Funções reais de n variáveis reais

Tamanho: px
Começar a partir da página:

Download "Funções reais de n variáveis reais"

Transcrição

1 Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins Carla Marino Ana Jorg Funçõs rais d n variávis rais Cama-s unção ral d variávis rais a oda a aplicação d um conjuno R R. Ao conjuno cama-s domínio da unção. Sjam R. As variávis são as variávis indpndns é a variávl dpndn. Ao conjuno R: cama-s conradomínio d. Cama-s gráico d ao subconjuno dr : : 8--6 CI/ FR 5/6

2 Apoio às aulas MAT II 8--6 Funçõs rais d n variávis rais Noas: - S a unção or dinida por uma prssão analíica o su domínio é o conjuno d ponos ond a prssão analíica sará dinida. - o gráico d é uma curva d R. S o gráico d é uma supríci dr. Por simpliicação odo o capíulo rá por bas unçõs d variávis podndo acilmn sr gnralizado para as n variávis CI/ FR Domínio Emplo - Drmin o domínio da unção D D ln ( ) {( ) IR :( ) ( > ) ( ) } {( ) IR :( ) ( < ) ( ) } A primira quação rprsna o rior d uma circunrência d raio ; a sgunda quação rprsna o inrior d uma circunrência d raio ; a rcira quação rprsna a bissriz dos quadrans impars CI/ FR 5/6

3 Apoio às aulas MAT II 8--6 Domínio Emplo - Rprsnação gomérica: É considrada válida a ára marcada a amarlo a circunrência inrior cada com a cção dos ponos da bissriz CI/5FR5 Domínio Emplo - Drmin o domínio rprsn-o gomricamn da D D sguin unção ( ) ln {( ) IR :( > ) ( ) } {( ) IR :( ) ( ) } {( ) IR :( ) ( [ ;])} Rprsnação gomérica: 8--6 CI/6 FR6 5/6

4 Apoio às aulas MAT II 8--6 Domínio Emplo - Drmin o domínio rprsn-o gomricamn da unção ( ) ln D D ( ) IR : > ( ) {( ) IR :[(( ) ( > ) ) ( ( ) ( < ) )] ( < ) } Rprsnação gomérica: 8--6 CI/7 FR7 Limi coninuidad Diz-s qu L é o limi da unção quando nd para rprsna-s por quando L Lim ( ) ( ab) ( ) δ > ε > : D ( ) ( ab ) < ε ( ) L < δ NOTA: Em R as vizinanças d um pono são círculos dinidos no plano sndo as disâncias mdidas pla órmula uclidiana (co s ouvr indicação prssa m conrário) rprsnam-s da orma aprsnada CI/8 FR8 5/6

5 Apoio às aulas MAT II 8--6 Limi coninuidad As propridads opraórias dos limis o orma da unicidad concidos para unçõs rais d uma variávl ral são igualmn válidos para unçõs dnvariávis indpndns. Diz-s qu uma unção é conínua no pono s. sá dinida no pono com. m limi no pono ss limi é igual a é ó lim ( ) ( ) ( ) 8--6 CI/9 FR9 Drivadas parciais Dada a unção d duas variávis indpndns é possívl drivar m unção d cada uma dlas. Dsigna-s por drivada parcial m ordm a da unção num pono rprsna-s por ( ) Como sndo ( ab) Lim ( b) ( ab) ( a b) ( ab) a Lim a Dsigna-s por drivada parcial m ordm a da unção num pono rprsna-s por ( ) Como sndo ( ab) Lim ( a ) ( ab) ( ab ) ( ab) b Lim a 8--6 CI/ FR 5/6 5

6 Apoio às aulas MAT II 8--6 Drivadas parciais Camam-s drivadas parciais da unção às unçõs ( ) ( ) qu êm por domínio o conjuno dos ponos ond ( ) m as rspivas drivadas parciais inias m cada pono domínio oma os valors ( ) ( ). dss Emplo - Drmin usando a dinição as drivadas parciais da unção dinida por no pono () ( ) ( ) Lim Lim ( ) ( ) ( ) ( ) ( ) ( ) 7 6 ( )( ) Lim Lim 7 Lim ( ) CI/ FR Emplo Coninuação ( ) Lim Drivadas parciais ( ) ( ) ( ) ( ) Lim Lim ( ) Lim 7 Lim 7 Lim NOTA: As rgras d drivação manêm-s vrdadiras. ( ) Torma: S uma unção m drivadas parciais conínuas num pono la é conínua nss pono 8--6 CI/ FR 5/6 6

7 Apoio às aulas MAT II 8--6 Drivadas parciais Emplo - Drmin a drivada parcial m ordm a da unção Usando a dinição: ( ) ( ) ( ) ( ) ( ) Lim Lim Lim ( ) Lim Lim Lim 8--6 CI/ FR Drivadas parciais Usando as rgras d drivação (m ordm a sa compora-s como variávl como uma qualqur consan): ( ) ( ) ( ) ( ) 8--6 CI/ FR 5/6 7

8 Apoio às aulas MAT II / CI/5 FR5 CI/5 Drivadas parciais Emplo - Drmin as drivadas parciais da unção ln Usando as rgras d drivação m ordm a sa compora-s como variávl como uma qualqur consan: ln 8--6 CI/6 FR6 CI/6 Drivadas parciais Coninuação do Ercício - Em ordm a sa compora-s como variávl como uma qualqur consan: ln

9 Apoio às aulas MAT II / CI/7 FR7 CI/7 Drivada da Função composa Considr-s a unção sjam Ψ. Num ponoa sjam Ψ. Enão a drivada da unção m ordm a num pono é dada por a a a Considr-s a unção sjam Ψ. Num pono sjam Ψ. Enão as drivadas parciais da unção m ordm a num pono são dadas por ab ab ab ab r ab r ab r 8--6 CI/8 FR8 CI/8 Drivada da Função composa Emplo - Sja sjam. Calcul. ; ; ; ;

10 Apoio às aulas MAT II 8--6 Drivada da Função composa Emplo - Sja sjam ln. w Calcul. ( ) ; ( ) w w ( w) ; ( w) ; ( w) ; ( w) ( w) ( ) ( w) ( ) ( w) ( ) w w w w ; w w w w w w ( ln w) ( ln w) 8--6 CI/9 FR9 w w w w ( w) ( ) ( w) ( ) ( w) w w ( ) w w w ( ln w) 6 w ; 6 Função Implícia Dada a quação do ipo Φ ond a cada par d valors d do domínio da quação corrspond um um só valor d z diz-s qu a quação din d orma implícia a unção. Torma da Função Implícia Sja R R um abro : R uma unção al qu:.. (a unção rspivas drivadas d ª ordm são coninuas).. Enão din impliciamn a variávl como unção das variávis numa vizinança do pono ( ). ( ) ( ) ( ) ( ) ( ) ( ) 8--6 CI/ FR 5/6

11 Apoio às aulas MAT II 8--6 Função Implícia Emplo Considr a unção ln. Mosr qu a quação φ din impliciamn como unção das variávis numa vizinança do pono () calcul para ss pono. º Passo: Vriicar qu o pono P prnc à curvaφ ϕ ( ) ln º Passo A unção assim como as suas ª drivadas são coninuas (unção polinomial unção logarímica) logo a unção é d class. ϕ ϕ z º Passo: ( ) (?) z ϕ z z ( ) ( ) Enão a unção din impliciamn como unção das variávis numa vizinança do pono () 8--6 CI/ FR Enão: z ( ) ( ) ϕ ϕ ϕ z ϕ ( ) ( ) ( ) ( ) Função Implícia z z z z z ( ) ( ) 8--6 CI/ FR 5/6

12 Apoio às aulas MAT II 8--6 Função Homogéna Uma unção ( ) diz-s omogéna d grau s só s R R ( ) Emplo - Mosr qu a unção é omogéna dscubra o su grau d omognidad. ( ) ( ) ( ) Logo a unção é omogéna d grau CI/ FR Função Homogéna Emplo Rlaivamn à unção do mplo vriiqu a sguin igualdad (d Eulr) Ond é uma unção omogéna d grau ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 8--6 CI/ FR 5/6

13 Apoio às aulas MAT II 8--6 Drivadas Parciais d Ordm Suprior à ª Dada a unção s isirm num pono s sas admiirm drivada m ordm rspivamn a a num pono a ssa drivada cama-s drivada d sgunda ordm d m ordma oua rspivamn. Rprsnam-s por S admiir drivada m ordm a num pono D a ssa drivada cama-s drivada d sgunda ordm d m ordm a a. D igual modo s din a drivada d sgunda ordm d a m ordm a. Esas úlimas drivadas camam-s drivadas cruzadas CI/5 FR5 Drivadas Parciais d Ordm Suprior à ª Assim rprsnadas por: as drivadas parciais d ª ordm da unção são ( ) O dsnvolvimno anrior mosra qu o númro d drivadas parciais crsc ponncialmn m unção da ordm ou sja: Drivadas parciais d ª ordm ; }... Drivadas parciais d ª ordm ; Drivadas parciais d ª ordm 8 ; c CI/6 FR6 5/6

14 Apoio às aulas MAT II 8--6 Drivadas Parciais d Ordm Suprior à ª Emplo - Drmin as drivadas parciais d ª ordm da unção ( ) ( ) ( ) ( ) ( ) ( ) ( ) 8--6 CI/7 FR7 Drivadas Parciais d Ordm Suprior à ª Torma d Scwarz Sja D R R um pono inrior a D. S as parciais drivadas são dinidas numa vizinança do pono s é conínua m não ambém sá dinida m ab ( ) 8--6 CI/8 FR8 5/6

15 Apoio às aulas MAT II 8--6 Drivadas Parciais d Ordm Suprior à ª Dada a unção dsigna-s por Mariz Hssiana a mariz H ( ) ( ) Viso raar-s d uma mariz quadrada é possívl alar no su drminan dsignado por Hssiano. Torma S a unção vriica o orma d Scwarz a mariz Hssiana é uma mariz simérica CI/9 FR9 Ermos rlaivos Sja : R R um pono inrior a. i) diz-s um máimo rlaivo d s isir uma vizinança d ab al qu. i) diz-s um máimo absoluo d s iii) diz-s um mínimo rlaivo d s isir uma vizinança d al qu. iv) diz-s um mínimo absoluo d s 8--6 CI/ FR 5/6 5

16 Apoio às aulas MAT II 8--6 Ermos rlaivos Sjam R R ( ). S diz-s qu é um pono criico ou um pono d sacionaridad d. Torma Sja R R suponamos qu m um rmo rlaivo no pono prncn ao inrior d qu odas as drivadas parciais d ism no pono ( ). Enão é um pono críico d CI/ FR Torma Ermos rlaivos Dada a unção sja pono críico da unção sja H mariz Hssiana associada. Enão: i. S < > não ( ) é um máimo rlaivo ii. d. S > > não é um mínimo rlaivo d. iii. S < não é um pono d sla d. iv. S nada s pod concluir sobr o pono CI/ FR 5/6 6

17 Apoio às aulas MAT II / CI/ FR Ermos rlaivos CI/ Emplo - Drmin classiiqu os rmos rlaivos da unção dinida por. Ponos críicos: CI/ FR Ermos rlaivos CI/ Emplo Coninuação Os ponos () (9) são ponos críicos da unção; Pono O pono é um pono d sla. Pono (9) Logo 9 5 é um máimo da unção. 9 6 < H < > H

18 Apoio às aulas MAT II / CI/5 FR5 Ermos rlaivos CI/5 Emplo - Sja a unção dinida por. Vriiqu qu a unção m rmos rlaivos classiiqu-os. Ponos críicos: 8--6 CI/6 FR6 Ermos rlaivos CI/6 Emplo Coninuação - Os ponos ( ) ( ) () são ponos críicos da unção. Pono ( ) Logo é um máimo rlaivo da unção. Pono ( ): Enão é um máimo rlaivo da unção. 96 < > H 96 < > H

19 Apoio às aulas MAT II / CI/7 FR7 Ermos rlaivos CI/7 Emplo Coninuação Pono (): Esudo diro - Euando o sudo por aproimação do pono ao longo das ras : : Os limis dircionais êm sinais conrários logo ism valors maiors mnors qu a unção m orno do pono (); Assim () é um pono d sla da unção. H 8--6 CI/8 FR8 Ermos rlaivos CI/8 Emplo - Sja a unção dinida pla sguin prssão. Vriiqu qu m rmos rlaivos classiiqu-os { } : IR D ) ( D

20 Apoio às aulas MAT II 8--6 Emplo Coninuação Ermos rlaivos Como não prnc ao domínio o pono () é o único pono críico da unção. H ( ) 6 ( ) > Logo 6 é um mínimo rlaivo da unção. 6 > 8--6 CI/9 FR9 Bibliograia. Ana Sá Bno Louro.. Cálculo Dirncial m R Uma inrodução. Dparamno d Mamáica. FCT/UNL.. Larson Hoslr Edwards. 6. Cálculo. Volum. Oiava Edição. McGraw- Hill CI/ FR 5/6

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Dparamno Mamáica Disciplina Anális Mamáica Curso Engnharia Informáica º Smsr º Ficha nº : Cálculo ingral m IR Drmin a soma d Rimann da função

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1/3 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsn o s raciocínio d orma clara, indicando odos os cálclos q ivr d ar odas as jsiicaçõs ncssárias. Qando, para m rslado, não é pdida ma aproimação,

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO MINISÉRIO DA EDUCAÇÃO UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ - UFPR CAMPUS CORNÉLIO PROCÓPIO PR UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ Noçõs básicas d unçõs d várias variávis FUNÇÕES DE VARIAS VARIÁVEIS

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO.

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. 6.- ESPERANÇA DE UMA FUNÇÃO: CASO DISCRETO: E[g()] i g( i )(i ) CASO CONTÍNUO: E [g()] 6.- MOMENTO: + - g(). () d DEFINIÇÃO DE MOMENTOS: srado Din-s momno d uma

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

para Z t (lembre que = 1 B)

para Z t (lembre que = 1 B) Economria III ANE59 Lisa d Ercícios d Economria d Séris mporais Pro. Rogério Siva d Maos (Juho 6) Si: www.uj.br/rogrio_maos A. MODELOS ARIMA. Escrva por nso:. ARMA(,) para. ARMA(,) para X. ( B B ) Z (

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR. Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (REVISÕES SOBRE FUNÇÕES REAIS DE VARIÁVEL REAL) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Rvisõs sobr unçõs

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl

Leia mais

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES 8.1 Drivadas Parciais d Ordns Supriors Dada a função ral d duas variávis f : Dom(f) R 2 R X = ) f(x) = f ) aprndmos antriormnt como construir suas drivadas

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

Capítulo V. Derivação. 5.1 Noção de derivada. Seja f uma função real de variável real. Definição: Seja. e f definida numa vizinhança do ponto x = a.

Capítulo V. Derivação. 5.1 Noção de derivada. Seja f uma função real de variável real. Definição: Seja. e f definida numa vizinhança do ponto x = a. Capítulo V Drivação 5. Noção d drivada Sja uma unção ral d variávl ral. Dinição: Sja a D dinida numa vizinhança do ponto a. Diz-s qu é drivávl ou dirnciávl m ( ) ( a) a a a s ist é inito o it Est it (quando

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO 0 Nos rcícios a) ), ncontr a drivada da função dada, usando a dfinição a) f ( ) + b) f ( ) c) f ( ) 5 d) f ( )

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta d tst d avaliação Matmática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Cadrno (é prmitido o uso d calculadora) Na rsposta aos itns d scolha múltipla, slcion a opção corrta. Escrva, na

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Capítulo 3 Transmissão de Sinais e Filtragem

Capítulo 3 Transmissão de Sinais e Filtragem Capíulo 3 Transmissão d Sinais Filragm 3.1 Rsposa d Sismas Linars Invarians no Tmpo No diagrama d blocos da Figura 3.1-1, é o sinal d nrada é o sinal d saída. Elmnos qu armaznam nrgia ouros ios inrnos

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Seção 2.1: Equações lineares; Fator integrante

Seção 2.1: Equações lineares; Fator integrante Capíulo Sção.: Equaçõs linars; Faor ingran Uma EDO d primira ordm é da forma d d f ond f é linar na variávl. Alguns mplos ípicos ds ipo d quaçõs com coficins consans saõ a b ou quaçõs com coficins variávis:

Leia mais

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o Grupo I Qustõs d rsposta d scolha múltipla { : 0 f }. ( ) D = f D g f ( ) 0 [, + [. Como f tm domínio \{ 5}, é contínua f ( ) gráfico d f não admit assimptotas vrticais. 5 Rsposta: D lim =, pod-s concluir

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

Lista 5: Regras de Derivação

Lista 5: Regras de Derivação Univrsidad Fdral do Val do São Francisco Câmpus Juaziro BA Colgiado d Engnharia Elétrica Prof. Pdro Macário d Moura Cálculo Difrncial Intgral Lista : Rgras d Drivação 0. Calcular as drivadas das prssõs

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte:

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte: Oscilaçõs forçadas Dpois d tr visto coo são as oscilaçõs aortcidas, agora você pod facilnt ntndr as oscilaçõs forçadas. Aqui vou ignorar a dissipação apnas introduzir ua força oscilant ao sista assa-ola.

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.

Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e. UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação /08/0 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

Secção 8. Equações diferenciais não lineares.

Secção 8. Equações diferenciais não lineares. Scção 8. Equaçõs difrnciais não linars. (Farlow: Sc. 8. a 8.3) Esa scção srá ddicada às EDOs não linars, as quais são gralmn d rsolução analíica difícil ou msmo impossívl. Não vamos porano nar rsolvê-las

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes Capíulo.1: Equaçõs Linars 1 a ordm; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d f, ond f é linar m. Exmplo: a Equaçõs com coficins consans; a b b Equaçõs com coficins variavis: d p

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

Equações não lineares processo iterativo

Equações não lineares processo iterativo Equaçõs não linars procsso itrativo Sja uma função considr-s a quação =0. A solução da quação dsigna-s por rai da quação ou por ro da função () y Sucssão itrativa: 0,,, 3, 0 3 0 3 4 = Prtndmos qu a sucssão

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

01.Resolva as seguintes integrais:

01.Resolva as seguintes integrais: INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA MAT A CÁLCULO A a LISTA DE EXERCÍCIOS Atualizada m 7..Rsolva as sguints intgrais: 5.).).).) sn().5) sn cos.) tg 5 sc.7).8).9) ln 5.) arctg.).).).).7)

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

Exercício 2. Calcule. f (x)<0 e f (x) e M 2 = f (0.5) =1.3 Logo

Exercício 2. Calcule. f (x)<0 e f (x) e M 2 = f (0.5) =1.3 Logo Ercício. Calcul. ln( ) cos d : a) com c.d.c., pla rgra dos trapézios composta; b) com c.d.c., pla rgra d Simpson composta; a) a b., c.d.c rro E T + ε cal + ε dados E T. - f ( ) ln f ET M ( cos ) ; f (

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idntifiqu todas as folhas Folhas não idntificadas NÃO SERÃO COTADAS Faculdad d Economia Univrsidad Nova d Lisboa EXAME DE CÁLCULO I Ano Lctivo 8-9 - º Smstr Eam Final d ª Época m d Janiro 9 Duração: horas

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 10/07/2010 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/07/00 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: - A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha.

Leia mais

Análise Matemática III

Análise Matemática III João Paulo Pais d Almida Ilda Marisa d Sá Ris Ana Esr da Viga Rodrigus Víor Luis Prira d Sousa Anális Mamáica III Dparamno d Mamáica Escola Suprior d Tcnologia d Gsão Insiuo Poliécnico d Bragança Smbro

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais