4.1 Sistema em contato com um reservatório térmico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4.1 Sistema em contato com um reservatório térmico"

Transcrição

1 Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo d nrgia arrdor d E. Vamos procurar um nsmbl qu sja apropriado para dscrvr sistmas não-isolados, qu stjam m contato com um rsrvatório térmico à tmpratura T (vr Fig. 4.). O sistma stá caractrizado plas grandzas E s, V s N s o rsrvatório por E r, V r N r, ond: V s,n s,v r,n r são fixos, (4.) E s + E r E total constant, (4.2) a tmpratura T é a msma no rsrvatório no sistma. O rsrvatório é por dfinição muito maior qu o sistma, i..: E s E r. (4.3) Em principio, a nrgia do sistma a do rsrvatório podm tr flutuaçõs ao longo do tmpo, mas, s m um instant dado o sistma stá com nrgia E s, o rsrvatório dv star ncssariamnt com uma nrgia E total E s,onde total é constant. Portanto, a probabilidad d ncontrar o sistma com nrgia E s é igual à probabilidad d ncontrar o rsrvatório com nrgia E total E s. Essas probabilidads são proporcionais ao númro d microstados accssívis no spaço das fass, logo:! s (E s ) /! r (E total E s ). (4.4) Considrmos a ntropia do rsrvatório, S r (E total E s )k ln! r (E total E s ). (4.5) Como E s E total, podmos xpandir S r (E total E s ) m séri d Taylor arrdor d E E total : k ln! s (E s ) / Eq.(4.4) Taylor k ln! r (E total E s )S r (E total E s ) S r (E total ) k ln! r (E total ) 4 S r E EEtotal E r E s + O(E 2 s ) T E s (4.6)

2 Figura 4.: Sistma m contato com um rsrvatório térmico. Exponnciando a rlação antrior tmos! s (E s ) /! r (E total ) Es/(kT), mas como! r (E total ) é constant, podmos scrvr: E! s (E s ) / s. (4.7) AprobabilidadP s d ncontrar o sistma com nrgia E s é proporcional ao númro d stados! s (E s ) no spaço das fass: E P s / s. (4.8) Para P scrvr uma igualdad, dvmos introduzir um fator d normalização tal qu 0 <P s < {E P s} s.assim, E s P s P{E E s. (4.9) s} O dnominador dsta xprssão rcb o nom d função d partição canônica Q N : Q N (V,T) X {E s} E s. (4.0) A dpndência d Q N (V,T) com T é vidnt. A dpndência com V N stá implícita na nrgia E s. Onsrvação: Na Eq. (4.6) foi utilizada a dfinição d ntropia d Boltzmann S B k ln! não a d Gibbs S G k ln (vr capítulo antrior). Isto significa qu a tmpratura qu aparc nas xprssõs antriors, é a tmpratura d Boltzmann dfinida como: SB T B (U, V, N), (4.) U não a tmpratura d Gibbs, dfinida como T G (U, V, N) 42 SG. (4.2) U

3 Na Sção mostramos qu ambas tmpraturas s rlacionam da sguint manira: T B T G k/c, (4.3) ond C é a capacidad calorífica associada à ntropia d Gibbs: TG C. (4.4) U Como mostrado no capítulo antrior, a tmpratura fisicamnt acitávl é a tmpratura d Gibbs. Porém, as difrnças ntr T B T G são dsprzívis na imnsa maioria dos casos por isso omitimos o subíndic na tmpratura. No ntanto, dvmos smpr lmbrar qu as difrnças ntr ambas tmpraturas são rlvants quando C é próximo ou mnor qu a constant d Boltzmann k. Em particular, T B pod ficar ngativa s 0 <C<k. 4.2 Função dnsidad no nsmbl canônico A dnsidad d pontos rprsntativos no ponto (q, p) do spaço das fass é proporcional à probabilidad d ncontrar o sistma na vizinhança dss ponto: (q, p) / H(q,p) (4.5) A dpndência com (q, p) aparc somnt através d H(q, p), portanto, o nsmbl canônico é stacionário (vja o capítulo antrior). A constant d proporcionalidad m / H não é important pois stamos intrssados apnas na média no nsmbl da grandza física f(q, p) : hfi R h f(q, p) (q, p)d 3N qd 3N p 3N R h (q, p)d 3N qd 3N p 3N R h f(q, p) H(q,p) d 3N qd 3N p 3N R. (4.6) h H(q,p) d 3N qd 3N p 3N O dnominador da xprssão antrior é a função d partição introduzida na Eq. (4.0) no caso m qu as nrgias possívis do sistma formam um contínuo: Q N (V,T) h 3N H(q,p) d 3N qd 3N p. (4.7) Para sistmas formados por partículas indistinguívis, dvmos introduzir o fator d corrção d Gibbs: Q N (V,T) h 3N H(q,p) d 3N qd 3N p. (4.8) N! 4.3 Conxão com a trmodinâmica 4.3. Rlação fundamntal A trmodinâmica d um sistma no nsmbl canônico é obtida a partir d F (T,V,N) kt ln Q N (T,V ) (4.9) 43

4 ond /(kt). Para justificar sta rlação vamos mostrar qu, após a idntificação U hhi, la lva à rlação F U TS. Para isso, comçamos scrvndo a Eq. (4.9) na forma Q N xp( F ) usamos a xprssão para Q N dada na Eq. (4.7): F Q N (T,V ) h 3N H(q,p) d 3N qd 3N p, (4.20) ) h 3N (F H) d 3N qd 3N p. (4.2) Drivando a quação antrior m rlação a 0 h 3N (F F h 3N como quríamos dmonstrar Enrgia intrna Q N h 3N tmos: H) F H + F H F H T F T H F H T F T d 3N qd 3N p d 3N qd 3N p hf i hhi ht F F i F hhi T T T Podmos também obtr uma rlação útil para a nrgia intrna: U hhi Q N h 3N H appl Q N h 3N H d 3N qd 3N p H d 3N qd 3N p d 3N qd 3N p Q N h 3N F U + TS, (4.22) Q N Q N H d 3N qd 3N p ln Q N. (4.23) Tmos ntão: Entropia U ln Q N. (4.24) Vamos calcular hln P s i lmbrando qu, pla Eq. (4.9), a probabilidad P s d ncontrar o sistma com nrgia E s é P s E s /Q N : hln P s i hln( E s /Q N )i h E s i ln Q N U + F (U TS U) S/k. (4.25) Tmos ntão, S khln P s i (4.26) 44

5 Lmbrando qu a média d uma grandza qualqur f s é dfinida como hf s i P P s f s, tmos hln P s i P P s ln P s,tmos: S k X s P s ln P s (4.27) qu é conhcida como ntropia d Von Numann. Quando T 0, o sistma stá normalmnt no stado fundamntal. S ss stado for único, tmos P s consquntmnt S k ln 0; i.. vrifica-s a trcira li da Trmodinâmica. Quando o númro d stados accssívis ao sistma aumnta, tmos vários P s não nulos a ntropia aumnta. Quando o númro d stados accssívis fica arbitrariamnt grand, tmos P s! 0 S!. 4.4 Sistmas d partículas não intragnts 4.4. Torma Considrmos um sistma d N partículas não-intragnts, ond o hamiltoniano d uma partícula é h(q, p). A função d partição do sistma d N partículas pod sr scrita como ( [Q (V,T)] N para partículas distinguívis Q N (V,T) N! [Q (V,T)] N (4.28) para partículas indistinguívis ond Q (V,T) é a função d partição d uma partícula, dfinida por Q (V,T) h 3 h(q,p) d 3 qd 3 p. (4.29) Dmonstração: O Hamiltoniano do sistma é da forma: H(q, p) NX h i (q i,p i ) (4.30) i ond o Hamiltoniano h i (q i,p i ) da i ésima partícula dpnd apnas da coordnada q i do momnto p i dssa partícula. Como as partículas são idênticas ntr si, todos os h i (q i,p i ) são iguais ntr si, i.. todos tm a msma forma h(q, p). A função d partição do sistma pod sr scrita da sguint 45

6 manira: Q N (V,T) h 3N h 3N h 3N i h 3 NY h 3 xp N Y i Y N i! NX h i (q i,p i ) d 3N qd 3N p i h i (q i,p i )! d 3N qd 3N p h i (q i,p i ) d 3 q i d 3 p i h i (q i,p i ) d 3 q i d 3 p i N h(q,p) d 3 qd 3 p [Q (V,T)] N. Q.E.D Exmplo: Gás idal sm graus d librdad intrnos Considrmos um sistma formado por N partículas livrs idênticas, sm graus d librdad intrnos (.g. moléculas monoatômicas), confinadas m um volum V, m quilíbrio a uma tmpratura T. O Hamiltoniano do sistma é: NX p 2 i H(q, p) (4.3) 2m mas, d acordo com o torma aprsntado acima, é suficint considrarmos apnas o hamiltoniano d uma partícula: h(q, p) p2 2m. (4.32) A função d partição d uma partícula é: Q (V,T) h 3 d 3 q xp i p 2 d 3 p V appl 2m h 3 xp p 2 dp 2mkT 3. (4.33) Na xprssão antrior tmos uma intgral gaussiana cuja solução é dada por p Ax2 dx p, (4.34) A sndo A uma constant. Logo, ond introduzimos o comprimnto d onda térmico A função d partição d N partículas é: Q (V,T) V h 3 [p p 2mkT ] 3 V 3, (4.35) Q N (V,T) N! [Q (V,T)] N N! h/ p 2 mkt dfinido no capítulo antrior. appl V 3 N. (4.36) 46

7 A nrgia livr d Hlmholtz é: F (V,T) kt ln Q N (V,T) kt ln appl V N! 3 N! appl V NkT ln + kt ln N!. (4.37) 3 Usando a fórmula d Stirling, ln N! N ln N N, obtmos: F (V,T) NkT ln appl V 3 + NkT ln N NkT NkT ApartirdF (V,T) obtmos as grandzas trmodinâmicas P, S, µ U: appl V ln N 3 +. (4.38) S P F NkT V T,N V, (4.39) F appl V Nk ln T V,N N , (4.40) µ F appl N 3 kt ln N T,V V, (4.4) Sistma d osciladors harmônicos U F + TS 3 2NkT. (4.42) Considrmos um sistma d N osciladors harmônicos unidimnsionais indpndnts distinguívis. Anális clássica: O Hamiltoniano d uma partícula é: h(q, p) 2 m!2 q 2 + p2 2m, (4.43) função d partição d uma partícula é: Q (V,T) + + appl dqdp xp h 2 m!2 q 2 + p2 r 2m h ~!. A função d partição do sistma d N osciladors é: A nrgia livr d Hlmholtz é dada por r 2 2 m m! 2 (4.44) Q N (V,T) [Q (V,T)] N ( ~!) N (4.45) F kt ln Q N (V,T) kt ln( ~!) N NkT ln( ~!), (4.46) 47

8 portanto, tmos µ F kt ln( ~!), N (4.47) P F 0, V (4.48) S F Nk[ln( ~!) + ], N (4.49) U F + TS NkT, (4.50) C V U (NkT)Nk, T V T (4.5) C P H (U PV) T P T P U (P 0) T P (NkT)Nk. (4.52) T Nas rlaçõs acima vmos qu s vrifica o torma d quipartição, já qu a nrgia média por oscilador rsulta 2 2kT corrspondnts aos dois trmos quadráticos indpndnts do Hamiltoniano d uma partícula. Anális quântica: Os autovalors d nrgia d um oscilador harmônico unidimnsional são dados por E n (n + 2 )~! ond n 0,, 2,... Logo, a função d partição d uma partícula é: X X X E Q (V,T) n (n+ 2 )~! n ~!/2 ~! n0 n0 n0 séri gométrica ~!/2 ~! 2 sinh( 2 ~!), (4.53) ond usamos qu a soma da séri gométrica é P q n ( q) para 0 <q<, introduzimos sinh x 2 (x x ). A função d partição do sistma d N osciladors é: A nrgia livr d Hlmholtz é dada por Q N (V,T) [Q (V,T)] N 2 sinh( 2 ~!) N. (4.54) F kt ln Q N (V,T)NkT ln 2 sinh( 2 ~!) N portanto, tmos h 2 ~! + kt ln( ~! )i, (4.55) µ F N kt ln 2 sinh( 2 ~!), (4.56) F P 0, (4.57) V F S N Nk 2 ~! coth( 2 ~!) ln 2 sinh( 2 ~!) appl ~! Nk ~! ln( ~! ), (4.58) U F + TS 2 ~! coth( 2 ~!) N appl 2 ~! + ~! ~!, (4.59) C V U T V Nk( 2 ~!)2 cosch 2 ( 2 ~!) Nk( ~!)2 ~! ( ~! ) 2. (4.60) 48

9 No caso quântico, C V dpnd da tmpratura é smpr mnor qu o valor clássico Nk.Nolimit clássico (T!) tmos ~!! 0 portanto C V! Nk. No limit T! 0 tmos C V! 0. Em gral, todas as fórmulas acima tndm aos valors classicos quando kt ~!. 4.5 Flutuaçõs d nrgia no nsmbl canônico O nsmbl canônico dscrv situaçõs nas quais a nrgia do sistma não é fixa, i.. E s pod tr flutuaçõs compatívis com a condição E tot E r + E s constant. Para dtrminar quanto s afasta o sistma da nrgia mdia U hhi calcularmos o dsvio quadrático, h(h hhi) 2 i hh 2 2HhHi + hhi 2 i hh 2 i 2hHihHi + hhi 2 hh 2 i hhi 2 d 3N qd 3N appl p Q N h 3N H 2 H d 3N qd 3N 2 p H Q N h 3N H d 3N qd 3N p 2 appl H d 3N qd 3N p H 2 Q N h 3N 2 Q N h 3N 2 d 3N qd 3N appl p H d 3N qd 3N 2 p H Q N 2 h 3N Q N h 3N 2 appl 2 Q N QN Q N 2 Q 2 Q N ln QN N Q N U Eq.(??) kt 2 U T V,N kt 2 C V. (4.6) Na xprssão antrior, todas as drivadas m rlação a são ralizadas mantndo V N constants; portanto C V é a capacidad calorifica a volum constant do sistma. O dsvio rlativo é: p hh 2 i hhi 2 hhi p kt 2 C V U p kt 2 Nc V Nu / p N, (4.62) ond c V é o calor spcífico por partícula a volum constant u é a nrgia intrna por partícula. No limit trmodinâmico, N!, o dsvio rlativo s anula, dsd qu c V sja finito. Isto significa qu, mbora o sistma possa adotar muitos valors difrnts d nrgia (compatívis com E r + E s constant E s E r ), l praticamnt não s afasta da nrgia média hhi. Contudo, s o calor spcífico for divrgnt (.g. como nas transiçõs d fas d sgunda ordm) grands flutuaçõs podm acontcr no sistma. O rsultado antrior pod sr ntndido da manira sguint. No nsmbl canônico, os sistmas stão distribuídos no spaço das fass d acordo com / xp( H), i.. a dnsidad d stados dcai xponncialmnt à mdida qu nos afastamos da origm do spaço das fass. Porém, ao nos afastarmos da origm, as suprfícis com nrgia constant possum uma ára cada vz maior. Em consquência, o númro d pontos sobr suprfícis com nrgia constant aumnta primiro dcrsc dpois quando nos afastamos da origm. O máximo, qu smpr stá localizado na nrgia média, tnd a sr xtrmamnt strito quando N!. 49

10 4.6 Gás idal com graus d librdad intrnos 4.7 Paramagntismo 4.8 Sistma d dois nívis: tmpraturas absolutas ngativas? 50

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab TEORMA DA FUNÇÃO INVERSA Torma Dada f : Ω ab R n R n (n função com drivadas parciais contínuas m P Ω Suponhamos qu dt(jf((p Então xist ɛ > uma bola abrta B B(P ɛ uma função g : B R n (B f(ω com todas as

Leia mais

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider SP 09/11/79 NT 048/79 Rotatória como Dispositivo d Rdução d Acidnts Arq.ª Nancy dos Ris Schnidr Rsumo do Boltim "Accidnts at off-sid priority roundabouts with mini or small islands", Hilary Grn, TRRL Laboratory

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

Controle Modal e Observador de Estado - Estabilizador 1

Controle Modal e Observador de Estado - Estabilizador 1 Capítulo 3 Control Modal Obsrvador d Estado - Estabilizador 1 O principal objtivo dst capítulo é dfinir o concito d obsrvador d stado d control modal, como pré-rquisitos d projto d stabilizadors 31 Princípio

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Sucessões e Frações Contínuas

Sucessões e Frações Contínuas Sucssõs Fraçõs Contínuas JOÃO CARREIRA PAIXÃO Escola ES/3 d Maria Lamas jcpaixao@gmail.com 04 38 GAZETA DE MATEMÁTICA 166 Atualmnt a rprsntação d númros rais na notação dcimal parc sr a mais óbvia, mas

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Guião do Professor :: TEMA 2 1º Ciclo

Guião do Professor :: TEMA 2 1º Ciclo Guião do Profssor :: 1º Ciclo quipas! A roda dos alimntos ~ Guiao do Profssor Vamos fazr quipas! :: A roda dos alimntos quipas! Como xplorar o tma Slid 1 Aprsntam-s, no primiro slid d forma disprsa sm

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico.

Equilíbrio Térmico. é e o da liga é cuja relação com a escala Celsius está representada no gráfico. Equilíbrio Térmico 1. (Unsp 2014) Para tstar os conhcimntos d trmofísica d sus alunos, o profssor propõ um xrcício d calorimtria no qual são misturados 100 g d água líquida a 20 C com 200 g d uma liga

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO Univrsidad d São Paulo Instituto d Física d São Carlos Laboratório Avançado d Física RADIAÇÃO TÉRMICA DE CORPO NEGRO I- Objtivos Estudar a dpndência da taxa d radiação térmica, mitida por um sólido com

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Usando a representac~ao de Heisenberg. Jose Fernando Perez. Instituto de Fsica, Universidade de S~ao Paulo

Usando a representac~ao de Heisenberg. Jose Fernando Perez. Instituto de Fsica, Universidade de S~ao Paulo Rvista Brasilira d Ensino d Fsica, vol. 17, n ọ 2, junho, 1995 123 Usando a rprsntacao d Hisnbrg Jos Frnando Prz Instituto d Fsica, Univrsidad d Sao Paulo Caixa Postal 66318, CEP 05389-970, Sao Paulo,

Leia mais

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO

Universidade de São Paulo Instituto de Física de São Carlos Laboratório Avançado de Física RADIAÇÃO TÉRMICA DE CORPO NEGRO Univrsidad d São Paulo Instituto d Física d São Carlos Laboratório Avançado d Física RADIAÇÃO TÉRMICA DE CORPO NEGRO I- Introdução A inabilidad da mcânica clássica m xplicar o rsultado xprimntal da distribuição

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

Forças de implantação nas pontes estaiadas

Forças de implantação nas pontes estaiadas Forças d implantação nas ponts staiadas Pdro Afonso d Olivira Almida (); Rui Oyamada (); Hidki Ishitani () () Profssor Doutor, Dpartamnto d Engnharia d Estruturas Fundaçõs Escola Politécnica, Univrsidad

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Fisica 2. k = 1/4πε 0 = 9,0 10 9 N.m 2 /C 2. 01. Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Fisica 2 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS

MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS MÓDULO 4 4.8.1 - PROCEDIMENTOS DE TESTES DE ESTANQUEIDADE PARA LINHAS DE ÁGUA, ESGOTO E OUTROS LÍQUIDOS Normas Aplicávis - NBR 15.950 Sistmas para Distribuição d Água Esgoto sob prssão Tubos d politilno

Leia mais

REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA

REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA GABINETE COORDENADOR DO DESPORTO ESCOLAR REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA (CÓDIGO DE PONTUAÇÃO) 2002-2003 DESPORTO ESCOLAR - CÓDIGO DE GINÁSTICA AERÓBICA 2 ÍNDICE 1. QUADRO ORGANIZATIVO Pág.

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

Introdução ao Magnetismo

Introdução ao Magnetismo Introdução ao Magntismo Albrto Passos Guimarãs Cntro rasiliro d Psquisas Físicas IV Escola rasilira d Magntismo São Carlos, 4//003 apguima@cbpf.br - Rotiro Part I. O fnômno do magntismo. Momnto angular

Leia mais

NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS

NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS Sgurança Saúd do Trabalho ao su alcanc! NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ

DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES EXTREMOS DA PRECIPITAÇÃO MÁXIMA DE 24 HORAS DE BELÉM DO PARÁ DISTRIBUIÇÃO DE PROBABILIDADE DE VALORES ETREMOS DA MÁIMA DE 24 HORAS DE BELÉM DO PARÁ Mauro Mndonça da Silva Mstrando UFAL Mació - AL -mail: mmds@ccn.ufal.br Ant Rika Tshima Gonçalvs UFPA Blém-PA -mail:

Leia mais

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA ESQUEMA PRÁTICO ) Prazo Máximo Duração do Inquérito 2) Prazo Máximo Duração do Sgrdo d Justiça 3) Prazo Máximo Duração do Sgrdo d Justiça quando stivr m causa a criminalidad rfrida nas al.ªs i) a m) do

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Ministério da Educação Univrsidad Tcnológica Fdral do Paraná ampus uritiba Grência d Ensino Psquisa Dpartamnto Acadêmico d Matmática EQUAÇÕES DIFERENIAIS NOTAS DE AULA Equaçõs Difrnciais AULA 0 EQUAÇÕES

Leia mais

Acumulação de capital, utilização da capacidade produtiva e inflação. Uma análise a partir de um modelo pós-keynesiano não linear 1

Acumulação de capital, utilização da capacidade produtiva e inflação. Uma análise a partir de um modelo pós-keynesiano não linear 1 Acumulação d capital, utilização da capacidad produtiva inflação. Uma anális a partir d um modlo pós-kynsiano não linar 1 José Luís Oriro 2 André Lucio Nvs 3 Rsumo Est artigo tm por objtivo analisar os

Leia mais

Experiência 9 Transferência de Calor

Experiência 9 Transferência de Calor Rotiro d Física Exprintal II 5 Expriência 9 ransfrência d Calor OBJEIVO Estudar os procssos d transfrência d calor ntr dois corpos, na situação qu nnhu dls sofr transição d fas na situação qu u dls sofr

Leia mais

Marcelo Nobre dos Santos Beserra. Termodinâmica e Energia Escura

Marcelo Nobre dos Santos Beserra. Termodinâmica e Energia Escura Univrsidad do Estado do Rio Grand do Nort Faculdad d Ciências Exatas Naturais-FANAT Dpartamnto d Física Programa d Pós-Graduação m Física Marclo Nobr dos Santos Bsrra Trmodinâmica Enrgia Escura Mossoró

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO

OAB 1ª FASE RETA FINAL Disciplina: Direito Administrativo MATERIAL DE APOIO I. PRINCÍPIOS: 1. Suprmacia do Intrss Público sobr o Particular Em sndo a finalidad única do Estado o bm comum, m um vntual confronto ntr um intrss individual o intrss coltivo dv prvalcr o sgundo. 2. Indisponibilidad

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM Caítulo II EQUAÇÕES DIFERENCIAIS LINEARES DE ª ORDEM Caítulo II Equaçõs Difrnciais Linars d ª Ordm Caítulo II Até agora já conhcmos uma séri d quaçõs difrnciais linars d rimira ordm Dfinirmos considrarmos

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

guia rápido de configuração CFX-750 trimble Precisa 6m³

guia rápido de configuração CFX-750 trimble Precisa 6m³ guia rápido d configuração CFX-750 trimbl Prcisa 6m³ 1.1 1.2 1.3 1.4 1º passo Configurando o GPS L i g u o CF X 750 (s g u r 3 s g u n d o s) Aprt (cliqu) m GPS (GPS)Config G PS (Font Corrig. D GPS) Aprt

Leia mais

Problemas de Física Estatística e Termodinâmica

Problemas de Física Estatística e Termodinâmica 1 Problemas de Física Estatística e Termodinâmica Todas as grandezas físicas se supõem expressas no Sistema Internacional de Unidades. 1. Uma variável aleatória y pode tomar valores no conjunto {1,2,3,4,5}

Leia mais