Calor Específico. Q t

Tamanho: px
Começar a partir da página:

Download "Calor Específico. Q t"

Transcrição

1 Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a substância qu o constitui, dfinimos o calor spcífico como a capacidad térmica por unidad d massa do corpo: c 1 m t Em palavras, o calor spcífico rprsnta a quantidad d nrgia ncssária para lvar d 1 o C a tmpratura d 1 g da substância considrada. Por outro lado, mbora o calor spcífico sja função da tmpratura, nss cadrno vamos considrar apnas os casos m qu l prmanc constant com a variação da tmpratura. O calor spcífico varia grandmnt d uma substância para outra. Contudo, s tomarmos amostras com o msmo númro d partículas, isso não acontc. Por isso, dfinimos, altrnativamnt, a capacidad térmica molar: C M 1 n t m qu n é o númro d mols da substância qu compõ o corpo. A tabla abaixo mostra calors spcíficos capacidads térmicas molars para alguns mtais. Substância c (cal / g o C) C M (cal / mol o C) Alumínio 0,15 5,8 Chumbo 0,031 6,40 Cobr 0,09 5,85 Frro 0,11 6,6 Mrcúrio 0,033 6,60 Prata 0,056 6,09 Exmplo Vamos supor qu misturamos litros d água a 0 0 C com 8 litros d água a 50 0 C.

2 O corpo A, d 8 litros d água, prd uma quantidad d nrgia A nquanto o corpo B, d litros d água, ganha a quantidad d nrgia B. Pla dfinição d calor spcífico, podmos scrvr: A cm A ( t F t A ) B cm B ( t F t B ) m qu m A 8 kg, t A 50 o C, m B kg, t B 0 o C, c rprsnta o calor spcífico da água t F, a tmpratura Clsius da mistura no quilíbrio térmico. Ao scrvrmos as duas xprssõs acima, stamos usando a sguint convnção d sinal: a nrgia qu ntra num corpo é tomada como positiva a nrgia qu sai d um corpo é tomada como ngativa. S, no procsso d mistura, não houv prdas d nrgia para a vizinhança dos dois corpos, a quantidad d nrgia prdida plo corpo A dv sr igual à quantidad d nrgia ganha plo corpo B: A B. Assim: m B ( t F t B ) m A ( t F t A ) Substituindo os valors numéricos isolando a tmpratura final, tmos: T F mat m A A + m + m B B T B o ( 8kg)(50 C) + ( kg)( 0 8 kg+ kg o C ) 44 o C Portanto, a tmpratura final da mistura d litros d água a 0 0 C com 8 litros d água a 50 0 C é 44 o C. Exprimnto d Capacidad Térmica O objtivo dsta atividad xprimntal é dsnvolvr a prcpção d qu corpos difrnts, mas com tmpraturas iguais, trocam difrnts quantidads d nrgia com a vizinhança. Vamos prcisar d um Bckr, um bico d Bunsn, um tripé, uma tla d amianto, uma pinça um bloco d parafina. Vamos prcisar também d três corpos d tst, com forma d parallpípdo, constituídos d mtais difrnts, mas com massas iguais com sçõs rtas d áras iguais. Colocamos a tla d amianto sobr o tripé, sobr la, o Bckr com água. Acndmos o bico d Bunsn spramos a água frvr (Fig.6(a)).

3 Colocamos os três corpos d tst na água frvnt por alguns minutos. Não apagamos o Bico d Bunsn. Discussão 1 (a) Discuta o qu acontc, m trmos nrgéticos, com os corpos d tst. (b) Discuta a tmpratura dos corpos d tst nquanto ls stão na água frvnt. (c) Discuta a duração dos procssos nvolvidos. Para avaliar a quantidad d nrgia trocada ntr os corpos d tst a vizinhança, podmos obsrvar a quantidad d parafina drrtida quando m contato com os corpos d tst. A parafina faz o papl da vizinhança. Tomando os corpos d tst com a pinça, nós os colocamos m contato com a parafina obsrvamos os rspctivos fitos (Fig.6(b)). Discussão (a) Discuta, m trmos d fluxo d nrgia calor, o motivo do drrtimnto da parafina nas rgiõs d contato com os corpos d tst. (b) Discuta, tndo m vista o modlo cinético da matéria o torma d quipartição da nrgia, s os fatos obsrvados dpndm da massa ou da tmpratura dos corpos d tst ou da ára das facs m contato com a parafina. Para obsrvar o fnômno indpndntmnt da ára da suprfíci d contato, podmos rfazr todo o procdimnto colocando os corpos d tst m contato com a parafina plas facs d msma ára. Discussão 3 (a) Discuta o qu s obsrva agora compar com o qu foi obsrvado antriormnt. (b) Discuta a possibilidad da quantidad d parafina drrtida plos corpos d tst dpndr apnas do matrial d qu ls são fitos. (c) Discuta, tndo m vista o modlo cinético da matéria o torma d quipartição da nrgia, o qu podria acontcr s o procdimnto foss rptido com corpos d tst fitos com o msmo mtal, mas com massas difrnts. A quantidad d parafina drrtida por um dtrminado corpo d tst dpnd da quantidad d nrgia qu passa dss corpo para a rgião d contato na parafina. O procsso d troca d nrgia ntr cada corpo a parafina s chama calor porqu acontc dvido à difrnça d tmpratura ntr ls. A quantidad d nrgia qu passa do corpo para a parafina dpnd da difrnça d tmpratura ntr ls. Essa quantidad d nrgia dpnd também do próprio corpo, isto é, da sua massa, da substância d qu l é fito da ára da fac qu ntra m contato com a parafina. Por isso, dfinimos, como propridad do corpo, a capacidad térmica:

4 C t como propridad da substância qu forma o corpo, o calor spcífico: c 1 m t Nstas xprssõs, t rprsnta a variação d tmpratura do corpo d massa m quando ganha ouu prd a quantidad d nrgia por calor. Capacidads Térmicas Molars dos Gass Estritamnt falando, dvmos spcificar as condiçõs sob as quais a nrgia é transfrida ao sistma por calor. Então, podmos dfinir as sguintss grandzas: c P : calor spcífico a prssão constant c V : calor spcífico a volum constant C M,P : capacidad térmica molar a prssão constant C M,V : capacidad térmica t molar a volum constant As capacidads térmicas molars dos gass podm sr calculadas pla Toria Cinética, dsd qu, para ls, possamos aplicar o modlo d gás idal. A quantidad d nrgia, absorvida pla amostra do gás, causa um aumnto U na sua nrgia intrna.. S, no procsso, o volum da amostra do gás prmanc constant a sua tmpratura tm uma variação t, podmos scrvr: C M,V 1 U n t V Para gass monoatômicos, como os gass nobrs, cujas moléculas têm forma sférica podm sr considradas rígidas (Fig.7(a)), cada molécula tm três graus d librdad d translação. A simtria sférica significa qu não tm sntido falar na rotação da molécula, sndo assim, não podmos considrar qualqur grau d librdad d rotação. Então, plo torma d quipartição da nrgia, a nrgia intrna da amostra do gás dv sr dada por:

5 1 3N k T U B m qu T rprsnta a tmpratura Klvin. Como N nn A R k B N A, podmos scrvr: ntão: 3 U nrt 3 U nr T A capacidad térmica molar a volum constant, para ss tipo d gás, fica, 3 C M, V R uando discutirmos, adiant, a primira li da Trmodinâmica, vrmos qu, para um gás idal, val a rlação: C M,P C M,V R Lvando m conta ssa rlação também qu R cal / mol K, obtmos: C M,V 3 cal / mol K C M, P 5 R 5cal / molk Para gass diatômicos cujas moléculas têm a forma d haltr podm sr considradas rígidas (Fig.7(b)), cada molécula tm cinco graus d librdad, três d translação dois d rotação. Assim: 5 U nrt C M, V C M, P 5 R 7 R 5cal / molk 7cal / molk Finalmnt, para gass poliatômicos cujas moléculas podm sr considradas rígidas (Fig.7(c)), cada molécula tm sis graus d librdad, três d translação três d rotação. Assim: U 3nRT C M,V 3R 6 cal / mol K C M,P 4R 8 cal / mol K

6 A tabla abaixo mostra a capacidad térmica molar a prssão constant, a capacidad térmica molar a volum constant a difrnça ntr las para alguns gass. A anális dos dados tablados indica qu o modlo d sfra rígida é um bom modlo para as moléculas dos gass nobrs hélio argônio na tmpratura d 0 0 C indica também qu o modlo d haltr rígido é um bom modlo para moléculas d hidrogênio nitrogênio nssa tmpratura. Na vrdad, para a maioria dos gass monoatômicos diatômicos, os valors das capacidads térmicas molars stão próximos dos obtidos para gass idais. Contudo, para alguns gass diatômicos como o cloro, por xmplo, para a maioria dos poliatômicos, os valors das capacidads térmicas molars são maiors do qu os prvistos. Isto significa qu o modlo d molécula rígida não é apropriado, ou sja, msmo a 0 0 C, as colisõs das moléculas umas com as outras provocam vibraçõs nas moléculas os corrspondnts graus d librdad dvm sr lvados m conta. Por outro lado, gass como o hidrogênio o nitrogênio, qu parcm s adaptar prfitamnt ao modlo d molécula rígida a ssa tmpratura, podm tr outro comportamnto a tmpraturas mais altas. Gás C M,P (cal/molk) C M,V (cal/molk) C M,P C M,V (cal/molk) H 4,97,98 1,99 Ar 4,97,98 1,99 H 6,87 4,88 1,99 N 6,95 4,96 1,99 Cl 8,9 6,15,14 CO 8,83 6,80,03 SO 9,65 7,50,15 C H 6 1,35 10,30,05 Exrcício 1 Um bloco d cobr é lançado num Bckr com água. Por isso, aumnta a tmpratura da água no Bckr. (a) Discuta o qu acontc com a tmpratura do bloco d cobr. (b) Discuta as condiçõs para qu a água no Bckr o bloco d cobr atinjam o quilíbrio. Exrcício Considr duas amostras d msma massa, uma d frro outra d cobr. (a) Discuta qual dlas alcança a maior tmpratura s ambas são xpostas, durant o msmo intrvalo d tmpo, à msma font d nrgia. (b) Discuta qual dlas absorv a maior quantidad d nrgia, s ambas têm a msma variação d tmpratura.

7 Exrcício 3 Um corpo com massa d 00 g é fito com uma substância com calor spcífico d 0,4 cal / g o C. (a) Calcul a capacidad térmica do corpo. (b) Calcul a quantidad d nrgia qu o corpo dv rcbr para qu sua tmpratura pass d 5 C para 35 C. (c) Calcul a quantidad d nrgia qu o corpo dv prdr para qu sua tmpratura diminua 15 C. Exrcício 4 Um bloco d alumínio, com massa 100 g, é dixado no intrior d um forno até atingir o quilíbrio térmico com l. Então, o bloco é rtirado do forno colocado m contato com uma amostra d 4400 g d água, qu s ncontra a 30 C. A tmpratura d quilíbrio do bloco com a amostra d água é d 3 C. Calcul a tmpratura do forno considrando nulas as prdas d nrgia para o ambint. Exrcício 5 No vrão, com o Sol a pino, a tmpratura da aria da praia é maior do qu a tmpratura da água do mar. Para discutir quantitativamnt o fnômno, um studant tomou duas amostras d msma massa, uma d aria outra d água fz com qu ambas rcbssm quantidads iguais d nrgia por calor, obsrvando um aumnto d tmpratura d 5 o C na amostra d aria d 3 C na amostra d água. Calcul o calor spcifico da aria usada plo studant. Exrcício 6 Supondo qu o torma d quipartição da nrgia sja válido para um corpo sólido a alta tmpratura, discuta o valor da capacidad térmica molar a volum constant para uma amostra d cobr sólido a alta tmpratura. O valor C M,V 3R (Fig.8) xprssa matmaticamnt a li d Dulong-Ptit.

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba Catálogo M404 PowrTrap Mcânica Séri GP Séri GT Rcupração ficaz do Mlhora a ficiência da planta Aumnto da produtividad qualidad dos produtos são, alguns dos bnfícios da drnagm rcupração do, além d rduzir

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Calorimetria Página 1 de 12

Calorimetria Página 1 de 12 Calorimtria 2013 1. (Urj 2013) Uma pssoa, com tmpratura corporal igual a 36,7 C, bb 1 litro d água a 2 15 C. Admitindo qu a tmpratura do corpo não s altr até qu o sistma atinja o quilíbrio térmico, dtrmin

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider SP 09/11/79 NT 048/79 Rotatória como Dispositivo d Rdução d Acidnts Arq.ª Nancy dos Ris Schnidr Rsumo do Boltim "Accidnts at off-sid priority roundabouts with mini or small islands", Hilary Grn, TRRL Laboratory

Leia mais

Art. 2º As empresas têm o prazo de 180 (cento e oitenta) dias, a contar da data da publicação deste Regulamento, para se adequarem ao mesmo.

Art. 2º As empresas têm o prazo de 180 (cento e oitenta) dias, a contar da data da publicação deste Regulamento, para se adequarem ao mesmo. título: Portaria nº 27, d 13 d janiro d 1998 mnta não oficial: Aprova o Rgulamnto Técnico rfrnt à Informação Nutricional Complmntar (dclaraçõs rlacionadas ao contúdo d nutrints), constants do anxo dsta

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Para estudar o atrito estático seco, considere-se um bloco apoiado sobre uma prancha, ambos de madeira, e um referencial fixo na prancha.

Para estudar o atrito estático seco, considere-se um bloco apoiado sobre uma prancha, ambos de madeira, e um referencial fixo na prancha. Forças d Atrito Sco Exist forças d atrito ntr duas suprfícis contato quando xist ovinto rlativo ntr las (atrito cinético) ou quando não xist ovinto, as tndência d ovinto rlativo ntr las (atrito stático).

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

~ ~ ESTADO DO CEARÁ SECRETARIA DA FAZENDA CONSELHO DE RECURSOS TRIBUTÁRIOS

~ ~ ESTADO DO CEARÁ SECRETARIA DA FAZENDA CONSELHO DE RECURSOS TRIBUTÁRIOS .".,....,. RESOLUÇÃO N 2007 1a CÂMARA DE JULGAMENTO 51 a SESSÃO ORDINÁRIA EM: 20.03.2007 PROCESSO N. 2/5023/2005 AUTO DE INFRAÇÃO N 2/200520854 RECORRENTE: ERALDO MARINHO DA SILVA. RECORRIDO: CÉLULA DE

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

Florianópolis, 09 de abril de 1998. PORTARIA Nº 0173/GR/98.

Florianópolis, 09 de abril de 1998. PORTARIA Nº 0173/GR/98. UNIVERSIDADE FEDERAL DE SANTA CATARINA GABINETE DO REITOR PORTARIAS Florianópolis, 09 d abril d 1998 PORTARIA Nº 0173/GR/98 O Ritor da Univrsidad Fdral d Santa Catarina, no uso d suas atribuiçõs statutárias

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2013, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2013, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d Física Química A.º ano, 0,.ª fas, vrsão Socidad Portugusa d Física, Divisão d Educação, d junho d 0, http://d.spf.pt/moodl/ Grupo I. Concntraçõs d ragnts OU concntraçõs

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

UNIVERSIDADE CATÓLICA DE PELOTAS PRÓ-REITORIA ACADÊMICA

UNIVERSIDADE CATÓLICA DE PELOTAS PRÓ-REITORIA ACADÊMICA UNIVERSIDADE CATÓLICA DE PELOTAS PRÓ-REITORIA ACADÊMICA EDITAL Nº 14/2011 PRAC SELEÇÃO PÚBLICA A Pró-Ritoria Acadêmica da Univrsidad Católica d Plotas torna pública a abrtura d SELEÇÃO DOCENTE, como sgu:

Leia mais

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1

5. MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 1 5 MÁXIMOS E MÍNIMOS DE FUNÇÕES DE VÁRIAS VARIÁVEIS 5 Introdução: Considrmos os sguints nunciados: Quais são as dimnsõs d uma caia rtangular sm tampa com volum v com a mnor ára d supríci possívl? A tmpratura

Leia mais

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal

Procedimento em duas etapas para o agrupamento de dados de expressão gênica temporal Procdimnto m duas tapas para o agrupamnto d dados d xprssão gênica tmporal Moysés Nascimnto Fabyano Fonsca Silva Thlma Sáfadi Ana Carolina Campana Nascimnto Introdução Uma das abordagns mais importants

Leia mais

Departamento de Engenharia Elétrica CONTROLE DIGITAL

Departamento de Engenharia Elétrica CONTROLE DIGITAL Dpartamnto d Engnharia Elétrica CONTROLE DIGITAL PROF. DR. EDVALDO ASSUNÇÃO Univrsidad Estadual Paulista UNESP Faculdad d Engnharia d Ilha Soltira FEIS Dpartamnto d Engnharia Elétrica DEE -03- Sumário

Leia mais

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Fisica 2 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

= e A = I1 X X. dy dx. 4. Modelos matemáticos de crescimento. 5. Noção de taxa de juro. dx X. dy Y X X X A X Y

= e A = I1 X X. dy dx. 4. Modelos matemáticos de crescimento. 5. Noção de taxa de juro. dx X. dy Y X X X A X Y 1 2 Sumário (14ª aula) 4. Modlos matmáticos d crscimnto 4.1.Progrssão aritmética (variação absoluta constant) - visto 4.2.Progrssão gométricas (variação rlativa constant) - visto 4.3.Progrssão lástica

Leia mais

Números inteiros: alguns critérios de divisibilidade

Números inteiros: alguns critérios de divisibilidade Númros intiros: alguns critérios d divisibilidad ANDRÉ FONSECA E TERESA ALMADA UNIVERSIDADE LUSÓFONA andrfonsca@ulusofonapt, talmada@ulusofonapt 36 GAZETA DE MATEMÁTICA 170 O inclum vários critérios d

Leia mais

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA ESQUEMA PRÁTICO ) Prazo Máximo Duração do Inquérito 2) Prazo Máximo Duração do Sgrdo d Justiça 3) Prazo Máximo Duração do Sgrdo d Justiça quando stivr m causa a criminalidad rfrida nas al.ªs i) a m) do

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

FAQ DEM/ Esta é uma. Estímulo 2012? Assim, não. Fundo. R: 1. Após tenha

FAQ DEM/ Esta é uma. Estímulo 2012? Assim, não. Fundo. R: 1. Após tenha Esta é uma Mdida só para 2012, ou vai continuar? Não stá prvisto na lgislação um príodo d vigência. Uma ntidad mprgadora com mnos d cinco (5) trabalhadors pod candidatar s ao Estímulo 2012? Sim. Nst caso,

Leia mais

Modelo de Oferta e Demanda Agregada (OA-DA)

Modelo de Oferta e Demanda Agregada (OA-DA) Modlo d Ofrta Dmanda Agrgada (OA-DA) Lops Vasconcllos (2008), capítulo 7 Dornbusch, Fischr Startz (2008), capítulos 5 6 Blanchard (2004), capítulo 7 O modlo OA-DA xamina as condiçõs d quilíbrio dos mrcados

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

A JUNÇÃO P-N E O DIODO RETIFICADOR

A JUNÇÃO P-N E O DIODO RETIFICADOR A JUNÇÃO P-N E O DIODO RETIFICADOR JOSÉ ARNALDO REDINZ Dpartamnto d Física - Univrsidad Fdral d Viçosa CEP : 36571-, Viçosa MG 8/2 1) A TEORIA DE BANDAS PARA A CONDUÇÃO ELÉTRICA A única toria capaz d xplicar

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc. TRANSMISSÃO DE CALOR II Prof. Eduardo C. M. Lourro, DSc. ANÁLISE TÉRMICA Dtrmnação da ára rqurda para transfrr o calor, numa dtrmnada quantdad por undad d tmpo, dadas as vlocdads d scoamnto as tmpraturas

Leia mais

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV))

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV)) Vrsão ratificada pla Entidad Rguladora para a Comunicação Social (Dlibração ERC/2016/206 (OUT-TV)) ACORDO DE AUTORREGULAÇÃO DEFINIÇÃO DE VALOR COMERCIAL SIGNIFICATIVO, PARA EFEITOS DA DISTINÇÃO ENTRE AJUDA

Leia mais

Sucessões e Frações Contínuas

Sucessões e Frações Contínuas Sucssõs Fraçõs Contínuas JOÃO CARREIRA PAIXÃO Escola ES/3 d Maria Lamas jcpaixao@gmail.com 04 38 GAZETA DE MATEMÁTICA 166 Atualmnt a rprsntação d númros rais na notação dcimal parc sr a mais óbvia, mas

Leia mais

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: mmds@ccn.ufal.br Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:

Leia mais

CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS

CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS 30 CAPÍTULO 13 PROPRIEDADES TÉRMICAS DE MATERIAIS Sumário Objtivos dst capítulo...303 13.1 Uma brv introdução...303 13. Propridads térmicas d matriais...303 13.3.1 Capacidad calorífica vibracional ltrônica...308

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

GERADOR ELETROSTÁTICO

GERADOR ELETROSTÁTICO GERADOR ELETROSTÁTICO Est artigo irá mostrar como construir um grador ltrostático, projto muito famoso m firas d Ciências. É uma máquina muito intrssant dvido às pqunas faíscas qu gra, dmonstrando claramnt

Leia mais

ÁGUA DA CHUVA ÁGUA PURA Observação: ÁGUA DESTILADA ÁCIDOS E BASES

ÁGUA DA CHUVA ÁGUA PURA Observação: ÁGUA DESTILADA ÁCIDOS E BASES ÁGUA DA CHUVA A água da chuva é formada, principalmnt, pla água vaporada dos lagos mars qu, ao lvars na atmosfra, ncontra ar frio condnsa na forma d gotas. Ao cair, as gotas d água dissolvm alguns matriais

Leia mais

DELIBERAÇÃO N.º 793/2012

DELIBERAÇÃO N.º 793/2012 DELIBERAÇÃO N.º 793/2012 Parágrafo único Nos casos m qu o afastamnto s stndr por tmpo suprior ao prvisto, dsd qu autorizada sua prorrogação, fará jus, às diárias corrspondnts ao príodo prorrogado. Art.

Leia mais

ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK.

ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK. ESTUDO DA CINÉTICA DE SECAGEM DO BAGAÇO DO PEDUNCULO DO CAJU IN NATURA E ENRIQUECIDO, COM APLICAÇÃO DO MODELO DIFUSIONAL DE FICK. N. M. RIBEIRO FILHO 1 ; R. C. SANTOS 3 ; O. L. S. d ALSINA ; M. F. D. MEDEIROS

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2

Edital de seleção de candidatos para o Doutorado em Matemática para o Período 2015.2 ] Univrsidad Fdral da Paraíba Cntro d Ciências Exatas da Naturza Dpartamnto d Matmática Univrsidad Fdral d Campina Grand Cntro d Ciências Tcnologia Unidad Acadêmica d Matmática Programa Associado d Pós-Graduação

Leia mais

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora Edital V Mostra LEME d Fotografia Film Etnográficos 5º SEMINÁRIO DO LABORATÓRIO DE ESTUDOS EM MOVIMENTOS ÉTNICOS - LEME 19 a 21 d stmbro d 2012 Univrsidad Fdral do Rcôncavo da Bahia Cachoira-BA O 5º Sminário

Leia mais

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / /

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / / FÍSICA Profssor: Rodolfo DATA: / / Nívl I LISTA MHS E ONDAS 1. A tabla traz os comprimntos d onda no spctro d radiação ltromagnética, na faixa da luz visívl, associados ao spctro d cors mais frquntmnt

Leia mais

Encontro na casa de Dona Altina

Encontro na casa de Dona Altina Ano 1 Lagdo, Domingo, 29 d junho d 2014 N o 2 Encontro na casa d Dona Altina Na última visita dos studants da UFMG não foi possívl fazr a runião sobr a água. Houv um ncontro com a Associação Quilombola,

Leia mais

Isomeria. Isomeria Ocorre quando dois ou mais compostos apresentam a mesma fórmula molecular e diferentes fórmulas estruturais.

Isomeria. Isomeria Ocorre quando dois ou mais compostos apresentam a mesma fórmula molecular e diferentes fórmulas estruturais. SEI Ensina - MILITAR Química Isomria Isomria corr quando dois ou mais compostos aprsntam a msma fórmula molcular difrnts fórmulas struturais. Isomria Plana É quando os isômros difrm m sua strutura plana.

Leia mais

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS

2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS 2 o CONGRESSO BRASILEIRO DE P&D EM PETRÓLEO & GÁS CONTROLE DE TEMPERATURA DE SECADORES DE REVESTIMENTOS CERÂMICOS ALIMENTADOS COM GÁS NATURAL Júlio Elias Normy-Rico 1, Jssé Flip Müllr 2,Vilmar Mngon Bristol

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

Empresa Elétrica Bragantina S.A

Empresa Elétrica Bragantina S.A Emprsa Elétrica Bragantina S.A Programa Anual d Psquisa Dsnvolvimnto - P&D Ciclo 2006-2007 COMUNICADO 002/2007 A Emprsa Elétrica Bragantina S.A, concssionária d srviço público d distribuição d nrgia létrica,

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

5. EVAPORAÇÃO-EVAPOTRANSPIRAÇÃO

5. EVAPORAÇÃO-EVAPOTRANSPIRAÇÃO 5. EVAPORAÇÃO-EVAPOTRANPIRAÇÃO 5.1 EVAPORAÇÃO E TRANPIRAÇÃO: GENERALIDADE A vaporação é o procsso natural plo qual há transformação m vapor da água da suprfíci do solo dos cursos d água, lagos mars. A

Leia mais

1.2 1 5.67 10 273 20 303 14.965W 81.3 100. H A e 5.67 10 14.965 10 10. e R 5.436 1.2468

1.2 1 5.67 10 273 20 303 14.965W 81.3 100. H A e 5.67 10 14.965 10 10. e R 5.436 1.2468 Exrcícios 1. Condução através d uma gladira d isopor. Uma caixa d isopor usada para mantr bbidas frias m um piquniqu possui ára total (incluindo a tampa) igual a.8m a spssura da pard é d. cm. Ela stá chia

Leia mais

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos.

Augusto Massashi Horiguti. Doutor em Ciências pelo IFUSP Professor do CEFET-SP. Palavras-chave: Período; pêndulo simples; ângulos pequenos. DETERMNAÇÃO DA EQUAÇÃO GERAL DO PERÍODO DO PÊNDULO SMPLES Doutor m Ciências plo FUSP Profssor do CEFET-SP Est trabalho aprsnta uma rvisão do problma do pêndulo simpls com a dmonstração da quação do príodo

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

A prova tem como referência o Programa de PRÁTICAS DE CONTABILIDADE E GESTÃO do 12º Ano de Escolaridade.

A prova tem como referência o Programa de PRÁTICAS DE CONTABILIDADE E GESTÃO do 12º Ano de Escolaridade. Informação - Prova Equivalência à Frquência Práticas Contabilida Gstão Prova Equivalência à Frquência Práticas Contabilida Gstão Duração da prova: 120 minutos / 24.06.2013 12º Ano Escolarida Curso Tcnológico

Leia mais