). Quer os eixos de S quer os de S

Tamanho: px
Começar a partir da página:

Download "). Quer os eixos de S quer os de S"

Transcrição

1 CAPÍULO RANSFORMAÇÃO LINEAR DE COORDENADAS Nst capítulo é aprsntada a ddução da prssão qu prmt transformar as coordnadas d um ponto no spaço d um rfrncal ( S) para outro ( S ). Qur os os d S qur os d S são dfndos por vrsors cuas componnts s ncontram no rfrncal gral S. Ests três rfrncas aprsntam orgm comum (ponto O). Sndo P um ponto gnérco no spaço, a transformação das componnts do vctor OP concd com a transformação das coordnadas do ponto P.. - Smbologa Aprsnta-s m prmro lugar um rsumo da smbologa adoptada nst capítulo. abla. - Smbologa rlatva à transformação lnar d coordnadas. S O P p Sstma d coordnadas (rfrncal) Orgm do sstma d coordnadas Ponto gnérco Vctor posção do ponto P Eo do sstma d coordnadas Vrsor d um o do sstma d coordnadas A Matrz d transformação d S m S B Matrz d transformação d S m S g a l Rfrncal gral Rfrncal aular Rfrncal local

2 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo α Τ L Ângulo ntr os dos rfrncas aular local Matrz d transformação Prmro nó d uma barra Sgundo nó d uma barra Comprmnto d uma barra. - Caso gral Na Fgura. ncontram-s rprsntados os três rfrncas ( S, S S ), um ponto gnérco P o vctor p OP. P ê ê ê p ê ê O ê ê ê ê Fg.. - Rfrncas ponto gnérco P. Os três rfrncas (qu s supõm drctos ortonormados) são dfndos do sgunt modo 4

3 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo S S S ( O,,, ) ( O,,, ) ( O,,, ) () Vrsors d cada rfrncal: Vrsors d S : Vrsors d S : Vrsors d S : (,, ) (,, ) (,, ) () Ponto gnérco: (,, ) S P () Vctor posção do ponto P: p OP (, ) (4), Nota: todos os vrsors vctors aprsntam as suas componnts no rfrncal S. Vrsors do rfrncal S: (,0,0 ) ( 0,,0 ) ( 0,0, ) (5) Vctor p : (, ) p (6), p p p (7) As coordnadas do ponto P no rfrncal S (, ) vctor p sobr os vrsors do rfrncal S : obtêm-s proctando o, 5

4 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo 6 ( ) ( ) ( ) p p p (8) (9) Matrcalmnt tm-s: (0) A () A () Nsta prssão, são as coordnadas d P no rfrncal S, são as coordnadas d P no rfrncal S A é a matrz d transformação d S m S. D um modo smlhant tm-s: ( ) ( ) ( ) p p p () (4) (5)

5 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo B (6) ( ) ( ) ( ) ( ) ( ) ( ) Comparando () com (7) vrfca-s qu B (7) B A (8) A prssão (6) pod scrvr-s da sgunt forma A (9) Substtundo () m (9) tm-s A A (0) Conclundo-s qu A A I () sndo I a matrz dntdad. Multplcando ambos os mmbros d () por A (à drta) obtém-s A A () Quando a nvrsa d uma matrz concd com a sua transposta dz-s qu a matrz é ortogonal. Assm s conclu qu a matrz d transformação A é uma matrz ortogonal. Va-s agora procdr à análs do sgnfcado d cada um dos lmntos d A. A prssão () pod scrvr-s do sgunt modo ( a ) () 7

6 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo sndo a olmntognércodamatrza. Em () vrfca-s qu a (4) Rcorrndo à dfnção d produto scalar tm-s (, ) a cos (5) Uma vz qu os vrsors dos rfrncas possum norma untára (, ) a cos (6) a matrz d transformação A pod sr obtda a partr dos cosnos dos ângulos ntr vrsors dos rfrncas S S. cos A cos cos (, ) cos(, ) cos(, ) ( ) ( ) (, cos, cos, ) ( ) ( ) ( ), cos, cos, (7). - Caso partcular com S S' concdnts Rproduzm-s m sguda as prssõs (5), () () (,0,0 ) ( 0,,0 ) ( 0,0, ) (8) A (9) ( ) ( ) ( ) ( ) ( ) ( ) A (0) No caso d os rfrncas S S srm concdnts, vrfca-s qu 8

7 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo () A () Substtundo () m (0) obtém-s ( ) ( ) ( ) ( ) ( ) ( ) A () Atndndo a (8), vrfca-s m () qu a prmra lnha da matrz A contém as componnts do vrsor ê componnts m S dos vrsors ê ê. no rfrncal S. A sgunda trcra lnhas contêm as A ( ) Componnts d Componnts d Componnts d m S m S m S (4).4 - Matrz d transformação d uma barra rctlína no spaço Nsta scção são utlzadas as prssõs dduzdas nas scçõs antrors com o obctvo d chgar à matrz d transformação d uma barra d trlça D d pórtco D. No âmbto da análs d struturas plo método dos dslocamntos, admtm-s as sgunts hpótss: é conhcda a gomtra da strutura, qu é consttuída por barras prsmátcas d o rctlíno d scção constant; para cada barra, são conhcdas as coordnadas dos dos nós trmos, fcando assm dfnda a localzação do su o barcêntrco; é conhcda a posção dos os prncpas cntras d nérca da scção transvrsal da barra [.]. 9

8 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo Consdr-s um ângulo (α), qu srá dfndo adant qu poscona o rfrncal local (prncpal cntral d nérca - PCI) m rlação a um rfrncal aular. Assm, vão sr consdrados os sgunts rfrncas: S S S g a l gral aular local ( 0) ( PCI ) α (5) O rfrncal gral (g) é aqul m rlação ao qual todos os pontos todos os vctors stão dfndos, sndo os sus vrsors dfndos por (8). O rfrncal aular (a), ao qual corrspond um ângulo α nulo, tm o prmro o concdnt com o o da barra o sgundo o prpndcular ao plano vrtcal qu contm a barra. O trcro o é aqul qu faz com qu o rfrncal sa drcto ortonormado. Est rfrncal srá adant dfndo com mas rgor. O rfrncal local (l) tm como prmro o o o da barra, sndo os rstants os os os prncpas cntras d nérca da scção transvrsal da barra. O ângulo α dfn a posção do rfrncal local (l) m rlação ao rfrncal aular (a). Vão sr m sguda dfndas duas transformaçõs: transformação d g para a; transformação d a para l. A prmra transformação é ralzada com a sgunt prssão qu é smlhant a () a ag g (6) sndo ag a matrz qu transforma as coordnadas d um ponto do rfrncal g para o rfrncal a. A sgunda transformação prmt obtr as coordnadas d um ponto no rfrncal l a partr das suas coordnadas no rfrncal a, sndo smlhant à dfnda por () 0

9 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo l la a (7) Substtundo (6) m (7) chga-s a l la ag g (8) Uma vz qu s prtnd uma matrz d transformação d g para l l g (9) comparando (8) com (9) conclu-s qu la ag (40) Na Fgura. é dfnda a posção do rfrncal aular a m rlação ao rfrncal gral g àbarra. a g a a g g < Fg.. - Posção do rfrncal a m rlação ao rfrncal g. Em rlação à Fgura. consdra-s anda o sgunt: oog é vrtcal orntado para cma; o o barcêntrco da barra é dfndo plos nós ;

10 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo é m gral vantaoso consdrar a convnção d sr smpr <. Assm, o prmro nó da barra é o nó o sgundo é o nó. Esta convnção clarfca todo o procsso d studo da barra sm lh ntroduzr qualqur lmtação; ooa concd com o o barcêntrco da barra,.., o o qu é dfndo plos cntros d gravdad d todas as scçõs transvrsas da barra; ooa ncontra-s orntado do nó para o nó ; ooa é prpndcular ao plano (g,a ) stá orntado d acordo com o sntdo do produto vctoral ntr os vrsors d g a ; ooa stá contdo no plano (g,a ) rsulta do produto vctoral ntr os vrsors d a a ; dsta forma o rfrncal (a,a,a ) é smpr drcto ortonormado. Para s calcular a matrz d transformação d g para a (6) va-s rcorrr à prssão (4). Assm, a prmra lnha d ag é consttuída plas componnts do vrsor a no rfrncal g, assm sucssvamnt. O cálculo das componnts do vrsor a é fto com bas nas coordnadas dos nós. Coordnadas do nó no rfrncal g: (, ), Coordnadas do nó no rfrncal g: (, ), O comprmnto da barra é calculado com a sgunt prssão ( ) ( ) ( ) L (4) O vctor a, qu m gral não tm norma untára, obtém-s por subtracção das coordnadas dos nós. (, ) a, (4) Ovrsor â obtém-s dvdndo o vctor a pla rspctva norma

11 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo a L (4) a Para postror rfrênca, dsgnam-s as componnts do vrsor â por A, A A ( A, A A ) a (44), al como fo atrás rfrdo, o o a é dfndo plo produto vctoral ntr os vrsors dos os g a, sndo g ( 0,0, ) g a a (45) Uma vz qu dst produto vctoral não rsulta um vrsor, é ncssáro dvdr o vctor a pla rspctva norma a a a (46) Para postror rfrênca, dsgnam-s as componnts do vrsor â por B, B B ( B, B B ) a (47), Para qu o rfrncal a sa drcto ortonormado, calcula-s o vrsor â como sndo o rsultado do produto vctoral ntr â â. Do produto vctoral ntr vrsors prpndculars ntr s rsulta smpr um vrsor. a (48) a a Para postror rfrênca, dsgnam-s as componnts do vrsor â por C, C C ( C, C C ) a (47), D acordo com o qu fo dduzdo, os lmntos da matrz d transformação do rfrncal g para o rfrncal a (6) são os sgunts A A A ag B B B (48) C C C

12 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo O rsultado do produto vctoral prsso m (45) é um vctor nulo smpr qu o vrsor â sa parallo ao vrsor ĝ. Supondo qu o o ĝ é smpr vrtcal (hpóts consdrada atrás), sta stuação sngular ocorr smpr qu a barra é vrtcal. Para sts casos é ntão ncssáro dfnr a matrz d transformação ag com outro crtéro. Na Fgura. na Fgura.4 ncontra-s a posção do rfrncal a m rlação ao rfrncal g para os casos da barra vrtcal orntada para cma orntada para bao. g a < a a a a ( 0,0,) ( 0,,0) (,0,0) g g a Fg.. - Posção do rfrncal a m rlação ao rfrncal g para o caso da barra vrtcal orntada para cma. g < g a a a a ( 0,0, ) ( 0,,0) (,0,0) g a a Fg..4 - Posção do rfrncal a m rlação ao rfrncal g para o caso da barra vrtcal orntada para bao. Consdrando as sgunts prssõs para os vrsors do rfrncal a, fcam cobrtas as duas stuaçõs squmatzadas nas Fguras..4. a ( A, A A ) (49) L 0,0,, 4

13 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo ( 0,,0) ( B, B B ) a (50) a,,0,0, ( C, C C) (5) L al como m (48), a matrz d transformação ag é consttuída por A A A ag B B B (5) C C C Procd-s m sguda à dfnção da matrz la qu fo rfrda m (7). Esta matrz d transformação rlacona as coordnadas d um ponto no rfrncal aular (a) com as suas coordnadas no rfrncal local (l). As consdraçõs qu s sgum basam-s na Fgura.5, m qu stão rprsntados os rfrncas a l. O rfrncal l é consttuído plo o da barra plos os prncpas cntras d nérca da scção transvrsal. a l l a α α a l < Fg..5 - Posção do rfrncal l m rlação ao rfrncal a. D acordo com a Fgura.5, pod-s constatar o sgunt: os os a l concdm; os os l l stão rodados d um ângulo α m rlação aos os a a. 5

14 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo A transformação ntr os rfrncas a l é um caso d transformação ntr dos rfrncas dstntos do gral. Nsta stuação pod-s rcorrr à matrz dfnda m (7), qu corrspond a uma transformação ntr os rfrncas S S.Nst caso, o rfrncal S é o rfrncal a o rfrncal S é o rfrncal l. A matrz d transformação é nst caso calculada com bas nos cosnos dos ângulos formados plos os dos dos rfrncas. la cos cos cos ( l, a ) cos( l, a ) cos( l, a) ( l, a ) cos( l, a ) cos( l, a) ( l ) ( ) ( ), a cos l, a cos l, a (5) D acordo com a Fgura.5 tm-s la cos cos cos () 0 cos( 90 ) cos( 90 ) ( 90 ) cos( α ) cos( 90 α ) ( 90 ) cos( 90 α ) cos( α ) (54) 0 0 la 0 cos α sn α (55) 0 sn α cos α As matrzs d transformação ag la ncontram-s á dfndas. D acordo com (40), a matrz d transformação, do rfrncal gral para o local é dfnda do sgunt modo la ag (56) al como fo ndcado m (9), a corrspondnt transformação é fctuada com a sgunt prssão l g (57) As prssõs aqu dduzdas qu prmtm calcular a matrz foram basadas na nformação d qu é habtual dspor numa análs d um pórtco D plo método dos dslocamntos,.., das coordnadas dos nós do ângulo α. 6

15 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo Umavzquamatrz é ortogonal, a transformação do rfrncal local para o gral é fctuada com a sgunt rlação g l (58).5 - Consdraçõs fnas As prssõs da matrz d transformação dduzdas nst capítulo podm sr drctamnt utlzadas na formulação da matrz d rgdz d lmntos d trlça ou d pórtco D, bm como na formulação dos rspctvos vctors d forças nodas quvalnts. BIBLIOGRAFIA [.] - Brazão Farnha, J. S.; Corra dos Rs, A. - ablas écncas, Edçõs écncas E.. L.,

16 ransformação Lnar d Coordnadas - Álvaro F. M. Azvdo 8

TENSORES 1.1 INTRODUÇÃO

TENSORES 1.1 INTRODUÇÃO nsors ENSORES. INRODUÇÃO Os lmntos sóldos utlzados m Engnhara Mcânca das Estruturas dsnolm-s num spaço trdmnsonal no qu rspta à sua Gomtra, sndo ncssáro posconar pontos, curas, suprfícs obctos no spaço

Leia mais

28 a Aula AMIV LEAN, LEC Apontamentos

28 a Aula AMIV LEAN, LEC Apontamentos 8 a Aula 49 AMIV LEAN, LEC Apontamntos (RcardoCoutnho@mathstutlpt) 8 Exponncal d matrzs smlhants Proposção 8 S A SJS ond A, S J são matrzs n n,(comdt S 6 ), ntão A S J S Dmonstração Tmos A SJS, dond por

Leia mais

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo 3 O Método Hírdo dos Elmntos d Contorno sua formulação smplfcada aplcados a prolmas státcos m domíno nfnto multplamnt conxo A valdad d amas as formulaçõs hírdas aprsntadas no capítulo antror stá na possldad

Leia mais

TÓPICOS. Valores singulares. Interpretação geométrica.

TÓPICOS. Valores singulares. Interpretação geométrica. Not bm: a ltra dsts apontamntos não dspnsa d modo algm a ltra atnta da bblografa prncpal da cadra Chama-s a atnção para a mportânca do trabalho pssoal a ralzar plo alno rsolvndo os problmas aprsntados

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear 1ªAula. Lúcia Dinis Setembro

Sumário e Objectivos. Mecânica dos Sólidos não Linear 1ªAula. Lúcia Dinis Setembro Smáro Obctos Smáro: Vctors, nsors. Opraçõs Com Vctors nsors d ª Ordm. nsors d ordm spror à ª. Mdança d Bas. Valors Vctors Própros. Campos Escalars, Vctoras nsoras. Obctos da Ala: Famlarzação com as notaçõs

Leia mais

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2).

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2). Númros complxos Atvdad d dagnóstco AB + + + AB ( ) ( ) ( ) + + + 9+ A, ; B, ; P x, y Pág AP BP x+ y x + y + x + x + + y x + x x + + y + x + yx y x A bsstr dos quadrants ímpars é a mdatr d [AB] B(, ) ;

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Análise de dados industriais

Análise de dados industriais Análs d dados ndustras Escola Poltécnca Dpartamnto d Engnhara Químca Robrto Guardan 014 ANÁLISE DE COMPONENES PRINCIPAIS 3.1. Introdução Componnts prncpas são combnaçõs lnars das varávs orgnas d procsso,

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Ficha d rvisão nº 5 ª Part. Para um crto valor d a para um crto valor d b a prssão ( ) gráfico stá parcialmnt rprsntado na

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

Temática Circuitos Eléctricos Capítulo Regime Sinusoidal POTÊNCIAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Regime Sinusoidal POTÊNCIAS INTRODUÇÃO www.-l.nt Tmátca rctos Eléctrcos apítlo gm nsodal OTÊNA NTODUÇÃO Nst capítlo dnm-s, scssvamnt, as dvrsas potêncas m ogo nos rgms snsodas. artndo da volção tmporal da tnsão corrnt aos trmnas d m dpolo léctrco

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Cap. 7. Prncípo dos trabalhos vrtuas. Enrga d dformação ntrna. Dfnção prssupostos adoptados. Dnsdad da nrga d dformação ntrna.3 Caso partcular: L consttutva é rprsntada pla rcta.4 Enrga d dformação ntrna.

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

Ângulos de Euler. x y z. onde

Ângulos de Euler. x y z. onde Ângulos d Eulr Considr um corpo rígido sus três ios principais, ê, ê 2 ê 3, qu são ortonormais. Vamos dfinir o sistma d coordnadas fio ao corpo rígido, S, com os ios, 2 3 ao longo dos vrsors ê, ê 2 ê 3,

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS St: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmátca A º Ano Fchas d Trabalho Complação Tma Númros

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

CAPÍTULO 1 Teoria do Estado de Tensão

CAPÍTULO 1 Teoria do Estado de Tensão Escola Suprior d Tcnologia stão - Instituto Politécnico d Bragança CAPÍTULO Toria do Estado d Tnsão Tnsor das tnsõs: s, s, s TENSÕES NORMAIS s ij, i j TENSÕES TANENCIAIS Convnção d sinais: Tnsõs m dtrminada

Leia mais

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0].

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0]. Fca d tst global Dado um spaço d rsultados E, fnto, s os acontcmntos lmntars form quprovávs, a probabldad d um acontcmnto A ( E quocnt nr o númro d casos favorávs ao Pág P, é gual ao acontcmnto A o númro

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que MATRIZES www.profssortnan.com.br 0) (PUC) A matrz A d ordm dfnda por a. é dada por: 4 6 4 6 b) 4 4 6 4 6 ) 0) (UFBA) A matrz, com 0 4 b) 0 4 0 ) 4 a, s, é: a, s 0) S A ( a ) é a matrz quadrada d ordm,

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Roteiro Tora dos Jogos Prof. Mauríco Bugarn Eco/UnB 4-I Rotro Capítulo : Jogos dnâmcos com nformação complta. Jogos Dnâmcos com Informação Complta Prfta Forma xtnsva Estratégas Equlíbro d Nash Subjogos qulíbro

Leia mais

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2.

Cascas, Tensões e Deformações 8.1. Capítulo 8. tem a direcção normal à superfície média no ponto que estamos a considerar, os eixos dos x 2. Cascas, Tnsõs Dformaçõs 8. Capítulo 8 Cascas, Tnsõs Dformaçõs 8. Sistma Eios Uma strutura tipo casca fina é uma strutura para a qual uma as imnsõs é significativamnt mnor o qu as outras uas caractriza-s

Leia mais

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS Introdução Intrss m modlar algum fnômno alatóro com dos dsfchos possívs ( sucsso ou fracasso ) m função d uma ou mas covarávs. Assoca-s ao rsultado do fnômno uma

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

n = η = / 2 = 0, c

n = η = / 2 = 0, c PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur,

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

INTRODUÇÃO A MECÂNICA DO CONTÍNUO: Uma Abordagem Moderna,

INTRODUÇÃO A MECÂNICA DO CONTÍNUO: Uma Abordagem Moderna, UNIVERSIDADE FEDERAL DO PARANÁ SEOR DE ECNOLOGIA/SEOR DE CIÊNCIAS EXAAS DEPARAMENO DE ENGENHARIA CIVIL/ DEPARAMENO DE MAEMÁICA PROGRAMA DE PÓS-GRADUAÇÃO EM MÉODOS NUMÉRICOS EM ENGENHARIA INRODUÇÃO A MECÂNICA

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta A Séris Intgrais d Fourir Uma função priódica, d príodo 2, = + 2 pod sr xpandida m séri d Fourir no intrvalo <

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Fig.1 Queda livre com deslocamento no eixo horizontal Faça clique aqui e veja o movimento estroboscópico

Fig.1 Queda livre com deslocamento no eixo horizontal Faça clique aqui e veja o movimento estroboscópico Dpartamnto d Matmática Ciências Eprimntais Curso d Educação Formação Tipo 6 Níl 3 Tto d apoio n.º 3 Assunto: Moimnto d projéctis O studo d dtrminados moimntos a duas dimnsõs, tornar-s-ia muito difícil

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção

Ficha de Trabalho Matemática 12ºano Temas: Trigonometria ( Triângulo rectângulo e círculo trigonométrico) Proposta de correcção COLÉGIO PAULO VI Ficha d Trabalho Matmática ºano Tmas: Trigonomtria ( Triângulo rctângulo círculo trigonométrico) Proposta d corrcção Rlmbrar qu um radiano é, m qualqur circunfrência, a amplitud do arco

Leia mais

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS Projto Rng - Eng. Elétrca Apostla d stmas d Control I V- &$3Ì78/ 9 AÇÕE BÁICA DE CONTROLE E CONTROLADORE AUTOMÁTICO INDUTRIAI Conform havíamos mnconado no Capítulo I, a busca da qualdad, fcênca prcsão

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

CIRCUITOS EM REGIME SINUSOIDAL

CIRCUITOS EM REGIME SINUSOIDAL Tmática Circuitos léctricos Capítulo gim Sinusoidal CCUTOS G SNUSODAL NTODUÇÃO Nst capítulo, analisa-s o rgim prmannt m circuitos alimntados m corrnt altrnada. Dduzm-s as quaçõs caractrísticas dos lmntos

Leia mais

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura:

Considere o problema da determinação da deformada de uma viga, encastrada nas duas extremidades, e sujeita ao carregamento esquematizado na figura: roblma I (6 val.) ágina I. Considr o problma da dtrminação da dformada d uma viga, ncastrada nas duas xtrmidads, sujita ao carrgamnto squmatizado na figura: q L/ L/ L/ As quaçõs difrnciais qu govrnam a

Leia mais

1- MÉTODO ACADÊMICO E MÉTODO PRÁTICO DE CÁLCULO DE CIRCUITOS PARA TENSÕES E CORRENTES ALTERNADAS

1- MÉTODO ACADÊMICO E MÉTODO PRÁTICO DE CÁLCULO DE CIRCUITOS PARA TENSÕES E CORRENTES ALTERNADAS - MÉTODO ACADÊMICO E MÉTODO PÁTICO DE CÁCUO DE CICUITO PAA TENÕE E COENTE ATENADA Método acadêmco A l d Krchhoff das tnsõs, qu aplcamos aos crcutos d corrnt contínua é adaptál para os crcutos d corrnt

Leia mais

Deformações devidas a carregamentos verticais

Deformações devidas a carregamentos verticais Dformaçõs dvdas a carrgamntos vrtcas GEOTECNIA II SLIDES 07 Prof. MSc. Douglas M. A. Bttncourt prof.douglas.pucgo@gmal.com Rcalqus dvdo a carrgamntos na suprfíc Exmplos: Rcalqus d fundaçõs (sapatas ou

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Sistemas de coordenadas em movimento

Sistemas de coordenadas em movimento Sistmas d coordnadas m movimnto Na suprfíci da Trra stamos m movimnto d translação m torno do Sol rotação m torno do ixo trrstr, além, é claro, do movimnto qu o sistma solar intiro tm pla nossa galáxia.

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Exame Final Nacional de Matemática A Prova ª Fase Ensino Secundário 2018 Critérios de Classificação Página 1

Exame Final Nacional de Matemática A Prova ª Fase Ensino Secundário 2018 Critérios de Classificação Página 1 Eam Final Nacional d Matmática A Prova 63.ª Fas Ensino Scundário 018 1.º Ano d Escolaridad Dcrto-Li n.º 139/01, d d julho Critérios d Classificação 1 Páginas Prova 63/.ª F. CC Página 1/ 1 CRITÉRIOS GERAIS

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

PROPAGAÇÃO EM RÁDIO MÓVEL Prof. Waldecir J. Perrella. Desvanescimento em Pequena Escala e Multipercurso.

PROPAGAÇÃO EM RÁDIO MÓVEL Prof. Waldecir J. Perrella. Desvanescimento em Pequena Escala e Multipercurso. PROPAGAÇÃO EM RÁDIO MÓVEL Prof. Waldcr J. Prrlla Dsvanscmnto m Pquna Escala Multprcurso. Dsvanscmnto m pquna scala ou smplsmnt dsvancmnto (fadng), é usado para dscrvr a rápda flutuação da ampltud d um

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

VII Congresso de Mecânica Aplicada e Computacional Universidade de Évora 14 a 16 de Abril de 2003

VII Congresso de Mecânica Aplicada e Computacional Universidade de Évora 14 a 16 de Abril de 2003 VII Congrsso d Mcânca Aplcada Computaconal Unvrsdad d Évora 14 a 16 d Abrl d 003 DETERMINAÇÃO ANALÍTICA E NUMÉRICA DA INTENSIDADE ESTRUTURAL EM PLACAS H. Rs Lops 1 J. Das Rodrgus RESUMO Na análs d struturas

Leia mais

Transistor de junção bipolar Sedra & Smith, 4 a edição, capítulo 4

Transistor de junção bipolar Sedra & Smith, 4 a edição, capítulo 4 ransstor d junção bpolar Sdra & Smth, 4 a dção, capítulo 4 http://c-www.colorado.du/~bart/book/book/toc5.htm ransstor npn ransstor d junção bpolar () ransstor pnp Fgura 4. Estrutura smplfcada do transstor

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Transformada de Fourier

Transformada de Fourier Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não

Leia mais

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra.

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra. Dscplna: SComLMol Numann, Ulam Mtropols (945-947) Numann Ulam [945] prcbram qu problmas dtrmnístcos podm sr transormados num análogo probablístco qu pod sr rsolvdo com amostragm alatóra. Els studavam dusão

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C.

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C. 6. L d Gauss Tópcos do Capítulo 6.1. Fluxo léctco 6.. L d Gauss 6.3. Aplcaçõs da L d Gauss 6.4. Condutos m ulíbo lctostátco 6.1 Fluxo léctco Agoa u dscvmos o concto d lnhas do campo léctco ualtatvamnt,

Leia mais

UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS

UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS Clíca V. P. Frdmann FFP-UERJ clcavp@trra.com.br Abl R. G. Lozano FFP-UERJ arglozano@trra.com.br Llan Marknzon NCE-UFRJ marknzon@nc.ufrj.br Paulo Rnato da

Leia mais

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO Eam Final Nacional d Matmática A Prova 65.ª Fas Ensino Scundário 09.º Ano d Escolaridad Dcrto-Li n.º 9/0, d 5 d julho Critérios d Classificação 0 Páginas CRITÉRIOS GERAIS DE CLASSIFICAÇÃO A classificação

Leia mais

ANÁLISE DA INSTABILIDADE LATERAL DE DUAS VIGAS PRÉ-MOLDADAS PROTENDIDAS

ANÁLISE DA INSTABILIDADE LATERAL DE DUAS VIGAS PRÉ-MOLDADAS PROTENDIDAS ISSN 809-5860 ANÁLISE DA INSTABILIDADE LATERAL DE DUAS VIGAS PRÉ-MOLDADAS PROTENDIDAS Mara Crstna Vdgal d Lma & Mounr Khall El Dbs 2 Rsumo O studo da stabldad das fass transtóras d vgas sbltas d grands

Leia mais

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS

MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS MÉTODO DOS DESLOCAMENTOS: BARRAS AXIALMENTE INDEFORMÁVEIS Sja uma strutura hirstática constituida or barras axialmnt indformávis: P 2 P Porqu as barras são axialmnt dformávis, xistm g.l. hirgométricos

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

Teste Intermédio 2014

Teste Intermédio 2014 Tst Intrmédio 2014 Física Química A 11. ano 12.02.2014 Sugstão d rsolução GRUPO I 1. D acordo com o txto, para lvar a tmpratura, d uma dada massa d água, d 100 C, são ncssários 5 minutos, nquanto para

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Deformações devidas a carregamentos verticais

Deformações devidas a carregamentos verticais Dformaçõs dvdas a carrgamntos vrtcas GEOTECNIA II SLIDES 06 / AULA Prof. MSc. Douglas M. A. Bttncourt prof.douglas.pucgo@gmal.com Rcalqus dvdo a carrgamntos na suprfíc Exmplos: Rcalqus d fundaçõs (sapatas

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

Análise Termodinâmica da interacção de uma massa com uma atmosfera

Análise Termodinâmica da interacção de uma massa com uma atmosfera Análs rmodnâmca da ntracção d uma massa com uma atmosfra Rodrgo d Abru Dpartamnto d Físca do IS Rsumo Consdra-s uma massa mrsa numa atmosfra, nfnta, consttuída por um gás dal clássco na prsnça d um campo

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade Estatístca ultvarada Normal ultvarada Função dnsdad conjunta contorno d robabldad Prof. José Francsco orra Pssanha rofssorjfm@hotmal.com Dstrbução normal unvarada Sja uma varávl alatóra normalmnt dstrbuída

Leia mais