Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Tamanho: px
Começar a partir da página:

Download "Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo"

Transcrição

1 nvrsa Fral Santa Catarna Cntro Cênas Físas Matmátas Dpartamnto Matmáta MTM Pré-álulo 1 a lsta xríos (31/07/2017 a 04/08/2017) 1. Rprsntar por numração, os sgunts onjuntos: = {x N x < 6}; = {x Z 3 < x 4}; C = {x N x < 11 x é par}; D = {x N x é vsor 12}; E = {x N x < 30 x é múltplo 7}; F = {x N 0 x = 5}; G = {x N 0 x = 0}; () H = {x Z x é ímpar}; () I = {x N x 2 = 9}; (j) J = {x Z x 2 = 1}; (k) K = {x Z x > 4 x < 3}; (l) L = {x Z x > 4 ou x < 3}. 2. Rprsntar, através uma propra onvnnt, os sgunts onjuntos: = {0, 5, 10, 15, 20,...}; = {1, 2, 3, 6}; C = {..., 5, 3, 1, 1, 3, 5, 7,...}; D = {0, 1, 2, 3, 4, 5, 6, 7}; E = {3, 2, 1, 0, 1,...}. 3. Dzr s é vrara ou alsa aa uma as sntnças abaxo: 2 {1, 2, 3, 4}; 0 {1, 2}; 5 / {1, 2}; 1 / {1, 2, 3}; = {0}; = { }; 4 = {4}; () 5 N; () 1 / N; (j) 4 N; (k) 0 / Z; (l) 1 Z; (m) 2 / Z; (n) x x ; (o) x x ; (p) 3 {3}; (q) {3} 3; (r) 0 ; (s) 2 ; (t) 0 /. 4. Obsrvano o agrama Vnn-Eulr ao lao, srvr por numração os onjuntos: C = {x x x }; D = {x x ou x }; E = {x x x / }; a b F = {x x x / }; G = {x x x / }; H = {x x x / }; () I = {x x ou x }; J = {x x x / D}. g 1

2 5. Dtrmn o númro lmntos aa um os onjuntos,, C,..., J o xrío antror. 6. Consr os onjuntos = {1, 2, 5}, = {2, 4, 5, 6, 8} o onjunto unvrso = {1, 2, 3, 4, 5, 6, 7, 8}. Dsnar um agrama Vnn-Eulr rprsntano sss onjuntos. 7. Obsrvano o agrama o xrío antror, srva por numração os sgunts onjuntos: C = {x x x }; D = {x x ou x }; E = {x x x / }; F = {x x / x / }. 8. Em um grupo 29 pssoas, sab-s qu 10 são sóas um lub, 13 são sóas um lub 6 são sóas ambos. Quantas pssoas o grupo não são sóas nm? Quantas pssoas o grupo são sóas apnas o lub? Quantas pssoas o grupo são sóas ou? Sgstão: rprsnt os onjuntos m um agrama Vnn-Eulr. 9. Consr = {, 4, {4}, 5, 3} ga s é vraro ou also: 4 / ; {4} ; 5 ; {5} ; ; 2 / ; { } ; () {3} ; () 3 /. 10. Em uma sola om 450 alunos, sab-s qu: 217 jogam vôl, 276 jogam utbol 29 não pratam vôl nm utbol. Nssas onçõs, trmnar quantos alunos pratam utbol vôl. 11. Obsrvano o agrama ao lao, srvr por numração os sgunts onjuntos: ; D = {x x x }; E = {x x ou x C}; F = {x x, x x C}; G = {x x x / C}; H = {x x x / }. x b g o n p a m l C j z y 12. Obsrvano o agrama o xrío antror, trmnar: n(), lmbrano qu n(x) rprsnta o númro lmntos o onjunto X; n(j), m qu J = {x x ou x ou x C}; n(l), m qu L = {x x x C}; n(m), m qu M = {x x C ou x }; n(p ), m qu P = {x x x / M}; n(q), m qu Q = {x x x M}; n(r), m qu R = {x x x / M}. 2

3 13. Dzr s é vraro ou also: {1, 2, 3} = {3, 1, 2}; {1, 4, 5, 4} = {1, 4, 5}; {0, 1, 2} = {0, 1}; {a, b, a} = {a, b, }; {x N 2x = 5} = ; {x N 0 x = 0} = ; {x x é ltra a palavra banana} = {a, b, n}. 14. Consr = {0, 1, 2, 3} ga s é vraro ou also: 1 ; 4 ; 2 / ; 5 / ; 1 ; {1} ; {1, 3} ; () ; () ; (j) {1, 2, 3, 4} ; (k) {2, 5, 6} ; (l) {0, 5} ; (m){4, 5} ; (n) {0} ; (o) {0} ; (p) {1} / ; (q) {1} ; (r) {0, 1, 2, 3} ; (s) {1, 2} ; (t) {1, 2}. 15. Consr o onjunto = {1,, {1, 5}, {1}, 5} ga s é vraro ou also: 1 ; 1 ; {1} ; {1} ; {5} ; {5} ; ; () ; () {1, 5} ; (j) {1, 5} ; (k) {1, {1}} ; (l) {1, {1, 5}, {5}}. 16. Para aa um os onjuntos abaxo, trmnar por numração o onjunto as parts o su númro lmntos: = {2, 3}; = {5}; C = {2, 4, 6}; D = ; E = {0, 1, 2, 3}. 17. Consr = {0, 1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 6, 8, 9} trmn por numração os onjuntos: ; ; ;. 18. Obsrvano o agrama Vnn-Eulr ao lao, trmn por numração: ; ; ; ; ; ;. g a j b Obsrvação: lmbr-s qu X nota o omplmntar X, sto é X = {x x / X}. 3

4 19. No agrama Vnn-Eulr abaxo, aa rgão o nomnaa om um númro ntr parêntss. Inar as rgõs qu trmnam: ; ; ; (2) (1) (3) ; ; ; ; () ; (). (4) 20. Consr o agrama Vnn-Eulr o xrío antror. sano apnas os onjuntos, sus omplmntars apnas a opração ntrsção, aratrz aa uma as quatro rgõs o agrama. Exmplo: rgão (1) é aa por. 21. Sjam subonjuntos E tas qu: n() = 2549, n() = 1217, n( ) = 412 n(e) = Dtrmn n(e ( )). Sugstão: obsrv o xrío Em um unvrso 1000 pssoas, o ta uma psqusa a rspto o onsumo três proutos, C, obtno-s os rsultaos a tabla ao lao. Dtrmn quantas pssoas qu onsomm: somnt o prouto ; ou ; ou ou C; nnum os três proutos. Prouto(s) Consumors C C 275 C 300, C Nos agramas sgunts, pntar as rgõs qu trmnam o onjunto, m aa aso. 24. Faça o msmo nas guras o xrío ama para,. 4

5 25. Consr = {0, 1, 4, 6, 7, 8, 9}, = {0, 1, 2, 3, 6} o onjunto unvrso = {x N x 10}. Faça um agrama, m sgua, trmn: n( ); n( ); n(); n(); n( ); n( ). 26. Sobr três onjuntos, C, sab-s qu: n( C) = 4, n( ) = 6, n( C) = 7, n( C) = 14, n() = 15, n( ) = 34, n( C) = 41. Nstas onçõs, trmnar: n(); n(c); n( C); n( ); n(c ); n(( ) C). 27. Dtrmn o númro subonjuntos {x N 1 x 8}. 28. Dzr s é vraro ou also. No aso sr vraro, justqu, no aso sr also, orrja a sntnça. S, ntão =. S =, ntão. S, ntão =. S =, ntão. S, ntão =. S =, ntão =. S, ntão =. () S =, ntão =. () =,. (j) =,. (k) S =, ntão n( ) = n() + n(). (l),. 29. Sjam subonjuntos tas qu n() = 80, n() = 60, n( ) = 117 n() = 200. Dtrmn: n( ); n( ); n( ); n( ). 30. Consr = {1, 2} = {3, 4, 5} trmn por numração os sgunts onjuntos: ; ; ; 2 ;. 31. Consr os onjuntos = {1, 3}, = { 2, 1, 2} C = { 1, 0, 1, 4} trmn por numração os sgunts onjuntos: C; 3. Lsta xríos rtraa aaptaa. Z. rana M.. Rorgus Exríos Matmáta - vol. 1, Rvsão 1 o grau. Sguna ção, Etora Polarpo, São Paulo,

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) partamnto Engnhara Elétra Tópo Epa m Enrga Elétra Projto nror onror - Aula 3. Molagm o onror: Molo a ha PWM Prof. João Améro lla Bblografa HAT,. W. Eltrôna Potêna - Anál Projto ruto. AMGH Etora TA, 23.

Leia mais

/ d0) e economicamente (descrevendo a cadeia de causação

/ d0) e economicamente (descrevendo a cadeia de causação UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroconoma I º Smstr 27 Profssor Frnano Rugtsky Lsta Exrcícos [] Consr uma macroconoma scrta

Leia mais

n = η = / 2 = 0, c

n = η = / 2 = 0, c PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur,

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta? Abuso Sual nas Escolas Não dá para acitar Por uma scola livr do SID A Rpública d Moçambiqu Matmática Ministério da Educação ª Época ª Class/0 Conslho Nacional d Eams, Crtificação Equivalências 0 Minutos

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL 01 RESOLUÇÕES voc PÁGINA 5 58 25 É imdiato qu a probabilidad pdida é igual a 1 8 voc 59 LETRA C O númro total d qustõs é dado por 125 + 98 + 40 + 25 798 Q A probabilidad d Camilla

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES PÁGINA 26 16 A) COMBINAÇÃO SIMPLES Bca possui 12 pars d sapatos dos quais la vai scolhr 5 pars. Algumas das maniras são rprsntadas plas imagns abaixo: 5 pars

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroconoma I º Smstr 27 Príoo Durno Profssors: lbrto Tau Lma Pro arca Duart Lsta Exrcícos

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matmática A Etnsivo V. 6 Rsolva.) a) Aula. ( )

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 10 Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -I Aula Toria dos Joos auríio Buarin otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que

MATRIZES 04) (FATEC-SP) Seja A a ij uma matriz quadrada de . Nessas ordem 2 tal que MATRIZES www.profssortnan.com.br 0) (PUC) A matrz A d ordm dfnda por a. é dada por: 4 6 4 6 b) 4 4 6 4 6 ) 0) (UFBA) A matrz, com 0 4 b) 0 4 0 ) 4 a, s, é: a, s 0) S A ( a ) é a matrz quadrada d ordm,

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 NÚMEROS COMPLEXOS FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 3 NÚMEROS COMPLEXOS. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO º ANO COMPILAÇÃO TEMA NÚMEROS COMPLEXOS St: http://wwwmathsuccsspt Facbook: https://wwwfacbookcom/mathsuccss TEMA NÚMEROS COMPLEXOS Matmátca A º Ano Fchas d Trabalho Complação Tma Númros

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _. CONCURSO PÚBLICO MATEMÁTICA GRUPO MAGISTÉRIO Rsrvado ao CEFET-RN 4/MAIO/6 Us apnas canta sfrográfica azul ou prta. Escrva o su nom o númro do su CPF no spaço indicado nsta folha. Confira, com máima atnção,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 7 Teoria dos Jogos Maurício Bugarin. Roteiro Tora dos Jogos Prof. Mauríco Bugarn Eco/UnB 4-I Rotro Capítulo : Jogos dnâmcos com nformação complta. Jogos Dnâmcos com Informação Complta Prfta Forma xtnsva Estratégas Equlíbro d Nash Subjogos qulíbro

Leia mais

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha.

Divisão (cont.) Obter TODOS os nomes dos empregados que trabalham em TODOS os projectos nos quais Joao trabalha. projectos em que Joao trabalha. 16 Divisão (cont a opração d divisão é útil para qustõs como: Obtr TODOS os noms dos mprgados qu trabalham m TODOS os projctos nos quais Joao trabalha projctos m qu Joao trabalha projctos EBIs d mprgados

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

NOTAS DE AULA N. 4: CONCORRÊNCIA PERFEITA

NOTAS DE AULA N. 4: CONCORRÊNCIA PERFEITA UNIVERSIDADE EDERAL DO RIO GRANDE DO SUL URGS DEPARTAENTO DE ECONOIA CURSO DE CIÊNCIAS ECONÔICAS DISCIPLINA: TEORIA ICROECONÔICA II Prmro Smstr/00 Profssor: Sabno a Slva Porto Júnor Estago Docênca: Rafal

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Lista de Exercícios 9 Grafos

Lista de Exercícios 9 Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9 Gros Ciênis Exts & Engnhris 1 o Smstr 2018 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção tm um rst

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328

MAC0328 Algoritmos em Grafos AULA 1. Edição MAC0328 Algoritmos em Grafos. Administração MAC0328 MAC0328 MAC0328 Algoritmos m Gros AULA 1 Eição 2011 MAC0328 Algoritmos m Gros Aministrção Págin isiplin: uls, stro, órum,... http://p.im.usp.r/ Liro: PF = Pulo Folo, Algoritmos pr Gros m C i Sgwik www.im.usp.r/

Leia mais

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas

Estatística. 6 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas Estatística 6 - Distribuiçõs d Probabilidad d Variávis Alatórias Contínuas 06 - Distribuição Uniform Variávl alatória contínua podndo assumir qualqur valors dntro d um intrvalo [a,b] tal qu: f ( x) para

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Amplificadores Diferenciais

Amplificadores Diferenciais UFB Unrsa Fral a Baha Esola Polténa Dpartamnto Engnhara Elétra mplfaors Dfrnas maur Olra Mao 0 Caratrístas: Dfnção mplfaor Dfrnal mplfaor a Dfrnça os snas; Duas ntraas (os snas m rlação ao trmnal rfrêna)

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXIX Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXIX Olimpíaa Brasilira Matmátia GABARITO Sguna Fas Soluçõs Nívl Sguna Fas Part A PARTE A Na part A srão atribuíos pontos para aa rsposta orrta a pontuação máxima para ssa part srá 0. NENHUM PONTO vrá

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão).

g) Faça o gráfico da média condicional de X dado Y = y versus y (a curva de regressão). ENCE CÁLCULO DE PROBABILIDADE II Smstr 9 Proa Monia Barros Lista d ríios SOLUÇÕES (PARTE) Problma Sjam X Y va ontínuas om dnsidad onjunta: (, ) +, a) Enontr a onstant qu a dsta prssão uma dnsidad b) Enontr

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson

ModelosProbabilísticos paravariáveis Discretas. Modelo de Poisson ModlosProbabilísticos paravariávis Discrtas Modlo d Poisson Na aula passada 1 Dfinimos o concito d modlo probabilístico. 2 Aprndmos a utilizar o Modlo Binomial. 3 Vimos como o Modlo Binomial pod facilitar

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

3 Proposição de fórmula

3 Proposição de fórmula 3 Proposição fórmula A substituição os inos plos juros sobr capital próprio po sr um important instrumnto planjamnto tributário, sno uma rução lgal a tributação sobr o lucro. Nos últimos anos, a utilização

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

H H H H H H H H H H H 8 9, (18 1, 41

H H H H H H H H H H H 8 9, (18 1, 41 INSTITUT SUPERIR TÉNI Química Gral ursos d Engnharia ivil, Trritório Naval 1º Smstr d 2005-2006 1º Tst (2005-11-15) (Duração: 2,5 horas) I (Lab) 1. Apliqu o modlo do lctrão livr calcul o máx. d absorção

Leia mais

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster

Primeira Prova de CTC-20 Estruturas Discretas 24/09/2009 Prof. Carlos Henrique Q. Forster Primir Prov CTC-0 Estruturs Disrts 4/09/009 Pro Crlos nriqu Q Forstr om: GABARITO 40 pontos Consir Z n { 0 n } Z é um grupo on é oprção ou-xlusivo Mostr qu oprção ou-xlusivo it--it m plvrs 3 its orm um

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina: ~ am/328. Livro:

MAC0328 Algoritmos em Grafos. Administração. MAC328 Algoritmos em Grafos. Página da disciplina:  ~ am/328. Livro: MAC0328 Algoritmos m Gros MAC328 Algoritmos m Gros Arnlo Mnl 1º Smstr 2012 http://spikmth.om/250.html Algoritmos m Gros 1º sm 2012 1 / 1 Págin isiplin: Aministrção Algoritmos m Gros 1º sm 2012 2 / 1 Liro:

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão)

Disciplina: Programação 1 Professor: Paulo César Fernandes de Oliveira, BSc, PhD. Lista de Exercícios JavaScript 8 (revisão) Disiplin: Progrmção 1 Profssor: Pulo Césr Frnns Olivir, BS, PhD List Exríios JvSript 8 (rvisão) 1. O qu ont o s xutr progrm ixo? jvsript: - funtion utorizr(snh){ if(snh == "luno"){ lrt("bm-vino!"); ls{

Leia mais

AULA 12. Otimização Combinatória p. 342

AULA 12. Otimização Combinatória p. 342 AULA 2 Otimizção Comintóri p. 342 Emprlhmntos pso máximo Otimizção Comintóri p. 343 Emprlhmntos Um mprlhmnto m um gro (não-orinto) é um onjunto rsts qu us--us não tm pont m omum. Exmplo: {, } {, } ormm

Leia mais

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A = ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a + -7 0 a a + a. 0) Escrva a matriz

Leia mais

Os Modelos CA para Pequenos Sinais de Entranda Aula 7

Os Modelos CA para Pequenos Sinais de Entranda Aula 7 Os Molos CA para Pqunos Snas Enrana Aula 7 PS/EPUSP Aula Maéra Cap./págna ª 6/02 2ª 9/02 3ª 23/02 4ª 26/02 5ª 0/03 6ª 04/03 7ª 08/03 8ª /03 9ª 5/03 0ª 8/03 PS/EPUSP Elrônca PS332 Programação para a Prmra

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

Capítulo 3 - Flexão de Peças Curvas

Capítulo 3 - Flexão de Peças Curvas Capítulo - Flxão d Pças Cuvas.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os ntos d gavdad das sçõs tansvsas da aa, amada lna dos ntos, sja uma uva plana qu as sçõs tansvsas tnam um xo d smta

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento.

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento. Prnchimnto d Áras Algoritmo Scanlin Fonts: Harn & Bakr, Cap. - Apostila CG, Cap. Prnchimnto d Áras Problma d convrsão matricial d áras gométricas Aproimar uma primitiva gométrica por pils Primitivas D

Leia mais

5. MODELOS MECÂNICOS - N GL

5. MODELOS MECÂNICOS - N GL BRAÇÕE MECÂNCA - CAPÍUO 5 - MODEO MECÂNCO 6 5. MODEO MECÂNCO - N G O studo das vbraçõs lvrs orçadas d sstas ânos, o odlos dsrtos, sto é, o N graus d lbrdad, é to a partr d odlos obtdos através d uaçõs

Leia mais

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Page 1

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Page 1 Prnchimnto d Áras Algoritmo Scanlin Fonts: Harn & Bakr, Cap. Curso CG, Univrsity of Lds (Kn Brodli): http://www.comp.lds.ac.uk/kwb/gi/lcturs.html Apostila CG, Cap. Prnchimnto d Áras Problma d convrsão

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

Solução. à sua esquerda. ficam à Q 1. ficam à. esquerda. ficam à. ficam à. ficam à P 70. d. K. g. Q. h. P 2. ficam à K 2. ficam à.

Solução. à sua esquerda. ficam à Q 1. ficam à. esquerda. ficam à. ficam à. ficam à P 70. d. K. g. Q. h. P 2. ficam à K 2. ficam à. Exrcícios sobr Sparatrizs EXERCÍCIOS SOBRE SEPAR RATRIZES (Extraídos do livro txto do Mdiros p. 777 a 0). Em uma séri ordna, qual éo prcntual d lmntos qu squr d ca uma s mdis sparatrizs: a. D b. Q c. K

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Univrsidad Fdral do Rio d Janiro INSTITUTO DE MATEMÁTICA Dpartamnto d Matmática Gabarito da 1 a prova d Gomtria difrncial - 20/09/2018 - Mônica 1. Sja α(s) uma curva rgular plana paramtrizada plo comprimnto

Leia mais

A função de distribuição neste caso é dada por: em que

A função de distribuição neste caso é dada por: em que 1 2 A função d distribuição nst caso é dada por: m qu 3 A função d distribuição d probabilidad nss caso é dada por X 0 1 2 3 P(X) 0,343 0,441 0,189 1,027 4 Ercícios: 2. Considr ninhada d 4 filhots d colhos.

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc o c voc RESOLUÇÃO voc A1 [A] valors ínio áxio igual a -1 1. Portanto, b =. Coo o valor édio a dfasag são nulos a = 0 k = 0. T-s a sguint função: Os valors

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

As questões de 31 a 34 referem-se ao texto abaixo.

As questões de 31 a 34 referem-se ao texto abaixo. QUÍMICA As qustõs 31 a 34 rfrm-s ao txto abaixo. Quano a massa nuvns gás poira uma nbulosa s ansa, a tmpratura aumnta, atingino milhõs graus Clsius. Então, átomos hirogênio s funm, grano gás hélio, com

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

4 Modelos para rochas consolidadas e não consolidadas

4 Modelos para rochas consolidadas e não consolidadas 4 Molos para rochas consoliaas não consoliaas No capítulo antrior, aprsntou-s um molo física rochas calibrávl para o rsrvatório m qustão, qu é o molo proposto para ralizar stimativas prssõs poros, qu srá

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180 Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto

Leia mais