n = η = / 2 = 0, c

Tamanho: px
Começar a partir da página:

Download "n = η = / 2 = 0, c"

Transcrição

1 PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur, prnhndo a tabla fornda. Consdr uma odfação por bloos (,) na prsnça d ruído AWGN d méda zro dnsdad sptral d potêna blatral G (f) / V n = η = / Hz, taxa líquda d dados d. bts/s um dsmpnho dsjávl d -5 para a probabldad d rro d uma palavra, odfada ou não (λ λ, rsptvamnt). Modulação-dtção P λ (mw) λ (mw) AK-ornt Q( λ ) AK-não ornt λ / FK ortogonal-ornt Q( λ ) FK ortogonal-não ornt λ / / / PK-ornt Q( λ ) Rsolução A rstrção λ >> fo oloada pos as xprssõs forndas para o AK-não ornt o FK ortogonal-não ornt são váldas apnas nstas ondçõs. Por outro lado, um ódgo (,) orrg rros é prfto t ( n = = 4 = = ). ja nalmnt o aso BPK-ornt. No aso não odfado a probabldad d rro d palavra é dada por P w = -(-P n) P n= Q( λ ). Impondo o msmo dsmpnho d P w= -5 nos dos asos tm-s: -5 = Q( λ ) Q( λ ) =, -6 λ =4,79 λ =,47. Mas, sab- s qu λ =, assm ηf,47 6 = 6 µw. ηf o n No aso odfado a probabldad d rro d palavra é dada por P w= C n n, ( P ) P C n,t+[p ] t+ = C n,t+[ Q( λ ) ] t+, t+ om t=, n= =. Assm: -5 =.55 [P ] 4 [P ]= Q( λ ) =,579 - η o =,7 = 66,5 µw. λ =,55 λ =,7. Mas, nst aso Assm, a potêna rqurda é,7 db ror ao aso não odfado, mas a banda xpand-s por um fator n/=,97 dvdo à odfação (transmt-s mas ormação no msmo ntrvalo d tmpo). ja agora o aso AK não ornt (o rsultado val também para o FK ortogonal-não ornt) gundo o msmo raoíno antror: -5 = λ / / λ / =,667-7 λ = 6,6 ηf 6,6 6 =, 6 mw no aso não odfado. Para o sstma odfado: -5 =.55 [P ] 4 [P ]= λ / / =,579 - λ =,9. E, omo ants: η o =,9 =, mw, rprsntando um ganho d,9 db nst aso. ja agora o aso AK-ornt (o rsultado val também para o FK ortogonal-ornt) λ Q λ =, -6 λ = 4,79 λ =,94 gundo o msmo raoíno antror: -5 = Q ( ) ( ) ηf,94 6 =, mw no aso não odfado. E no sstma odfado: -5 =.55 [P ] 4 [P ]=

2 Q λ =,579 - λ = 6,. E, omo ants: η o = 6, =, 7 ganho d,76 db nst aso. mw, rprsntando um Assm, pod-s ompltar a tabla: Modulação-dtção P λ (mw) λ (mw) AK-ornt Q( λ ),94, 6,,7 AK-não ornt λ / / 6,6,6,9, FK ortogonal-ornt Q( λ ),94, 6,,7 FK ortogonal-não ornt λ / / 6,6,6,9, PK-ornt Q( λ ),47,69,9,7 QUETÃO A matrz gradora d um ódgo d bloo lnar é G = - Exprss-a na forma sstmáta G = [ I M P ] ; - Dtrmn a matrz d vrfação d pardad H T onstrua a tabla d síndroms para st ódgo; - Dtrmn a dstâna mínma para st ódgo; r - Vrfqu qu a palavra ódgo orrspondnt à squêna d ormação d = [] é ortogonal à H T (dntfqu smpr a dmnsão das matrzs). Rsolução Trata-s d um ódgo (7,); not qu na forma dada =d =d =d ; assm para torná-lo sstmáto basta troar as lnhas da matrz G, rsultando: G = assm P= P H T = = Im d dmnsõs n ( 7), m ( 4) n m (7 4), rsptvamnt. A tabla d odfação é dtrmnada plo produto =d G d E vrfa-s por nspção qu o mm d H é gual a satsfazndo o rqurdo d H t+= om t=. Para onstrur a tabla d síndroms obsrva-s nalmnt a apadad d orrção máxma possívl para um ódgo gnéro (7,). Nst aso:

3 t 7 n 4 = = 6 = + 7 +; assm t= o ódgo não é prfto. Esta últma obsrvação nda qu xstm hprsfras, ada uma om pontos ntrnos, totalzando 64 palavras d 7 bts, d um unvrso possívl d ; assm tr-s-à rros dttados (duplos om maor probabldad) mas não orrgívs. Com os rros possívs d s orrgr dtrmna-s uma part da tabla s= H T. A dmnsão das síndroms s é m ( 4) aprsnta, portanto, 6 lmntos: s As síndroms ralçadas orrspondm às soluçõs d rros duplos dttávs (num total d ) alulávs plas soluçõs do sstma d quaçõs s= H T, dntro do prnípo da máxma vrossmlhança. Para a síndrom s=[]: + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6=

4 + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6= + + 7= qu não tm solução d pso. Nst aso, rsultando sta síndrom, pod-s afrmar qu s tm mas d rros dttados. Para a síndrom s=[] + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Para a síndrom s=[] + + 4= = + + 6= + + 7= ujas soluçõs d pso são [], [], []; Not ntão qu os rros duplos (não orrgívs) são smpr dttados a partr dstas síndroms. No últmo tm soltado d=[], portanto, =[] H T =[] =[] omo ra d s sprar pos st produto é smpr nulo para uma palavra ódgo válda. As dmnsõs orrspondnts são n ( 7), n m (7 4) m ( 4), para, H T o produto, rsptvamnt QUETÃO Um squma usual para orrção/dtção d rros é lustrado na tabla abaxo. Os dados d ormação (rprsntados na tabla por lmntos ) são ordnados sgundo uma matrz quadrada d j dígtos (no xmplo abaxo rprsntado j=). A ada lnha oluna arsntam-s dígtos d rdundâna p j, totalzando j dígtos d vrfação d pardad. Assm, m ada lnha, oluna, omplta têm-s =, ond dnota uma soma mod (ou xlusvo). Consdr agora o aso j=5. p p p 6 p p p a) st ódgo é do tpo (n,) om qu fêna? b) um ódgo d bloo (n,) podra orrgr até quantos rros quasqur? ) mostr laramnt omo um úno rro é orrgdo; d) st ódgo é apaz d orrgr/dttar quasqur dos rros? Rsolução a) o ódgo aprsntado tm 5 =5 dígtos d ormação 5 = dígtos d pardad. Assm é quvalnt, no qu dz rspto à dmnsão apnas, à um ódgo d bloo (5,5), portanto, om fêna η=5/5=7%

5 b) tvéssmos um ódgo d bloo (5,5) l sra apaz d orrgr até t rros dados pla solução d n- C n,+c n,+...+c n,t. No aso = o próxmo trmo é Assm t= rros. ) No ódgo aprsntado um úno rro é falmnt dttado pos a lnha oluna orrspondnt aprsntarão dsrpâna (Σ ) o ruzamnto dos dos ndará a posção. a dsrpâna aparr apnas numa lnha (ou oluna) o lmnto d pardad daqula lnha (ou oluna) é qu stará rrado. Assm garant-s qu rros smpls podrão sr smpr orrgdos. d) O ódgo dtta, mas não orrg rros duplos. Para vrfar a mpossbldad d orrção basta notar qu os padrõs d rros assnalados por * ** abaxo rprsntados são quvalnts do ponto d vsta d pardad. * ** Σ ** * Σ Σ Σ Assm, apsar da dntfação das lnhas olunas om rros não s pod afrmar s os rros são provnnts dos dos dígtos assnalados por * ou os dos assnalados por ** os dos rros form numa msma lnha: * * Σ = Σ Σ a dntdad da lnha é prdda (análogo para olunas). Assm pod-s afrmar qu dos rros são smpr dttados mas não podm sr orrgdos.

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que MATRIZES www.profssortnan.com.br 0) (PUC) A matrz A d ordm dfnda por a. é dada por: 4 6 4 6 b) 4 4 6 4 6 ) 0) (UFBA) A matrz, com 0 4 b) 0 4 0 ) 4 a, s, é: a, s 0) S A ( a ) é a matrz quadrada d ordm,

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B:

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B: 1. (2 pontos) Suponha qu o ar ontdo m uma bomba manual d nhr bola possa sr tratado omo um gás dal (γ 1, 4). Consdr nalmnt 210{240} m 3 d ar a uma tmpratura d 20{40} C a uma prssão d 1 atm. S st volum d

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

). Quer os eixos de S quer os de S

). Quer os eixos de S quer os de S CAPÍULO RANSFORMAÇÃO LINEAR DE COORDENADAS Nst capítulo é aprsntada a ddução da prssão qu prmt transformar as coordnadas d um ponto no spaço d um rfrncal ( S) para outro ( S ). Qur os os d S qur os d S

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

28 a Aula AMIV LEAN, LEC Apontamentos

28 a Aula AMIV LEAN, LEC Apontamentos 8 a Aula 49 AMIV LEAN, LEC Apontamntos (RcardoCoutnho@mathstutlpt) 8 Exponncal d matrzs smlhants Proposção 8 S A SJS ond A, S J são matrzs n n,(comdt S 6 ), ntão A S J S Dmonstração Tmos A SJS, dond por

Leia mais

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS Introdução Intrss m modlar algum fnômno alatóro com dos dsfchos possívs ( sucsso ou fracasso ) m função d uma ou mas covarávs. Assoca-s ao rsultado do fnômno uma

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Cap. 7. Prncípo dos trabalhos vrtuas. Enrga d dformação ntrna. Dfnção prssupostos adoptados. Dnsdad da nrga d dformação ntrna.3 Caso partcular: L consttutva é rprsntada pla rcta.4 Enrga d dformação ntrna.

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Not bm: a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira TÓPICOS Subspaço. ALA Chama-s a atnção para a importância do trabalho pssoal a ralizar plo

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

TIPOS DE GERADORES DE CC

TIPOS DE GERADORES DE CC ANOTAÇÕS D MÁQUINAS LÉTRICAS 17 TIPOS D GRADORS D CC S dfnm m função dos tpos d bobnas dos pólos. ssas bobnas, atravssadas pla corrnt d xctação, produzm a força magntomotrz qu produz o fluxo magnétco ndutor.

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

CIRCUITOS EM REGIME SINUSOIDAL

CIRCUITOS EM REGIME SINUSOIDAL Tmática Circuitos léctricos Capítulo gim Sinusoidal CCUTOS G SNUSODAL NTODUÇÃO Nst capítulo, analisa-s o rgim prmannt m circuitos alimntados m corrnt altrnada. Dduzm-s as quaçõs caractrísticas dos lmntos

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS St: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmátca A º Ano Fchas d Trabalho Complação Tma Númros

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo 3 O Método Hírdo dos Elmntos d Contorno sua formulação smplfcada aplcados a prolmas státcos m domíno nfnto multplamnt conxo A valdad d amas as formulaçõs hírdas aprsntadas no capítulo antror stá na possldad

Leia mais

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015

GABARITO DA SEGUNDA PROVA DE PTC-2433 TEORIA DAS COMUNICAÇÕES II - 19/10/2015 GABARITO DA EGUDA PROVA DE PTC-4 TEORIA DA COMUICAÇÕE II - 9// a. Qustão (, oto Dtrm a míma rlação (/ d um caal tlfôco (bada d Hz ara rmtr a trasmssão cofávl d. bts/s. Comt su rsultado. D C Blog ( + vm

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

sendo classificado como modelo de primeira ordem com (p) variáveis independentes.

sendo classificado como modelo de primeira ordem com (p) variáveis independentes. RGRSSAO MULTIPLA - comlmtação Itrodução O modlo lar d rgrssão múltla é da forma: sdo classfcado como modlo d rmra ordm com () varávs ddts. od: é a varávl d studo (ddt, xlcada, rsosta ou dóga); é o cofct

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo nvrsa Fral Santa Catarna Cntro Cênas Físas Matmátas Dpartamnto Matmáta MTM3100 - Pré-álulo 1 a lsta xríos (31/07/2017 a 04/08/2017) 1. Rprsntar por numração, os sgunts onjuntos: = {x N x < 6}; = {x Z 3

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc. TRANSMISSÃO DE CALOR II Prof. Eduardo C. M. Lourro, DSc. ANÁLISE TÉRMICA Dtrmnação da ára rqurda para transfrr o calor, numa dtrmnada quantdad por undad d tmpo, dadas as vlocdads d scoamnto as tmpraturas

Leia mais

Estudo de diversidade populacional: efeito da taxa de mutação

Estudo de diversidade populacional: efeito da taxa de mutação IA369 - Guwn & Von Zubn (s/98) Estuo vrsa populaconal: fto a taxa mutação. Ausênca prssão sltva ausênca mutação é assumo qu caa nvíuo a população é ao por um cromossomo hapló qu o crossovr é unform. um

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

TENSORES 1.1 INTRODUÇÃO

TENSORES 1.1 INTRODUÇÃO nsors ENSORES. INRODUÇÃO Os lmntos sóldos utlzados m Engnhara Mcânca das Estruturas dsnolm-s num spaço trdmnsonal no qu rspta à sua Gomtra, sndo ncssáro posconar pontos, curas, suprfícs obctos no spaço

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Capítulo 3 - Flexão de Peças Curvas

Capítulo 3 - Flexão de Peças Curvas Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0].

Pág , isto é, é o número Pretende-se mostrar que x [ ] f ( x) Seja h a restrição da função f ao intervalo ],0]. Fca d tst global Dado um spaço d rsultados E, fnto, s os acontcmntos lmntars form quprovávs, a probabldad d um acontcmnto A ( E quocnt nr o númro d casos favorávs ao Pág P, é gual ao acontcmnto A o númro

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014

TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 CESPE UnB TÉCNICO LEGISLATIVO ATRIBUIÇÃO: AGENTE DE POLÍCIA LEGISLATIVA 2014 Assunto: lógica d argumntação Prof Pachr Considrando qu P sja a proposição S o bm é público, ntão não é d ninguém, julgu os

Leia mais

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA COMENTÁIO DA POVA DE FÍSICA A prova d conhcimntos spcíficos d Física da UFP 009/10 tv boa distribuição d assuntos, dntro do qu é possívl cobrar m apnas 10 qustõs. Quanto ao nívl, classificamos ssa prova

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Toria dos Grafos Aula Aula passada Problma do labirinto (pathfinding) Busca informada Bst-first sarch A* Aula d hoj MST Algoritmos d Prim Kruskal Propridads da MST Corrtud Projtando uma Rd $ $$ $$$ $$

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 32. Professora: Mazé Bechara nstituto d Física USP Física V - Aula 3 Profssora: Mazé Bchara Aula 3 - Estados ligados m movimntos unidimnsionais 1. O poço d potncial finito: colocando as condiçõs d continuidad nas funçõs d onda suas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS Projto Rng - Eng. Elétrca Apostla d stmas d Control I V- &$3Ì78/ 9 AÇÕE BÁICA DE CONTROLE E CONTROLADORE AUTOMÁTICO INDUTRIAI Conform havíamos mnconado no Capítulo I, a busca da qualdad, fcênca prcsão

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais

Análise de dados industriais

Análise de dados industriais Análs d dados ndustras Escola Poltécnca Dpartamnto d Engnhara Químca Robrto Guardan 014 ANÁLISE DE COMPONENES PRINCIPAIS 3.1. Introdução Componnts prncpas são combnaçõs lnars das varávs orgnas d procsso,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin Tora dos Jogos Prof. Mauríco Bugarn Aula B Tora dos Jogos Mauríco Bugarn Cap. 7. Jogos Dnâmcos com Informação Incomplta Rotro Capítulo 7. Jogos Dnâmcos com Informação Incomplta Dfção xmplos Dfção d Raconaldad

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Sistemas de coordenadas em movimento

Sistemas de coordenadas em movimento Sistmas d coordnadas m movimnto Na suprfíci da Trra stamos m movimnto d translação m torno do Sol rotação m torno do ixo trrstr, além, é claro, do movimnto qu o sistma solar intiro tm pla nossa galáxia.

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Resoluções das atividades

Resoluções das atividades IO FÍSI soluçõs das atvdads Sumáro ula Eltrodnâmca III sstors... ula Eltrodnâmca I... ula 5 Eltrostátca Eltrodnâmca...6 ula 6 Eltrodnâmca...8 ula 7 rcutos létrcos I...0 ula Eltrodnâmca III sstors tvdads

Leia mais

EXAME NACIONAL MATEMÁTICA

EXAME NACIONAL MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL DE MATEMÁTICA 3.º CICLO DO ENSINO BÁSICO 2007 Prova 23 1.ª Chamada 16 páginas Duração da prova: 90 minutos Critérios d Classificação Dcrto-Li n.º 6/2001, d 18 d Janiro,

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais

Temática Circuitos Eléctricos Capítulo Regime Sinusoidal POTÊNCIAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Regime Sinusoidal POTÊNCIAS INTRODUÇÃO www.-l.nt Tmátca rctos Eléctrcos apítlo gm nsodal OTÊNA NTODUÇÃO Nst capítlo dnm-s, scssvamnt, as dvrsas potêncas m ogo nos rgms snsodas. artndo da volção tmporal da tnsão corrnt aos trmnas d m dpolo léctrco

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS

UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS UMA REPRESENTAÇÃO COMPACTA PARA GRAFOS CORDAIS Clíca V. P. Frdmann FFP-UERJ clcavp@trra.com.br Abl R. G. Lozano FFP-UERJ arglozano@trra.com.br Llan Marknzon NCE-UFRJ marknzon@nc.ufrj.br Paulo Rnato da

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores

GERADORES E RECEPTORES. Setor 1202 Aulas 58, 59, 60 Prof. Calil. Geradores GERADORES E RECEPTORES Stor 1202 Aulas 58, 59, 60 Prof. Call Gradors São sstmas qu convrtm um dtrmnado tpo d nrga, m nrga létrca. Cram mantém nos sus trmnas, uma dfrnça d potncal. São xmplos d gradors

Leia mais

4.2 Modulação de Amplitude em Banda Lateral Dupla

4.2 Modulação de Amplitude em Banda Lateral Dupla 4. Modulação d Amplitud m Banda Latral Dupla Tipos d modulação m amplitud om banda latral dupla (DSB ou Doubl SidBand): a) AM (Amplitud Modulation) modulação m amplitud, padrão. b) DSB-SC (Doubl SidBand

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I. Tarefa Intermédia 8. Grupo I Escola Scundária com 3º ciclo D. Dinis 10º Ano d Matmática A Gomtria no Plano no Espaço I Tarfa Intrmédia 8 Grupo I As três qustõs do Grupo I são d scolha múltipla. Slccion, para cada uma dlas, a ltra

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

Análise Matemática IV Problemas para as Aulas Práticas

Análise Matemática IV Problemas para as Aulas Práticas Anális Matmática IV Problmas para as Aulas Práticas 7 d Abril d 003 Smana 1. Us as quaçõs d cauchy-rimann para dtrminar o conjunto dos pontos do plano complo ond as sguints funçõs admitm drivada calcul

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Curso de Engenharia Química Disciplina: Física I Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno: Curso d Engnharia Química Disciplina: Física I Nota: Rubrica Coordnador Profssor: Rudson Alvs Aluno: Turma: EQ2M Smstr: 2 sm/2016 Data: 25/11/2016 Avaliação: 2 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

defi departamento de física

defi departamento de física dfi dpartamnto d físia Laboratórios d Físia www.dfi.isp.ipp.pt Cofiints d atrito státio inétio Instituto Suprior d Engnharia do Porto Dpartamnto d Físia Rua Dr. António Brnardino d Almida, 431 4200-072

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais