PROFUNDIDADE PELICULAR, REFLEXÃO DE ONDAS, ONDAS ESTACIONÁRIAS

Tamanho: px
Começar a partir da página:

Download "PROFUNDIDADE PELICULAR, REFLEXÃO DE ONDAS, ONDAS ESTACIONÁRIAS"

Transcrição

1 5 PROFUNDIDAD PLICULAR, RFLXÃO D ONDAS, ONDAS STACIONÁRIAS 5. Pofunddad Plcula Mos dsspavos apsnam conduvdad à mdda qu uma onda lomagnéca nl s popaga, sua amplud sof uma anuação, mulplcada plo mo z (quando a popagação s dá na dção z) manfsada na quação da onda. m bons conduos, ssa anuação é ão fo qu as ondas s anulam numa dsânca (pofunddad) muo pquna, dno do conduo. Dfn-s pofunddad plcula à dsânca paa a qual a amplud dca a 36,8 % (. ) d su valo ncal, valo s na nfac (z=) n os mos conduo não conduo), ou: Daí: (5.) f (5.),368 Fgua 5. pofunddad plcula Po qusão d convnênca, oma-s = 5 como sndo o pono ond a onda s anula (na vdad, nss pono la é,67 % d su valo ncal). A abla 5. apsna alguns valos d paa alguns maas, m cas fquêncas. (m) Mz Mz Gz znco,3, alumíno 84,6 8,46,85 cob 66, 6,6,66 paa 64,5 6,45,65

2 5. Rflão d ondas Aé agoa sngmos nossas análss a ondas lomagnécas popagando-s m um mo homogêno. Suponha agoa qu ca gão do spaço sja pnchda po dos mos, com caacíscas lécas magnécas dfns. Uma onda qu sja s popagando aavés do mo, dvá ncona o mo sof um pocsso d flão ansmssão, ou sja, pa da onda ncdn é flda d vola no mo nquano qu pa é ansmda aavés do mo. Podmos vsualza sso na fgua 5. quando d uma ncdênca nomal da onda lomagnéca na nfac n os mos. Onda ncdn Onda ansmda Onda flda z y Fgua 5. onda ncdndo nomalmn na nfac n dos mos, sndo pacalmn flda pacalmn ansmda. Suponhamos qu paa a suação acma nhamos: z z z j j aˆ aˆ j aˆ (5.3) (5.4) (5.5) pssõs smlhans podm s scas paa, sgundo â y, consdando qu os vos ncdm angncalmn na nfac. Plas connudads das componns angncas na fona ou nfac, m z =, podmos scv qu: (5.6) (5.7) Sndo as mpdâncas nínscas laçõs n campos léco magnéco paa um dado mo, podmos scv qu:

3 (5.8) (5.9) Na nfac, m z =, dvdndo a quação (5.6) pla quação (5.7) m suas magnuds : (5.) ou: (5.) (5.) Dvdndo udo po : (5.3) (5.4) (5.5) (5.6) (5.7) Aavés d dsnvolvmnos algébcos smlhans, podmos ob: (5.8) (5.9) (5.) Como podmos v, as ampluds poladads das ondas fldas ansmdas, dpndão dos paâmos dos mos.

4 mplo 5. Calcul as ampluds d, ansmda flda na nfac ndcada, s 3,5 V / m paa a gão, com = 8.5, =., =. A gão é o spaço lv. solução o nc 377, ,4 3 V / m ans f,5 9 3,6 5 A / m Fgua 5.3 Impdânca nnsca do mo : 9,5 8 Impdânca nnsca do mo : o , ,6 5,9 A / m Obsv qu: , ,35 4 V / m : 3 4 3,5 7,35,4 mplo 5. Uma onda,6 5 5,69 6 5,9. V / m ncd nomalmn numa nfac n spaço lv água salgada, ndo sa as sguns caacíscas: 8,.,5 S / m. Paa uma fquênca d 3 Mz, m qu pofunddad ss campo angá a amplud d mv/m? Solução f nc ,85 ans z Fgua 5.4 fgua do mplo 5.

5 4,5 9, 73 4,33 9,73 43, ,73 43,47 g,5,334,7588 ad 8,733 43,47 A amplud d,57 4,48 V / m é V / m. Cálculo da consan d anuação: ,75 Np / m ,85 6,75z, ,85 6,75z. 6,75 z ln() ln(,) z,34 m mplo 5.3 Uma onda popagando-s no spaço lv a uma fquênca d Mz, ncd nomalmn numa fona d um mo com conduvdad =,5 S/m, pmssvdad lava, pmabldad lava., com uma amplud = V/m. Calcul a pocnagm da nga qu é flda d vola ao spaço lv, a pocnagm d nga qu é absovda po ss mo. Solução Ponca ncdn: P pos não s dfasagm n no spaço lv. Poênca flda: P Poênca absovda plo mo conduo: P cos ,5 g 7, , ,36 7,778 44, ,778 44,36 377,7 377 j,49,7 377 j,49 364,89 j,49 389,7 j,49

6 364,578,5 389,99,83,93576,,9 4, ,99, ,778 44,36 389,99,83,934, 83 A dfasagm n é ,7 j,49 389,99,83 P,935,935 cos8 364,5,95 389,99,83,935 3,78 7,778 44,36 389,99,83 P,874 P A dfasagm n é 44,36. P,9,934 cos 44, 36 P,5 P 5.3 Ondas saconáas Quando uma onda camnhan m um dléco pfo ( =, = ), ncd sob a supfíc d um conduo pfo ( ), a combnação da onda ncdn da onda flda poduz uma onda saconáa. m uma onda saconáa as osclaçõs m odos os ponos spaados plo nvalo d mo compmno d onda saão m fas, no mpo. (5.) (5.) Suponha: cos z aˆ (5.3) não: cos z aˆ (5.4) O fo sulan sá não: (5.5) cos z cos z snzsn. ˆ a aˆ (5.6) (5.7) Consdmos agoa a quação (5.7) paa váos nsans d mpo. (lmbando qu = /T)

7 Insan = sn = Insan = T/8 Insan 3 = T/4 Insan 4 = 3T/8 Insan 5 = T/ Insan 6 = 5T/8 Insan 7 = 6T/8 Insan 8 = 7T/8 Insan 9 = T T,4 sn z sn,77 T sn z sn, T 4 3T,4 sn z sn,77 T sn T 5T,4 sn z sn,77 6T snz sn 7T,4 sn z sn,77 sn T T Insans 6 8 Insan 7 Insans, Insans 4 Insan 3 Fgua 5.5 ondas saconáas Pla fgua 5.5, podmos obsva qu não há camnhamno d ondas. As ampluds mámas mínmas ocom smp nos msmos ponos. Ondas saconáas são assocadas a ssonados, ou caas ssonans, po mplo o fono d mcoondas.

8 XRCÍCIOS ) - Paa a paa, = 3, MS/m. m qu fquênca sua pofunddad plcula val mm? ) - Uma onda pna num líqudo com amplud ncdn d =, V/m. Os paâmos dss líqudo são: = = ; = =,5 S/m. Calcul a amplud d a uma dsânca d cm, dno do mo paa as fquêncas d (a) 5 Mz, (b) 5 Mz, (c) 5 Mz. 3) Um campo A / m, popagando-s no spaço lv ncd sob uma folha d paa d 5 m d spssua, como ndca a fgua abao. Supondo = 67, MS/m, uma fquênca d Mz, calcul as ampluds,, m

ELECTROMAGNETISMO. Ondas Planas - 1 o Introdução

ELECTROMAGNETISMO. Ondas Planas - 1 o Introdução LCTROMAGNTISMO Ondas Planas - o Inodução Já vmos qu paa um mo smpls não conduo as quaçõs d Mawll podm s combnadas d modo a foncm quaçõs d onda vcoas homogénas: c ond c µ 8 ε 3 ( m s) s a onda s popaga

Leia mais

Ondas - 2EE 2003 / 04

Ondas - 2EE 2003 / 04 Ondas - 3 / 4 1 Inodução 1.1 Conco d onda móvl Uma função f dscv o pfl d vaação d uma onda móvl vlocdad v no spaço no mpo. Paa qu o pfl d vaação f caac uma onda móvl dv sasfa a quação d onda sgun: f 1

Leia mais

4 Ondas electromagnéticas

4 Ondas electromagnéticas Ondas 5 Flp Sanos Moa 57 4 Ondas lcomagnécas 4. Onda lcomagnéca no vao As quaçõs dos campos lécco magnéco no vao, como vso anomn, são dadas po Andndo à dfnção d laplacano d um vco, vê-s qu sas duas quaçõs

Leia mais

Ondas electromagnéticas planas

Ondas electromagnéticas planas lcomagnécas planas hp://www.bbmg.ulg.ac.b/imags/ukonlm.gf O MIC 4/5 Rlmbano quaçõs Mawll l Faaa l Ampé B D J o. Sos C C l l I S n B s S D s l Gauss D v B o. a vgênca S S D s B s Q n foma fncal foma ngal

Leia mais

TÓPICOS DE PROPAGAÇÃO GUIADA

TÓPICOS DE PROPAGAÇÃO GUIADA TÓPICOS D PROPAGAÇÃO GUIADA po Calos aandas Hoáco Fnands Pofsso Cadáco do IST Pofsso Aula do IST IST, Abl d . INTRODUÇÃO Um dos poblmas fundamnas da Físca pmnal da ngnhaa lcoécnca conss na ansmssão d nga

Leia mais

Propagação e Radiação de Ondas Electromagnéticas (PROE)

Propagação e Radiação de Ondas Electromagnéticas (PROE) MC Ano Lcvo 6/7, º Sms Popagação Radação d Ondas lcomagnécas (PRO) Concos Fundamnas nuncados d Poblmas (com Soluçõs) Rsoluçõs d Poblmas Slcconados nuncados d Povas d Avalação Anos dção d Cusódo Pxo Fvo

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ghaa Odas lcomagécas Op - MIB 007/008 Pogama d Ópca lcomagsmo Faculdad d ghaa Aáls Vcoal (vsão) aulas lcosáca Magosáca 8 aulas Odas lcomagécas 6 aulas Ópca Goméca 3 aulas Fbas Ópcas 3 aulas

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

ONDAS APONTAMENTOS TEÓRICOS. Filipe Santos Moreira 2004/05

ONDAS APONTAMENTOS TEÓRICOS. Filipe Santos Moreira 2004/05 ONDAS APONTAMNTOS TÓRICOS Flp Sanos Moa 4/5 Ondas Índc ÍNDIC... ANÁLIS VCTORIAL... 5. Dvadas pacas... 5.. Dvada d uma função... 5.. Dvadas pacas... 5..3 Dvadas d funçõs composas... 6. Ingas múlplos...

Leia mais

Exercícios resolvidos

Exercícios resolvidos Excícios solvidos 1 Um paallpípdo ABCDEFGH d bas ABCD m volum igual a 9 unidads Sabndo-s qu A (1,1,1), B(2,1,2), C(1,2,2), o véic E pnc à a d quação : x = y = 2 z (AE, i) é agudo Dmin as coodnadas do véic

Leia mais

Aula 11 Mais Ondas de Matéria II

Aula 11 Mais Ondas de Matéria II http://www.bugman3.com/physics/ Aula Mais Ondas d Matéia II Física Gal F-8 O átomo d hidogênio sgundo a Mcânica Quântica Rcodando: O modlo atômico d Boh (93) Motivação xpimntal: Nils H. D. Boh (885-96)

Leia mais

. As partículas colidem? Onde? Qual instante?

. As partículas colidem? Onde? Qual instante? ( ) Pova ( ) Pova Smsal (X) Excícios ( ) Sgunda Chamada ( ) Pova Modula ( ) Pova d Rcupação ( ) Páica d Laboaóio ( ) Exam Final/Exam d Cificação ( ) Apoviamno Exaodináio d Esudos Disciplina: Cálculo 3

Leia mais

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética Sumário Propagação m Mios com prdas Propagação m Mios Dilécricos Conduors nrgia ransporada por uma onda lcromagnéica Livro Chng : pp [354 37] [379 385] Propagação d Ondas m Mios sm Prdas k k x x x k C

Leia mais

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C.

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C. 6. L d Gauss Tópcos do Capítulo 6.1. Fluxo léctco 6.. L d Gauss 6.3. Aplcaçõs da L d Gauss 6.4. Condutos m ulíbo lctostátco 6.1 Fluxo léctco Agoa u dscvmos o concto d lnhas do campo léctco ualtatvamnt,

Leia mais

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2.

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2. Aula 9 Nsta aula, continuamos o capítulo 4 do livo txto, ond agoa invstigamos as fitos do movimnto témico, qu oa dsconsidamos, nas oscilaçõs natuais d létons. 4.3 Ondas Eltônicas d Plasma Vimos qu a fqüência

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Facldad d ghaa Odas lcomagécas Op - MI 78 Pogama d Ópca lcomagsmo Facldad d ghaa áls coal vsão alas lcosáca Magosáca 8 alas Odas lcomagécas 6 alas Ópca Goméca 3 alas Fbas Ópcas 3 alas Lass 3 alas Op 78

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ngnhaia Ondas lctomagnéticas Op - MIB 7/8 Pogama d Óptica lctomagntismo Faculdad d ngnhaia Anális Vctoial (visão) aulas lctostática Magntostática 8 aulas Ondas lctomagnéticas 6 aulas Óptica

Leia mais

Difusão e Resistividade. F. F. Chen Capítulo 5

Difusão e Resistividade. F. F. Chen Capítulo 5 Dfusão Rsstvdad F. F. Chn Capítulo 5 1- Paâmtos d Colsõs Conctos báscos Paâmtos Dfusão m um Gás d Patículas Nutas Scção d Choqu Paâmtos Báscos Lv camnho médo scção d choqu Tmpo médo nt colsõs Fquênca méda

Leia mais

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260 FICHA DE AVALIAÇÃO A D A C 5 B I 6 apazs 7 5 pontos a) 5 b) 7 c) 6. ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 ( y) 5 ( 5 C 5 5 C y 5 C y ) ( 5

Leia mais

LICENCIATURA. b. Da expressão da energia potencial elástica de uma mola, pode-se afirmar que a energia potencial do sistema 1 é: 1 k.

LICENCIATURA. b. Da expressão da energia potencial elástica de uma mola, pode-se afirmar que a energia potencial do sistema 1 é: 1 k. NC FÍSICA LICNCIAUA Qusão a. Coo, abos os casos, os ssas são pouso, a foça qu aua sob a ola úca, ou sob cada ola a assocação, é a sa, gual ao pso do copo pduado. Sdo dêcas solcadas pla sa foça, cada ola

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

Equações de Conservação

Equações de Conservação Eqaçõs d Consação Toma d Tanspo d Rnolds Eqação d Consação d Massa (conndad) Eqação d Consação d Qandad d Momno Lna ( a L d Non) Eqação d Na-Soks Eqação d Enga Mcânca Eqação d Consação d Qandad d Momno

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

d B dt dt dt dt 2 dt db r1 db dt Exercícios PARTE B GABARITO Física III Lei de Faraday Lenz, Indução e Circuitos AC Prof. Dr. Cláudio S.

d B dt dt dt dt 2 dt db r1 db dt Exercícios PARTE B GABARITO Física III Lei de Faraday Lenz, Indução e Circuitos AC Prof. Dr. Cláudio S. DÇÃO EETOGÉT apíulo Sas, amansky &Young, 5 -: T x m x s -: D acoo com o Ex -, = 5T x m x 8 -: a 5 T / s x T / s = T/s + x - T/s = + x - /s b Paa = 5 s = + x - /s 5 s = +8 8 = x -8:a v/mn = v/s, logo: cos

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência Física IV Insiuo d Física - Univrsidad d São Paulo Profssor: Valdir Guimarãs -mail: valdirg@if.usp.br Aula: Inrfrência Inrfrência d ondas Inrfrência d ondas O qu aconc quando duas ondas s combinam ou inrfrm

Leia mais

Células com Extensão Espacial: O Modelo do Cabo

Células com Extensão Espacial: O Modelo do Cabo 5915756 Inodução à Nuocênca Copuaconal Anono oqu Aula 7 Células co Exnsão Espacal: O Modlo do Cabo Paa nuônos co xnsão spacal o poncal d bana vaa d pono paa pono ao longo da célula d ana qu la não pod

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

Introdução. Métodos Eletromagnéticos. Disposição de campo. Introdução

Introdução. Métodos Eletromagnéticos. Disposição de campo. Introdução Métodos ltomagnétcos CSAMT Contolld Souc Audo MagntoTlluc ntodução CSAMT é um acônmo d Contolld Souc Audo MagntoTlluc. Domíno da fquênca. Dpolos létcos atados ou bobnas hoontas. Smla ao MT ao AMT. A dfnça

Leia mais

Aula 10. Antes de iniciarmos o estudo das ondas iônicas em plasmas, faremos uma breve revisão de fenômenos acústicos num gás neutro e aquecido.

Aula 10. Antes de iniciarmos o estudo das ondas iônicas em plasmas, faremos uma breve revisão de fenômenos acústicos num gás neutro e aquecido. Aula Nsta aula, cotuamos o capítulo 4 do lvo txto, od agoa vstgamos a osclação atual dos íos também sua popagação ao logo do plasma. 4.4 Odas Iôcas Ats d camos o studo das odas ôcas m plasmas, famos uma

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS TERCEIRA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO

UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS TERCEIRA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO UNIVERSIDADE ESTADUAL PAULISTA UNESP FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA FEIS TERCEIRA SÉRIE DE EXERCÍCIOS DE ONDAS E LINHAS DE COMUNICAÇÃO 1 Taça os gáfcos de magnude e fase do coefcene de eflexão,

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eltomagntsmo II o Smst 007 Notuno - Pof. Alvao Vannu 7 a aula 08/ma/007 Vmos: Inêna Oblíqua, ntfa léto/onuto. mo mo K planos ampltu onstant K t z K K t planos fas onstant ângulo al Vmos: K Kt + Kt K +

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

4) Ondas Eletromagnéticas

4) Ondas Eletromagnéticas ENGENHARIA ELETROMAGNÉTICA Pf. D. An Rams 4 Ondas Elmagnécas Induçã Um ds fas mas mpans d lmagnsm, an óc quan xpmnal, é a xsênca d ndas acpladas d camp léc magnéc, qu s ppagam paa lng das fns, anspand

Leia mais

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos Soluçõs das FICHA DE TRABALHO Popidads das opaçõs sob conjuntos a) {,, 5} {,,, 5} {,, } {,, 5} ) {} f) {} g) {, 5} h) {,,, 5} i) Q j) {} k) {} l) Q m) {,, 5} a) {, 5,, 7, 8, 9, } {, 8, } {, 5} {, 7, 9}

Leia mais

Disciplina: FGE5748 Simulação Computacional de Líquidos Moleculares 1

Disciplina: FGE5748 Simulação Computacional de Líquidos Moleculares 1 Dscplna: FGE5748 Smulação Computaconal d Líqudos Molculas Numann, Ulam Mtopols 945-947 Numann Ulam [945] pcbam qu poblmas dtmnístcos podm s tansomados num análogo pobablístco qu pod s solvdo com amostagm

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

ELECTROMAGNETISMO. EXAME 1ª Chamada 22 de Junho de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 1ª Chamada 22 de Junho de 2009 RESOLUÇÕES ELECTROMAGNETISMO EXAME 1ª Chamada de Junho de 00 RESOLUÇÕES As esposas à mao pae das pegunas devem se acompanhada de esquemas lusavos, que não são epoduzdos aqu. 1. a. As ês paículas e o pono (.00, 0.00)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Univrsidad Fdral do Rio d Janiro Instituto d Matmática Dpartamnto d Matmática Gabarito da Prova Final d Cálculo Difrncial Intgral II - 07-I (MAC 8 - IQN+IFN+Mto, 6/06/07 Qustão : (.5 pontos Rsolva { xy.

Leia mais

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma.

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma. Aula 8 Nsta aula, iniciamos o capítulo 4 do livo txto, ond imos analisa váios fnômnos ondulatóios m plasma. 4.Ondas m Plasma 4. Rpsntação das Ondas Qualqu movimnto piódico num fluido, pod s dcomposto atavés

Leia mais

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço 3 Modlo paa o Sstma d Contol (, com Nívl d Svço No Capítulo, fo apsntado um modlo paa o sstma d contol d stou (,, ond a dmanda é uma vaávl alatóa contínua sgundo uma dstbução nomal, uando foam consdados

Leia mais

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0].

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0]. Fca d tst global Dado um spaço d rsultados E, fnto, s os acontcmntos lmntars form quprovávs, a probabldad d um acontcmnto A ( E quocnt nr o númro d casos favorávs ao Pág P, é gual ao acontcmnto A o númro

Leia mais

A DERIVADA DE UM INTEGRAL

A DERIVADA DE UM INTEGRAL A DERIVADA DE UM INTEGRAL HÉLIO BERNARDO LOPES Rsumo. O cálculo o valor a rivaa um ingral ocorr com cra frquência na via profissional físicos, químicos, ngnhiros, conomisas ou biólogos. É frqun, conuo,

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Equações de Conservação

Equações de Conservação Eqaçõs d Consação Toma d Tanspo d Rnolds Eqação d Consação d Massa (conndad) Eqação d Consação d Qandad d Momno Lna ( a L d Non) Eqação d Na-Soks Eqação d Enga Mcânca Eqação d Consação d Qandad d Momno

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2).

Pág Circunferência: ( ) ( ) 5.4. Circunferência: ( ) ( ) A reta r passa nos pontos de coordenadas (0, 1) e (2, 2). Númros complxos Atvdad d dagnóstco AB + + + AB ( ) ( ) ( ) + + + 9+ A, ; B, ; P x, y Pág AP BP x+ y x + y + x + x + + y x + x x + + y + x + yx y x A bsstr dos quadrants ímpars é a mdatr d [AB] B(, ) ;

Leia mais

Faculdade de Engenharia. Antenas e Radiação OE - MIEEC 2014/2015

Faculdade de Engenharia. Antenas e Radiação OE - MIEEC 2014/2015 Faculdad d ngnhaia Annas adiação O - MIC /5 Annas adiaçao Faculdad d ngnhaia dipolos lnas dipolo lécico dipolo agnéico diagaas d adiação paâos caacísi d annas annas linas finas aggados d annas Annas Faculdad

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias).

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias). C Í T U L O 3 Flxão d ças Cuvas 3.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os cntos d gavdad das sçõs tansvsas da aa, camada lna dos cntos, sja uma cuva plana qu as sçõs tansvsas tnam um xo

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe

( ). ( ) ( 2.2 Valor Esperado e Momentos. Função Geratriz de Momentos Seja X uma variável aleatória, então, se o valor esperado de existe . Valo Espao omnos Função Gaiz omnos Sja uma vaiávl alaóia, não, s o valo spao xis paa oo valo m algum invalo ( h,h, h > 0, l é inio como a Função Gaiz omnos, noaa Fomalmn, x E. ( x x R (. caso isco x

Leia mais

MEC2348 Transferência de Calor II Departamento de Engenharia Mecânica

MEC2348 Transferência de Calor II Departamento de Engenharia Mecânica MEC348 Tansfênca d Calo II 05- Dpaamno d Engnhaa Mcânca Angla Oo Ncl sala 63- L amal 8 -mal: ncl@pc-o.b Tmodnâmca: sda as naçõs d nga n m ssma a nhança (calo abalho). Taa d sados m qlíbo. Não aa da naa

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino Tanssto Bpola d Junção TBJ Cap. 4 Sda/Sth Cap. 7 Boylstad Cap. 9 Malno Análs Pqunos Snas Notas d Aula SEL 313 Ccutos Eltôncos 1 Pat 5 1 o S/2016 Pof. Manol Modlos Pqunos Snas do TBJ Tas odlos são úts paa

Leia mais

u seja, pode ser escrito como uma combinação linear de.

u seja, pode ser escrito como uma combinação linear de. Toma d Cayly-Hamilo ja x sja d I α... α poliômio caacísico d. Eão: α α... α α I Toda maiz é um zo d su poliômio caacísico., mos qu qu:... I { I,,..., } u sja, pod s scio como uma combiação lia d. Também,

Leia mais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº2 Conceitos Fundamentais Antenas e Propagação Folha de eercícos nº2 Concetos Fundamentas 1. Uma onda electromagnétca plana e unforme propaga-se em meo lvre. O campo magnétco H é dado por: 1 jk H e ( ˆ 2 yˆ) 120 a) Determne o campo

Leia mais

Reexão e refração de ondas eletromagnéticas em interfaces planas entre dielétricos

Reexão e refração de ondas eletromagnéticas em interfaces planas entre dielétricos Rxão rfração d ondas ltromagnéticas m intrfacs planas ntr dilétricos Para ilustrar a utilização das condiçõs d contorno para os campos tratmos a rxão a rfração d ondas ltromagnéticas planas por intrfacs

Leia mais

Introdução à Física Quântica

Introdução à Física Quântica Intodução à Físca Quântca m 9, Planck popõ uma xplcação paa a mssão d adação d um copo aqucdo, ou copo ngo. l ntoduz a déa d qu os osclados só podam mt ou absov nga m múltplos ntos d um quantum d nga.

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

Capítulo 3 - Flexão de Peças Curvas

Capítulo 3 - Flexão de Peças Curvas Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

3 Programa SASSI Descrição geral

3 Programa SASSI Descrição geral Pogm SSSI000.. Dscção gl O pogm SSSI000 (Lysm ll, 999, dsnvolvdo n Unvsdd d Clfón, Bkly, é um ssm p náls d poblms d nção solo suu, b ou dmnsons, submdos um xcção sísmc ou um xcção d cg xn, fomuldo no domíno

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Facula ngnhaia Onas lctomagnéticas Op - MB 7/8 Pogama Óptica lctomagntismo Facula ngnhaia Anális Vctoial (visão aulas lctostática Magntostática 8 aulas Onas lctomagnéticas 6 aulas Óptica Gomética aulas

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS

AS EQUAÇÕES DE MAXWELL E AS ONDAS ELETROMAGNÉTICAS A QUAÇÕ D MAXWLL A ONDA LTROMAGNÉTICA 1.1 A QUAÇÕ D MAXWLL Todos os poblemas de eleicidade e magneismo podem se esolvidos a pai das equações de Mawell: v 1. Lei de Gauss: φ. nda ˆ. Lei de Gauss paa o magneismo:

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo:

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo: to 58 Aula 9 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO. INTRODUÇÃO Dua ta d um plano podm : Ditinta: = Emplo: Então, O coficint angula ão iguai. O coficint lina ão difnt. Paalla b) ão PARALELAS COINCIDENTES.

Leia mais