ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros"

Transcrição

1 ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar todas as grandzas m trmos das grandzas básicas. 4. Slcionar, da listagm, as grandzas rptitivas m númro igual ao das grandzas básicas.uas grandzas rptitivas não dvm tr dimnsõs qu difiram simplsmnt d um xpont. Não incluir grandzas dpndnts. 5. Establcr as quaçõs dimnsionais combinando as grandzas slcionadas no passo 4 com cada uma das outras grandzas m jogo para formar grupos adimnsionais. 6. Vrifiqu s cada grupo é adimnsional. 7. A rlação funcional nt os parâmtros dv sr dtrminada xprimntalmnt.

2 Exmplo: Escoamnto Turbulnto m tubulação No scoamnto turbulnto plnamnt dsnvolvido não podmos avaliar analiticamnt a quda d prssão. Porém, sabmos da obsrvação qu a quda d prssão p dvida ao atrito m tubo horizontal d sção constant dpnd do diâmtro, do comprimnto L, da vlocidad média V, da dnsidad ρ da viscosidad do fluido µ, da altura da rugosidad. trminar o conjunto d grupos adimnsionais qu podm sr usados para corrlacionar os dados. Sguindo o procdimnto: 1. p, ρ, µ, V, L,, 7 grandzas. São 3 grandzas básicas = M, L, t. 3. p, ρ, µ, V, L,, M M M L,,,, L, L, 3 Lt L Lt t ρ,v, p 4. Obs.: é a grandza dpndnt primordial. A viscosidad difr d p somnt no xpont da unidad t. Finalmnt, L, assim como, tm msma dimnsão d. [ ] [ ] [ L]

3 Sguindo o procdimnto (cont): 5. Formação dos grupos adimnsionais Númro d Eulr = M = L a L t c ( L) = M L a b c 1 ρ V p t 3 b M Lt M : 0 = a + 1 a = 1 L : 0 = 3a + b + c 1 b = t : 0 = b c = 0 Consquntmnt: 1 = 1 0 ρ V p = p = ρv Eu

4 Númro d Rynolds µ M L d L t f ( L) = M L d f = ρ V = t 3 M Lt M : 0 = d + 1 L : 0 = 3d + + f 1 b = 1 t : 0 = 1 c = 1 Consquntmnt: a = 1 µ = = ρv 1 R Analogamnt: 3 = L 4 =

5 6. É adimnsional? 3 p M L L t = : = 1 ρv t L M L [ 1] idm para os dmais Pi s 7. A rlação funcional é: ou (, ) 1 = f 3, L Eu = f R,, 4

6 dução do fator d atrito por anális dimnsional Aplicando a anális dimnsional a um scoamnto totalmnt dsnvolvido m um tubo, tmos: p = φ R, ρv L Substituindo a Eq. (5) m (9), tmos:, h l L = φ R,, V Expriências mostram qu h l é dirtamnt proporcional a L/, assim: h l 1 V = L φ R, Obs. prda d carga adimnsionalizada pla nrgia cinética do fluido scoant A função dsconhcida φ (R, /) é dfinida como o fator d atrito, f. h l = f L V

7 iagrama d Moody (1944), obtido xprimntalmnt rug gosidad rlativa / Quadro ngro

8 Equaçõs da Continuidad d Navir-Stoks na sua forma adimnsional Estas são, rspctivamnt, as quaçõs da consrvação da massa da quantidad d movimnto adimnsionais. Not qu os fators d scala, ou sja, as variávis dscrvndo a dimnsão vlocidad global do sistma suas propridads físicas, stão concntrados m apnas dois grupos adimnsionais:

9 Smlhança inâmica 1. S m dois sistmas difrnts os fators d scala são iguais, por xmplo os númros d Froud Rynolds, ntão ambos sistmas são dscritos por quaçõs difrnciais adimnsionais idênticas.. S, m adição, as condiçõs iniciais condiçõs d contorno são as msmas (o qu é possívl apnas s os dois sistmas difrnts são gomtricamnt smlhants), ntão os dois sistmas são idênticos matmaticamnt; ou sja, v*(x*, y*, z*, t*) p*(x*, y*, z*, t*) são os msmos m ambos sistmas difrnts. 3. Tais sistmas são, ntão, ditos srm dinamicamnt smlhants Rsumindo: sistmas difrnts são dinamicamnt smlhants quando são gomtricamnt smlhants, possum as msmas condiçõs d contorno iniciais possum os msmos númros adimnsionais com valors idênticos.

10 Parâmtros Adimnsionais comuns

11 O significado físico d cada parâmtro pod sr dtrminado obsrvando qu cada númro adimnsional pod sr scrito como a rlação ntr duas forças. Obsrv qu as forças são:

12 Assim, obsrvamos qu:

13 Parâmtros adimnsionais comuns m Mcânica dos Fluidos

14 Parâmtros adimnsionais comuns m Transfrência d Calor

15

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

HIDRÁULICA GERAL PRÁTICA N TEMA: Escoamento de fluidos em encanamentos; PERDA DE CARGA.

HIDRÁULICA GERAL PRÁTICA N TEMA: Escoamento de fluidos em encanamentos; PERDA DE CARGA. 03//0 0:9:55 HIÁULICA GEAL PÁTICA N 05 - TEMA: Escoamnto d luidos m ncanamntos; PEA E CAGA. - OBJETIVOS: trminação xprimntal da prda d carga ao longo da canalização; Utilização do diagrama d OUSE para

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Escoamento em Regime Turbulento Perfil de velocidade média, U

Escoamento em Regime Turbulento Perfil de velocidade média, U Prfil d vlocidad média,. Evolução linar na sub-camada linar, y < 5 y 2. Evolução smi-logarítmica na li da pard, y > 30 50, y < 0, 0,2δ ln κ ( y ) C k 0,4 C 5, 2 3. Transição contínua d para 2 ao longo

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Trocador de calor duplo tubo

Trocador de calor duplo tubo Trocador d calor duplo tubo Duplo tubo - arranjo d tubos concêntricos conctados nas xtrmidads com a finalidad d suportar o tubo intrno mantndo-o cntralizado, promovr a ntrada, a saída ou o rtorno do fluido

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio Matrial Tórico - Módulo: Vtors m R R Exrcícios Sobr Vtors Trciro Ano - Médio Autor: Prof Anglo Papa Nto Rvisor: Prof Antonio Caminha M Nto 1 Exrcícios sobr vtors Nsta aula, discutimos alguns xrcícios sobr

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Atrito Cinético. de deslizamento. Ela é devida à interacção entre as partículas dos dois corpos em contacto.

Atrito Cinético. de deslizamento. Ela é devida à interacção entre as partículas dos dois corpos em contacto. Atrito Cinético Introdução Tórica Smpr qu dois corpos stão m contacto como, por xmplo, um livro m cima d uma msa, xist uma força qu s opõ ao movimnto rlativo dos dois corpos. Suponha qu mpurra um bloco

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA CAPÍULO 4 - EORIA DOS SISEMAS DE REERÊNC IA 4. INRODUÇÃO A quação d tnsão, potência torqu as quais dscrvm o comportamnto da máquina oram stablcidas no parágrao (C.5). Mostramos qu as indutâncias mútuas

Leia mais

TERMODINÂMICA BÁSICA APOSTILA 02

TERMODINÂMICA BÁSICA APOSTILA 02 Engnharia Aronáutica Engnharia d Produção Mcânica Engnharia Mcatrônica 4º / 5 Smstr TERMODINÂMICA BÁSICA APOSTILA 0 Prof Danil Hass Calor Trabalho Primira Li da Trmodinâmica SÃO JOSÉ DOS CAMPOS, SP Capítulo

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

O emprego da proporção na resolução de problemas

O emprego da proporção na resolução de problemas Proporção O mprgo da proporção na rsolução d problmas Vamos aprndr agora a rsolvr problmas utilizando a proporção. Considr o sguint problma Uma vara d 0 cm fincada vrticalmnt no solo produz numa dtrminada

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor 9.0 Rfriração por Absorção 9.1 Rlação ntr o Ciclo d Absorção o d Comprssão d Vapor O ciclo d absorção possui o vaporador, o condnsador o dispositivo d xpansão xatamnt como o ciclo d comprssão d vapor.

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Controlabilidade, Observabilidade e Estabilidade

Controlabilidade, Observabilidade e Estabilidade Capítulo 2 Controlabilidad, Obsrvabilidad Estabilidad O principal objtivo dst capítulo é dfinir Controlabilidad, Obsrvabilidad Estabilidad, suas dcorrências dirtas Ests três concitos fundamntam o projto

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Roteiro-Relatório da Experiência N o 01 CIRCUITOS RC E RL CC TRANSITÓRIO

Roteiro-Relatório da Experiência N o 01 CIRCUITOS RC E RL CC TRANSITÓRIO Rotiro-Rlatório da Expriência N o 01 CIRCUITOS RC E RL CC TRANSITÓRIO 1. COMPONENTES DA EQUIPE: ALUNOS NOTA 1 2 3 Data: / / : hs 2. OBJETIVOS: 2.1. Vrificar xprimntalmnt as situaçõs d carga dscarga d um

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Química Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EQ3M Smstr: 1 sm/2017 Data: 27/04/2017 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab TEORMA DA FUNÇÃO INVERSA Torma Dada f : Ω ab R n R n (n função com drivadas parciais contínuas m P Ω Suponhamos qu dt(jf((p Então xist ɛ > uma bola abrta B B(P ɛ uma função g : B R n (B f(ω com todas as

Leia mais

MODELO DE DOIS FLUIDOS DE ALTA ORDEM PARA PREVER A FORMAÇÃO DE GOLFADAS

MODELO DE DOIS FLUIDOS DE ALTA ORDEM PARA PREVER A FORMAÇÃO DE GOLFADAS Dpartamnto d Mcânica MODELO DE DOIS LIDOS DE LT ORDEM R REVER ORMÇÃO DE OLDS luno: abricio Ciotti Chamma Orintadora: ngla Ourivio Nickl Introdução O transport d um ou mais fluidos nvolvndo difrnts fass

Leia mais

P (x i ) = f(x i ), f(x) p(x) < δ.

P (x i ) = f(x i ), f(x) p(x) < δ. Capítulo 4 Intrpolação Nst capítulo studarmos métodos qu prmitm ncontrar um valor aproximado para uma função f calculada m um ponto x do intrvalo I, através do conhcimnto d uma colção d pars ordnados (pontos)

Leia mais

ESTUDO DAS REAÇÕES DINÂMICAS DE UM MECANISMO PLANAR DE QUATRO BARRAS USANDO O MS EXCEL

ESTUDO DAS REAÇÕES DINÂMICAS DE UM MECANISMO PLANAR DE QUATRO BARRAS USANDO O MS EXCEL ESTUDO DAS EAÇÕES DINÂMICAS DE UM MECANISMO PLANA DE QUATO BAAS USANDO O MS EXCEL Marclo d Souza ocha 1 ; orintador 1 : Osvaldo Prado d znd ; orintador : Carlos Srgio Pivtta 1,, ETEP aculdad d Tcnologia

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles)

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Trmodinâmica 1 Análi Enrgética para Sitma Abrto (Volum d Control) Princípio d Trmodinâmica para Engnharia Capítulo 4 Part 1 Objtivo Dnvolvr Ilutrar o uo do princípio d conrvação d maa d nrgia na

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

4. Escoamento de um Fluido Real

4. Escoamento de um Fluido Real 4. Escoamnto d um Fluido al O scoamnto d um luido ral é mais complxo qu o d um luido idal. A viscosidad dos luidos rais é rsponsávl plas orças d atrito ntr as partículas luidas, bm como ntr stas os contornos

Leia mais

PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR COM AS SUPERFÍCIES

PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR COM AS SUPERFÍCIES UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE CIÊNCIAS DA NAUREZA DEPARTAMENTO DE FÍSICA DISCIPLINA: FÍSICA EXPERIMENTAL II Prof. Dr.: JEREMIAS ARAÚJO PRÁTICA IV PARTE I A) RESISTÊNCIA DEVIDA AO FLUXO DE AR

Leia mais

Permeabilidade e Fluxo Unidimensional em solos

Permeabilidade e Fluxo Unidimensional em solos Prmabilidad Fluxo Unidimnsional m solos GEOTECNIA II AULA 0 Prof. MSc. Douglas M. A. Bittncourt prof.douglas.pucgo@gmail.com Prmabilidad Propridad do solo qu indica a facilidad com qu um fluido podrá passar

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome *

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome * Estruturas Estruturas Também chamadas d rgistro Conjunto d uma ou mais variávis agrupadas sob um único nom * As variávis qu compõm uma strutura são chamadas campos *Damas, L. Linguagm C. Rio d Janiro:

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

ELT 313 LABORATÓRIO DE ELETRÔNICA ANALÓGICA I ENGENHARIA ELÉTRICA LABORATÓRIO N O 6: AMPLIFICADORES COM TRANSISTOR BIPOLAR DE JUNÇÃO

ELT 313 LABORATÓRIO DE ELETRÔNICA ANALÓGICA I ENGENHARIA ELÉTRICA LABORATÓRIO N O 6: AMPLIFICADORES COM TRANSISTOR BIPOLAR DE JUNÇÃO LT 313 LBOTÓIO D LTÔNIC NLÓGIC I NGNHI LÉTIC LBOTÓIO N O 6: MPLIFICDOS COM TNSISTO BIPOL D JUNÇÃO mplificadors Um amplificador é constituído d transistor d uma font d alimntação m corrnt contínua qu é

Leia mais

VELOCIDADE ECONÔMICA DE ESCOAMENTO E CUSTOS DE ENERGIA DE BOMBEAMENTO. PALAVRA-CHAVE: diâmetro econômico, energia de bombeamento, tubulação.

VELOCIDADE ECONÔMICA DE ESCOAMENTO E CUSTOS DE ENERGIA DE BOMBEAMENTO. PALAVRA-CHAVE: diâmetro econômico, energia de bombeamento, tubulação. VELOCIDADE ECONÔMICA DE ESCOAMENTO E CUSTOS DE ENERGIA DE BOMBEAMENTO BRUNO L. T. PERRONI 1, JACINTO DE A. CARVALHO 2, LESSANDRO C. FARIA 3 RESUMO: Divrsos fators podm atuar como limitant para a atividad

Leia mais