Capítulo 3 - Flexão de Peças Curvas

Tamanho: px
Começar a partir da página:

Download "Capítulo 3 - Flexão de Peças Curvas"

Transcrição

1 Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta nst plano. lgumas pótss: a) O plano qu ontém o xo da aa é tamém o plano da soltação; ) sção ta da pça admt plo mnos um xo d smta qu é oplana om o xo da aa. Esfoços soltants: a) Momnto Flto; ) Foça Nomal; ) Foça Cotant;.. Flxão Pua Consda-s, pmamnt, o aso d uma aa d sção tansvsal onstant sujta à flxão pua, poduzda po onjugados aplados m suas xtmdads. Convnção: O momnto flto é postvo quando tnd a tfa a pça. Hpóts Bása: s sçõs pmanm planas após a dfomação (sçõs as). Sção faá na posção f, após a dfomação, sofndo um go d d ; Sja uma fa gnéa g ompndda nt duas sçõs qu fomam um ângulo, a dfomação spífa da fa g sá:

2 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo ' ou g (R )d ε a dø g ' f Ø M C d dø y lna nuta M R a ' f g Como E, tm-s, E. (R )d. E. d (R ) posção da lna nutal pod s otda pla ondção da státa, ou sja, E. (R )d F n 0 d 0 d 0 Como E, R, d são onstants, tm-s, d R d 0 R (posção da lna nuta não passa plo ntód) d

3 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo Conndo-s R, a dstução d tnsõs faá onda fazndo-s a gualdad do momnto ntno da sção sstnt om o momnto aplado M. E. (R ) M. d x (R - ) ou M foça aço d alavana d d omo,. E. d (R ). M (R - ) R R d Ou ntão, M. (R - ) R d R d R d. d. d M R R d R d. d (R - ) 0 R... - R. - R. M (R - ) (R - ) M. (R - ) => Eq. das Tnsõs (Hpéol). ( R) No aso d y s postvo quando mddo a pat do xo nuto, na dção do nto d uvatua, tm-s, R = y = R y omo R, tm-s, M. y qu paa vgas tas,. (R y) M. y I

4 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo 4 máxma tnsão m módulo é smp vfada no lado ntno (ônavo) da pça. Tal fato povém do xo nuto sta dsloado na dção do nto d uvatua da pça. Tal xpssão só é válda paa a dstução d tnsõs m gm lásto m vgas sujtas somnt à momnto flto... Flxão Composta Paa o aso d a sção m studo sta sumtda a sfoços d flxão sfoços nomas, a tnsão nomal sá otda pla supposção dos ftos, atavés da quação a sgu. Nsta quação, a pma pala fon a tnsão nomal dvdo ao sfoço nomal na sção a sgunda, a tnsão nomal dvdo à flxão. P M. (R - ). ( R).4. Cálulo d R (Posção da Lna Nuta) Paa o aso d sçõs tangulas, tm-s, C d R R d, ond =. d d ln.ln o

5 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo 5 => ln R => ln R Fgua gométa Áa d a.ln Eo! Não é possívl a ojtos a pat d ódgos d ampo d dção. ln. a a a Dsnvolvndo-s as funçõs logaítmas m sé tomando-s o pmo tmo da sé, o qu paa / < ½ of psão sufnt, tm-s, 1 Paa o aso d sçõs ulas, tm-s, 1, ond é o ao da sção tansvsal.

6 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo Exmplo.1 Compata as tnsõs na vga d sção tangula d (0,50 x 0,50)m sumtda a um momnto flto d 000 kn.m paa os sgunts asos: a) Vga Rta; ) Vga Cuva om ao d uvatua na lna dos ntóds d,5 m; ) Vga Cuva om =0,75 m. Solução: a) Vga Rta W l ,810 mm máx M W Nmm 9MPa 0,810 Nmm ) Vga Cuva om = 500 mm.,5 0,5 750mm,5 0,5 50mm 500 R 491,4mm,75 ln,5 0,007 R,5,4914 0,008m 8,mm Logo, as tnsõs são: M R.. R Nmm 491, mm ,mm M R.. R Nmm 491, mm ,mm 10,8MPa 89,9MPa

7 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo 7 ) Vga Cuva om = 750 mm. 1000mm 500mm 500 R 71,48mm 1000 ln 500 R ,48 8,55mm M R.. R M R.. R , , , ,55 1,MPa 77,8MPa Eo pntual dvdo ao uso da L Lna 1 +,4-4,8 +1,5-1,5 +11,8-10,9 4 +8,1-8,4 5 +,4-7,0 10 +,4 -, Paa 10, é possívl paa o álulo d tnsõs, dspza-s o fto da uvatua da pça.

8 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo 8 Exmplo. Qual a aga máxma qu a pça aaxo sst sando-s qu, = 550 mm = 00 mm, qu o matal é fágl om t 100MPa 180MPa? y.y, , ,74mm M P.d P ,74 77,. P => Posção da Lna Nuta Rtângulo d 550.ln 75.ln ,87mm Tângulo d. 1 1, ln.ln, ,847mm

9 Pofsso Luano Rodgus Onlas d Lma -mal: luanolma@uj. Sala 501 Bloo 9 R d , ,00mm 1,87. 0, y ,74 47,mm omp M R.. R P 77,.P , , 45 P P omp 490,4 10.P tação M R.. R P 77,.P , , 45 P P tação 8,4.10.P 490,4.10.P 180 P 7,0KN Logo, P = 7 KN 8,4.10.P 100 P 419,4KN

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias).

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias). C Í T U L O 3 Flxão d ças Cuvas 3.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os cntos d gavdad das sçõs tansvsas da aa, camada lna dos cntos, sja uma cuva plana qu as sçõs tansvsas tnam um xo

Leia mais

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C.

6. Lei de Gauss Φ E = EA (6.1) A partir das unidades SI de E ( N / C ) e A, temos que o fluxo eléctrico tem as unidades N m 2 / C. 6. L d Gauss Tópcos do Capítulo 6.1. Fluxo léctco 6.. L d Gauss 6.3. Aplcaçõs da L d Gauss 6.4. Condutos m ulíbo lctostátco 6.1 Fluxo léctco Agoa u dscvmos o concto d lnhas do campo léctco ualtatvamnt,

Leia mais

Sumário e Objectivos. Placas e Cascas 7ªAula. Abril

Sumário e Objectivos. Placas e Cascas 7ªAula. Abril Sumáio Objctivos Sumáio: Placas Ciculas Objctivos a Aula: Apnsão os Métoos Solução a Equação Lagang paa Placas Ciculas cagaas apoiaas simticamnt. Abil Abil Placas Ciculas O Sistma Eixos é um sistma coonaas

Leia mais

Transistores Bipolares de Junção Parte II Transistores Bipolares de Junção (TBJs) Parte II

Transistores Bipolares de Junção Parte II Transistores Bipolares de Junção (TBJs) Parte II ansstos Bpolas d Junção Pat ansstos Bpolas d Junção (BJs) Pat apítulo 4 d (SDA SMH, 1996). SUMÁO 4.7. O anssto oo Aplfado 4.8. Modlos qualnts paa Pqunos Snas 4.9. Análs Gáfa 4.7. O ANSSO OMO AMPLFADO Paa

Leia mais

Métodos de cálculos de esforços no processo de conformação de metais. Forjamento

Métodos de cálculos de esforços no processo de conformação de metais. Forjamento Métoos cálculos sfoços no ocsso confomação mtais Fojamnto Métoos Anális Métoo a fomação omogêna Métoo a fatia lmnta (locos) Métoo o limit suio infio Métoo as linas slizamnto Métoo a visualização Métoo

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco Mcânica dos Matiais Instabilidad d Colunas 10 Tadução adaptação: Victo Fanco Rf.: Mchanics of Matials, B, Johnston & DWolf McGaw-Hill. Mchanics of Matials, R. Hibbl, asons Education. Estabilidad d Estutuas

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

AULA 5 - CONDUÇÃO DE CALOR EM CILINDROS COM GERAÇÃO INTERNA DE CALOR e COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR

AULA 5 - CONDUÇÃO DE CALOR EM CILINDROS COM GERAÇÃO INTERNA DE CALOR e COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR Notas d aula d PME 6 Pocssos d ansfênca d Calo 8 AUA 5 - CONDUÇÃO DE CAO EM CIINDOS COM EAÇÃO INENA DE CAO COEFICIENE OBA DE ANSFEÊNCIA DE CAO Nsta aula, va s studa o caso da gação ntna d calo m cdos macços.

Leia mais

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2.

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2. Aula 9 Nsta aula, continuamos o capítulo 4 do livo txto, ond agoa invstigamos as fitos do movimnto témico, qu oa dsconsidamos, nas oscilaçõs natuais d létons. 4.3 Ondas Eltônicas d Plasma Vimos qu a fqüência

Leia mais

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos Soluçõs das FICHA DE TRABALHO Popidads das opaçõs sob conjuntos a) {,, 5} {,,, 5} {,, } {,, 5} ) {} f) {} g) {, 5} h) {,,, 5} i) Q j) {} k) {} l) Q m) {,, 5} a) {, 5,, 7, 8, 9, } {, 8, } {, 5} {, 7, 9}

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Aula 25: O Amplificador Emissor Comum com Resistor de Emissor (EC c/ R E ) (p )

Aula 25: O Amplificador Emissor Comum com Resistor de Emissor (EC c/ R E ) (p ) ula 25: O mplfcado Emsso Comum com ssto d Emsso (EC c/ E ) (p.293-295) 160 160 Eltônca I PSI3321 Pogamação paa a Sgunda Poa (cont.) Sda, Cap. 5 p. 246 + 264-269 21ª 02/06 náls cc d ccutos com tansstos,

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL

Admite-se a possibilidade da espessura da parede variar ao longo do comprimento da linha média. Eduardo Nobre Lages CTEC/UFAL Univrsidad Fdral d Alagoas Cntro d cnologia Curso d Engnharia Civil Disciplina: Mcânica dos Sólidos Código: ECIV030 Profssor: Eduardo Nobr Lags orção m Barras d Sção ransvrsal Dlgada Fchada Mació/AL Sção

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Difusão e Resistividade. F. F. Chen Capítulo 5

Difusão e Resistividade. F. F. Chen Capítulo 5 Dfusão Rsstvdad F. F. Chn Capítulo 5 1- Paâmtos d Colsõs Conctos báscos Paâmtos Dfusão m um Gás d Patículas Nutas Scção d Choqu Paâmtos Báscos Lv camnho médo scção d choqu Tmpo médo nt colsõs Fquênca méda

Leia mais

ÁTOMO DE HIDROGÉNIO z

ÁTOMO DE HIDROGÉNIO z ÁTOMO DE HIDROGÉNIO z quivalnt y V ( x, y, z V ( 4 0 x m n m m n - massa do núclo m - massa do lctão - massa duzida m n ~ 000 m ~ m COORDENADAS ESFÉRICAS (,, Rn. ll, ( n, l, m m m n l, l, (,, m l Obital

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Sistemas de coordenadas em movimento

Sistemas de coordenadas em movimento Sistmas d coordnadas m movimnto Na suprfíci da Trra stamos m movimnto d translação m torno do Sol rotação m torno do ixo trrstr, além, é claro, do movimnto qu o sistma solar intiro tm pla nossa galáxia.

Leia mais

9 a Aula. Teoria do Adensamento

9 a Aula. Teoria do Adensamento cânica do Solo Fundaçõ PEF 5 9 a ula Toia do dnamnto Rcalqu po adnamnto u dnolimnto no tmpo Camada Compíl Compão Uni-Dimional - Enaio d dnamnto Condição K o - Dfomação latal nula. Fluxo d água - tical

Leia mais

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço 3 Modlo paa o Sstma d Contol (, com Nívl d Svço No Capítulo, fo apsntado um modlo paa o sstma d contol d stou (,, ond a dmanda é uma vaávl alatóa contínua sgundo uma dstbução nomal, uando foam consdados

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I. Associação d Profssors d Matmática Contactos: Rua Dr João Couto, nº 7-A 100-6 Lisboa Tl: +1 1 716 6 90 / 1 711 0 77 Fa: +1 1 716 64 4 http://wwwapmpt mail: gral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 63) ª FASE 1 DE JULHO 014 Grupo I Qustõs 1 3 4 6 7 8 Vrsão 1 C B B D C A B C Vrsão B C C A B A D D 1 Grupo II 11 O complo

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Ondas - 2EE 2003 / 04

Ondas - 2EE 2003 / 04 Ondas - 3 / 4 1 Inodução 1.1 Conco d onda móvl Uma função f dscv o pfl d vaação d uma onda móvl vlocdad v no spaço no mpo. Paa qu o pfl d vaação f caac uma onda móvl dv sasfa a quação d onda sgun: f 1

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

n = η = / 2 = 0, c

n = η = / 2 = 0, c PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur,

Leia mais

AMPLIFICADORES A TRANSISTOR

AMPLIFICADORES A TRANSISTOR MINISTÉIO D DUÇÃO STI D DUÇÃO POFISSION TNOÓGI INSTITUTO FD D DUÇÃO, IÊNI TNOOGI D SNT TIN USO D TOMUNIÇÕS Áa d onhcmnto: ltônca I MPIFIDOS TNSISTO Pofsso: Pdo mando da Sla J São José, nomo d 213 1 1 MPIFIDOS

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM º CICLO D DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tma II Introdução ao Cálculo Difrncial II Aula nº 4 do plano d trabalho nº 9 Rsolvr os rcícios 87, 88, 89, 90 9 os rcícios 9

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eltomagntsmo II o Smst 007 Notuno - Pof. Alvao Vannu 7 a aula 08/ma/007 Vmos: Inêna Oblíqua, ntfa léto/onuto. mo mo K planos ampltu onstant K t z K K t planos fas onstant ângulo al Vmos: K Kt + Kt K +

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma.

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma. Aula 8 Nsta aula, iniciamos o capítulo 4 do livo txto, ond imos analisa váios fnômnos ondulatóios m plasma. 4.Ondas m Plasma 4. Rpsntação das Ondas Qualqu movimnto piódico num fluido, pod s dcomposto atavés

Leia mais

Aula 11 Mais Ondas de Matéria II

Aula 11 Mais Ondas de Matéria II http://www.bugman3.com/physics/ Aula Mais Ondas d Matéia II Física Gal F-8 O átomo d hidogênio sgundo a Mcânica Quântica Rcodando: O modlo atômico d Boh (93) Motivação xpimntal: Nils H. D. Boh (885-96)

Leia mais

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo:

setor 1103 Aula 39 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO Então, 1. INTRODUÇÃO Duas retas r e s de um plano podem ser: Distintas: r s = Exemplo: to 58 Aula 9 POSIÇÕES RELATIVAS DE DUAS RETAS NO PLANO. INTRODUÇÃO Dua ta d um plano podm : Ditinta: = Emplo: Então, O coficint angula ão iguai. O coficint lina ão difnt. Paalla b) ão PARALELAS COINCIDENTES.

Leia mais

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES LTROMAGNTIMO TT 4 d Abil d 009 ROLUÇÕ a Dvido à simtia das cagas, o campo léctico m qualqu ponto no io dos é paallo a ss io, ou sja a componnt é smp nula Paa > 0, o sntido do y campo léctico é o sntido

Leia mais

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino Tanssto Bpola d Junção TBJ Cap. 4 Sda/Sth Cap. 7 Boylstad Cap. 9 Malno Análs Pqunos Snas Notas d Aula SEL 313 Ccutos Eltôncos 1 Pat 5 1 o S/2016 Pof. Manol Modlos Pqunos Snas do TBJ Tas odlos são úts paa

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B:

(a) Temos para uma transformação adiabática que p 1 V γ. 2 p 2 = p 1 V 2. Prova A: = 1 atm 4 1,4 6, 96 atm. p 2 = 1 atm. Prova B: 1. (2 pontos) Suponha qu o ar ontdo m uma bomba manual d nhr bola possa sr tratado omo um gás dal (γ 1, 4). Consdr nalmnt 210{240} m 3 d ar a uma tmpratura d 20{40} C a uma prssão d 1 atm. S st volum d

Leia mais

Introdução à Física Quântica

Introdução à Física Quântica Intodução à Físca Quântca m 9, Planck popõ uma xplcação paa a mssão d adação d um copo aqucdo, ou copo ngo. l ntoduz a déa d qu os osclados só podam mt ou absov nga m múltplos ntos d um quantum d nga.

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ECÂNCA - E 00 Sgunda oa 5 d ao d 07 Duação da oa: 0 nutos (não é ptdo uso d dspostos ltôncos ª Qustão (5 pontos As quato aas atculadas A C CD DA d guas copntos psos foa u canso plano lgado ao ponto fxo

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Dpartamnto d Engnharia Mcânica PME-50 MECÂNICA DOS SÓLIDOS II Profs.: Cso P. Psc R. Ramos Jr. 1 a Prova 15/09/011 Duração: 100 minutos 1 a Qustão (5,0 pontos):

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B Prof a Graça Luzia INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B - 008. Prof a Graça Luzia A LISTA DE EXERCÍCIOS ) Usando a dfinição, vrifiqu s as funçõs a sguir são drivávis m 0 m

Leia mais

F = ma. Cinética Plana de uma Partícula: Força e Aceleração Cap. 13. Primeira Lei (equilíbrio) Segunda Lei (movimento acelerado) Terceira Lei

F = ma. Cinética Plana de uma Partícula: Força e Aceleração Cap. 13. Primeira Lei (equilíbrio) Segunda Lei (movimento acelerado) Terceira Lei Objtivos MECÂNIC - INÂMIC Cinética Plana d uma Patícula: Foça clação Cap. 3 Establc as Lis d Nwton paa Movimntos tação Gavitacional dfini massa pso nalisa o movimnto aclado d uma patícula utilizando a

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 195 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT 9 CÁLCULO DIFERENCIAL E INTEGRAL I Atualizada m 00. A LISTA DE EXERCÍCIOS Drivadas d Funçõs Compostas 0. Para cada uma das funçõs sguints,

Leia mais

Escolha Intertemporal

Escolha Intertemporal Univsidad Fdal d Santa Cataina Fom th SltdWoks of Sgio Da Silva 00 Esolha Inttmpoal Sgio Da Silva Availabl at: https://woksbpssom/sgiodasilva/39/ Esolha Inttmpoal Hal R Vaian Intmdiat Mioonomis, 8th dition

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

Antenas. É prática comum a introdução de funções auxiliares, chamadas de potenciais, que irão dar uma ajuda na resolução dos problemas.

Antenas. É prática comum a introdução de funções auxiliares, chamadas de potenciais, que irão dar uma ajuda na resolução dos problemas. ntnas inas - Funçõs potnciais auxiias Na anáis dos pobmas d adiação o pocdimnto noma é o d s spcifica as fonts d adiação do dpois ncssáio obt o campo adiado pas fonts. É pática comum a intodução d funçõs

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

FUNDAMENTOS DE ENERGIA ELÉCTRICA LINHA ELÉCTRICA DE ENERGIA

FUNDAMENTOS DE ENERGIA ELÉCTRICA LINHA ELÉCTRICA DE ENERGIA FUNAMENOS E ENEGA EÉA of. José Sucna aiva sistência ρ 0 6 Ω/m S ρ sistividad do matial (Ω.m) S scção do conduto (mm ) [ ( )] α α coficint d tmpatua Matial Aço Alumínio Bonz ob ata sistividad (µω.cm) -88,83

Leia mais

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260

FICHA DE AVALIAÇÃO 1 FICHA DE AVALIAÇÃO 2. Grupo I 1 A 2 D 3 A 4 C 5 B. Grupo II. 6 4 rapazes pontos. 8 a) 5040 b) 720 c) 1260 FICHA DE AVALIAÇÃO A D A C 5 B I 6 apazs 7 5 pontos a) 5 b) 7 c) 6. ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 5 C 5 5 C y 5 C y 5 C y 5 C y 5 C 5 y 5 ( y) 5 ( y) 5 ( 5 C 5 5 C y 5 C y ) ( 5

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada Rsolução do am d nális Matmática I (//) Cursos: C, GE, GEI, IG ª Chamada Ercício > > como uma função ponncial d bas mnor do qu ntão o gráfico dsta função é o rprsntado na figura ao lado. Esta função é

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA SOLUÇÃO D EQUÇÃO DE LPLCE PR O POTENCIL DE LIGÇÃO IÔNIC Bathista,. L. B. S., Ramos, R. J., Noguia, J. S. Dpatamnto d Física - ICET - UFMT, MT, v. Fnando Coa S/N CEP 786-9 Basil, -mail: andlbbs@hotmail.com

Leia mais

CAMPOS ELÉCTRICOS. Formalismo do Electromagnetismo (equações de Maxwell)

CAMPOS ELÉCTRICOS. Formalismo do Electromagnetismo (equações de Maxwell) CAMPOS ELÉCTRICOS Fomalsmo do Elctomagntsmo (quaçõs d Maxwll) Explcatvo d todos os fnómnos qu nvolvm popdads léctcas magnétcas PROPRIEDADES DAS CARGAS ELÉCTRICAS Exstm dos tpos d cagas: postvas ngatvas.

Leia mais

Compressão Paralela às Fibras

Compressão Paralela às Fibras Comprssão Paralla às Fibras Critério imnsionamnto pn o íni sbltz (λ): λ x ou L 0 x ou i x ou i x ou é o raio giração m rlação aos ixos prinipais a sção transvrsal o lmnto strutural L 0 o omprimnto lambagm

Leia mais

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(

Leia mais

TRANSFERÊNCIA DE CALOR

TRANSFERÊNCIA DE CALOR RNSFERÊNCI DE CLOR Condução, Convcção Radação Rgm pmannt gm vaávl Jog lbto lmda //00 CONDUÇÃO k d d W d k d W/m taa d tansfênca d calo na dção (W fluo d calo na dção (W/m k condutvdad témca do matal (W/m

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo Poblmas d Elctomagntismo Óptica LEAN + MEA.3 Elctostática: Momnto dipola; Engia d um dipolo P-.3. Most u o campo lctostático o potncial d um dipolo léctico num ponto a uma distância do cnto do dipolo,

Leia mais

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). f : A B, significa qu f é dfinida no conjunto A (domínio - domain) assum valors m B (contradomínio rang). R é o conjunto dos rais; R n é o conjunto dos vtors n-dimnsionais rais; Os vtors m R n são colunas

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica SCOL POLITÉCNIC D NIVRSIDD D SÃO PLO Dpartamnto d ngnharia Mânia PM00 Mânia dos Sóidos I a Prova /05/0 Duração: 00 minutos a Qustão (50 pontos): figura ao ado iustra uma hapa num stado pano uniform d tnsõs

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão).

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão). ENCE CÁLCULO DE PROBABILIDADE II Smstr 9 Proa Monia Barros Lista d ríios SOLUÇÕES (PARTE) Problma Sjam X Y va ontínuas om dnsidad onjunta: (, ) +, a) Enontr a onstant qu a dsta prssão uma dnsidad b) Enontr

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais