola 1. Introdução...2 1ª fas Escolas 2ª fas Distrital Até 11 d Janiro 1 ou 2 d Fvriro 2 do sxo fminino

Leia mais

INEC ESPECIALIZAÇÃO EM : GERÊNCIA CONTÁBIL, FINANCEIRA E AUDITORIA TURMA III. Lins - SP - 2012 2º Dia : 20 de Outubro.

INEC ESPECIALIZAÇÃO EM : GERÊNCIA CONTÁBIL, FINANCEIRA E AUDITORIA TURMA III. Lins - SP - 2012 2º Dia : 20 de Outubro. INEC AUDITRIA Prof. CLAUDECIR PATN ESPECIALIZAÇÃ EM : GERÊNCIA CNTÁBIL, FINANCEIRA E AUDITRIA TURMA III 1 Lins - SP - 2012 2º Dia : 20 utubro. CNTRLE - Concitos; - Auditoria Control Intrno; - Importância

Leia mais

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena ENGENHARIA DE MANUTENÇÃO Marclo Sucna http://www.sucna.ng.br msucna@cntral.rj.gov.br / marclo@sucna.ng.br ABR/2008 MÓDULO 1 A VISÃO SISTÊMICA DO TRANSPORTE s A anális dos subsistmas sus componnts é tão

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora Edital V Mostra LEME d Fotografia Film Etnográficos 5º SEMINÁRIO DO LABORATÓRIO DE ESTUDOS EM MOVIMENTOS ÉTNICOS - LEME 19 a 21 d stmbro d 2012 Univrsidad Fdral do Rcôncavo da Bahia Cachoira-BA O 5º Sminário

Leia mais

Planificação :: TIC - 7.º Ano :: 15/16

Planificação :: TIC - 7.º Ano :: 15/16 AGRUPAMENTO DE ESCOLAS DE SÃO PEDRO DA COVA Escola Básica d São Pdro da Cova Planificação :: TIC - 7.º Ano :: 15/16 1.- A Informação, o conhcimnto o mundo das tcnologias A volução das tcnologias d informação

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

Qual é o lugar do espanhol nas escolas de ensino médio de Minas Gerais?

Qual é o lugar do espanhol nas escolas de ensino médio de Minas Gerais? Introdução I CIPLOM Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL I Encontro Intrnacional d Associaçõs d Profssors d Línguas Oficiais do MERCOSUL Qual é o lugar do spanhol nas scolas

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG)

QUE ESPANHOL É ESSE? Mariano Jeferson Teixeira (Grad /UEPG) Valeska Gracioso Carlos (UEPG) Congrsso Intrnacional d Profssors d Línguas Oficiais do MERCOSUL QUE ESPANHOL É ESSE? Mariano Jfrson Tixira (Grad /UEPG) Valska Gracioso Carlos (UEPG) 1. Introdução Graças á rgulamntaçõs impostas por acordos

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos 1 Aula 1 Lógica d argumntação diagramas lógicos I LÓGICA DE ARGUMENTAÇÃO (CONTINUAÇÃO).... 2 1 Rvisão..... 2 2 Técnica 1: liminando as linhas com prmissas falsas... 5 Técnica 2: tabla vrdad modificada...

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

3 Proposição de fórmula

3 Proposição de fórmula 3 Proposição fórmula A substituição os inos plos juros sobr capital próprio po sr um important instrumnto planjamnto tributário, sno uma rução lgal a tributação sobr o lucro. Nos últimos anos, a utilização

Leia mais

RETIFICAÇÃO DO EDITAL DE PREGÃO PRESENCIAL Nº. 015/2013 REGISTRO DE PREÇOS

RETIFICAÇÃO DO EDITAL DE PREGÃO PRESENCIAL Nº. 015/2013 REGISTRO DE PREÇOS Fundo Municipal Sd cr Saúd ta- Comissão ria dprmannt Sa d RETIFICAÇÃO DO EDITAL DE PREGÃO PRESENCIAL Nº. 015/2013 REGISTRO DE PREÇOS OBJETO: Aquisição d Kit HIV Hpatit (Rgistro d Prços). RETIFICA-SE através

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais