Representação de Números no Computador e Erros

Tamanho: px
Começar a partir da página:

Download "Representação de Números no Computador e Erros"

Transcrição

1 Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/ vrsão 23 d Fvriro d 2017

2 Contúdo 1 Introdução Rprsntação dos númros rais Rprsntação m difrnts bass Rprsntação m Ponto Flutuant Opraçõs Aritméticas m Ponto Flutuant Erros Propagação d Erros. Fórmula Fundamntal do Cálculo d Erros Estimativas do Erro m Opraçõs Aritméticas Elmntars Propagação d Erros Rlativos

3 1 Introdução A anális numérica tm por objctivo dar rspostas numéricas, i.. soluçõs com númros, a problmas físicos. Por xmplo, m matmática uma solução pod sr dada por x = 2π mas para um computador sta solução não é adquada, pois um computador apnas consgu manipular um númro finito d símbolos ou opraçõs. Além disso, quando s usa um computador ou uma máquina obtmos divrsos tipos d rros: Erros d aproximação do modlo matmático associado a um problma ral; Erros nos dados (obtidos xprimntalmnt); Erros da prcisão finita na rprsntação d númros rais. 2 Rprsntação dos númros rais 2.1 Rprsntação m difrnts bass A notação usual dos númros rais é m bas b = 10. Por xmplo = Frquntmnt é usada a bas b = 2. O númro antrior scrito m bas 2 trá qu sr calculado m dois passos. Primiro calcula-s a rprsntação da part intira conclui-s qu (49) 10 = (110001) 2 ond (110001) 2 = A part fraccionária é obtida da sguint manira = = 1.0 3

4 tm-s qu (0.75) 10 = (0.11) 2. ond (0.11) 2 = Finalmnt conclui-s qu Exmplo. 1. (101101) 2 = (45) (176) 10 = ( ) 2 3. (1A0F ) 16 = (6671) (0.1) 10 = ( ) 2 5. (3.8) 10 = ( ) 2 6. (0.110) 2 = (0.75) = ( ) Rprsntação m Ponto Flutuant Como nos computadors usa-s um númro finito d númros, trmos qu rcorrr a sistmas qu façam arrdondamntos. Quando s rprsntam númros muitos grands ou muito pqunos, rcorr-s usualmnt à notação cintífica. Dado um númro x, m notação cintífica, st númro rprsnta-s por x = ±mb ond m 0 é um númro ral dsignado por mantissa, b 2 é um númro natural dsignado por bas é um númro intiro dsignado por xpont. Por xmplo, o númro admit a rprsntação na bas Inflizmnt sta rprsntação não é única pois o númro também tm a rprsntação Para rsolvr st problma, usa-s a notação cintífica normalizada ond s impõm as sguints convnçõs para a mantissa m = 0 s x = 0 b 1 m < 1 s x 0. Nst caso, o númro apnas tm a rprsntação

5 Not-s qu a rprsntação cintífica normalizada continua a não rsolvr o problma da unicidad na rprsntação pois = =... A notação cintífica não pod sr implmntada num computador pois tríamos qu tr infinitos dígitos para a mantissa para o xpont. Quando rstringimos a mantissa a um númro finito p d dígitos o xpont a um númro finito q d dígitos, obtém-s a dsignada rprsntação m ponto flutuant. O sistma d rprsntação m ponto flutuant normalizado F P (b, p, min, max ) d bas b, mantissa até p dígitos m = (0.d 1 d 2...d p ) b o xpont tal qu min max, contém todos os númros rais da forma x = 0 s d 1 = 0 ou x = ±mb = = ± (0.d 1 d 2... d p ) b b ± ( d 1 b 1 + d 2 b d p b p) b s d 1 0. Exmplo. O sistma d ponto flutuant F P (10, 6, 2, 2) tm bas 10, mantissa até 6 dígitos. Est sistma inclui o zro todos os númros da forma ±0.d 1 d 2... d 6 10 ond 0 d i 9, i = 1,..., 6 d 1 0. Por xmplo, o númro nst sistma rprsnta-s por Not-s qu nst sistma o maior númro rprsntávl é = o mnor númro positivo rprsntávl é = O númro 100 = não é rprsntávl nst sistma nsta situação diz-s qu ocorru um Ovrflow. Analogamnt o númro também não é rprsntávl nst sistma dizs qu ocorru um Undrflow. O númro π = não possui rprsntação xacta nst sistma pois tm mais do qu 6 dígitos. Exmplo. O sistma d ponto flutuant F P (2, 3, 1, 2) tm bas 2, mantissa até 3 algarismos qu s chamam bits o xpont varia ntr 1 2. Est sistma inclui o zro todos os númros da forma x = ± ( d d d 3 2 3) 2 5

6 ou sja, F P (2, 3, 1, 2) = {0, ± 1 4, ± 5 16, ±3 8, ± 7 16, ±1 2, ±5 8, ±3 4, ±7 8, ±1, ± 5 4, ±3 2, ±7 4, ±2, ±5 2, ±3, ±7 2 } = {0, ±0.25, ±0.3125, ±0.375, ±0.4375, ±0.5, ±0.625, ±0.75, ±0.875, ±1, ±1.25, ±1.5, ±1.75, ±2, ±2.5, ±3, ±3.5}. Dado um númro ral x R, rprsnta-s por x ou f l (x) a rprsntação d x m F P (b, p, min, max ). S x = x, diz-s qu x tm rprsntação xacta m F P (b, p, min, max ). S x x xistm duas técnicas para dtrminar x: Truncatura: x obtém-s dsprzando os númros da mantissa do númro x para além dos p primiros. Por xmplo o númro π é rprsntado m F P (10, 3, 2, 2, T ) por π = Arrndondamnto: x é o númro do sistma F P (b, p, min, max ) qu stá mais próximo d x. Por xmplo o númro π = é rprsntado m F P (10, 5, 2, 2, A) por π = Em alguns casos, o arrndondamnto não dtrmina univocamnt a aproximação x. Por xmplo, o númro 0.75 no sistma F P (10, 1, 1, 1, A) tm dois lmntos quidistants d 0.75: É ncssário ntão introduzir rgras adicionais uma das mais utilizadas é a rgra Roundto-Evn, qu nsts casos opta pla aproximação qu dixa o último dígito da mantissa par. Logo, 0.75 = = Opraçõs Aritméticas m Ponto Flutuant Considr-s os sguints númros x = y = cuja rprsntação m F P (10, 4, 2, 2, T ) é dada por x = ȳ = A soma dsts númros é 6

7 x + ȳ = qu não é um lmnto d F P (10, 4, 2, 2, T ). Logo, dpois d s fctuar a opração tr-s-á qu rprsntar o rsultado no sistma m ponto flutuant. Nst caso, a soma é dada por x + ȳ = Por isso, num sistma d ponto flutuant é ncssário dfinir as opraçõs aritméticas lmntars (soma, subtração, multiplicação divisão) nss sistma. Sjam x, y F P (b, m, min, max ) {+,,, /} uma opração aritmética. Dfin-s 3 Erros x ȳ = x ȳ. No qu s sgu, considra-s qu s stá na notação d bas 10 qu as aproximaçõs são fitas por arrdondamnto. Sja x R x uma aproximação d x. Dfin-s como rro da aproximação a ϵ x = x x. Diz-s qu x é uma aproximação por dfito s x < x diz-s qu x é uma aproximação por xcsso s x > x. Chama-s d rro absoluto ao módulo do rro rro rlativo a x = x x r x = x x = x x x s x 0. Por xmplo, s x = x = 3.33, ntão, Para y = ȳ = 0, tm-s qu x = r x = ȳ = rȳ = 1. 7

8 Com sts xmplos vrifica-s qu o rro rlativo fornc mais informação qu o rro absoluto (distância ntr a aproximação o valor) pois tm m conta a ordm d grandza do valor d x. Outras mdidas da qualidad d uma aproximação é o númro d casas dcimais corrctas o númro d dígitos significativos. Diz-s qu o númro x s ncontra rprsntado com d casas dcimais corrctas quando a sua part dcimal aprsnta d algarismos dcimais rsulta d um arrdondamnto corrctamnt fctuado sobr um outro númro. Diz-s qu o númro x s ncontra rprsntado com k algarismos significativos quando stá rprsntado com k algarismos, contados da squrda para a dirita, a partir do primiro algarismo difrnt d zro dsd qu rsult d um arrdondamnt bm fctuado sobr um outro númro. Sja x R x uma aproximação d x. Diz-s qu x é uma aproximação d x com plo mnos d casas dcimais corrctas s x = x x d. Not-s qu sta dfinição só é válida para a notação cintífica normalizada. Exmplo. Sjam x = 2 = x = 1.41 uma aproximação d x. Como x x = = , ntão x é uma aproximação d 2 com plo mnos 2 casas dcimais corrctas. Exmplo. Sja y = 5 = ȳ = 2.24 uma aproximação d y. Como y ȳ = = , ntão ȳ é uma aproximação d 5 com plo mnos 2 casas dcimais corrctas. Considr-s x R x uma aproximação d x qu tm a sguint rprsntação cintífica x = ±0.d 1 d 2... d k d k 1... d k l 10 p. Diz-s qu x é uma aproximação d x com plo mnos k algarismos significativos s Adicionalmnt, s x = x x k+p. x = x x > k+p 1 diz-s qu x é uma aproximação d x com com xactamnt k algarismos significativos. 8

9 Exmplo. Sjam π 1 = ( ) 10 1 π 2 = ( ) 10 1 duas aproximaçõs d π = Então, π π 1 = = π π 2 = = Logo, π 1 tm 3 casas dcimais corrctas tm xactamnt 4 algarismos significativos π 2 tm 4 casas dcimais corrctas tm xactamnt 5 algarismos significativos. Exmplo. Sja x = 0.25 uma aproximação d x. S s soubr qu x 0.005, ntão como x = x x conclui-s qu x tm 2 casas dcimais corrctas plo mnos 2 algarismos significativos. Exmplo. Sja x = = x Uma vz qu logo x = k 2, k = 2. Assim x = tm 4 casas dcimais corrctas plo mnos 2 algarismos significativos. 4 Propagação d Erros. Fórmula Fundamntal do Cálculo d Erros Nsta scção, considra-s qu todas as funçõs são contínuas difrnciávis. S s quisr calcular y = f (x), m qu apnas s conhc um valor aproximado x d x, qual o rro qu s irá obtr na solução ȳ = f ( x)? Ou sja, qual é o fito d propagação do rro x na solução do problma? Plo Torma d Lagrang no intrvalo I = [ x x, x + x ], xist um ponto c I tal qu Logo, f f (x) f ( x) (c) = x x f (x) f ( x) = f (c) (x x). f (x) f ( x) = f (c) x x f( x) = f (c) x ond f( x) = f (x) f ( x). Como na prática não s conhc o valor d c, ntão majoras o rro da sguint forma f( x) f (x) x m qu f (x) = sup f (x). x I 9

10 A sta dsigualdad dá-s o nom d Fórmula Fundamntal do Cálculo d Erros (FFCE) qu também pod sr scrita na forma f( x) x x ond x = f (x) (notação d Libniz). Exmplo. Sja f (x) = 2x Qual é o rro propagado a f (x) s s tomar x = 1.3? S s considrar todos os algarismos da aproximação significativos, tm-s qu Um valor aproximado d f (x) é x ] , [. f( x) = = 6.38 um majorant do rro da aproximação é dado por f( x) f (x) x 4x x 4 ( ) Logo, x ] , [ f(x) ] , [. Usualmnt, uma função f dpnd d várias variávis x 1, x 2,..., x n a gnralização da FFCE a várias variávis é dada por f n x i i=1 xi, ond f = f (x 1, x 2,..., x n ) x i é a drivada parcial d f m rlação à variávl x i. Por xmplo, para f(x, y, z) = 2xy + 3z 2 y 2 z tm-s qu x = (2xy + 3z2 y 2 z) x = 2y, y = (2xy + 3z 2 y 2 z) y = 2x 2yz z = (2xy + 3z 2 y 2 z) z = 6z y 2. 10

11 Exmplo. Considr-s f (x, y) = xy x 2. S x ] , [ y ] , [. Um valor aproximado d f é f = f ( x, ȳ) = = Como Logo f x x + ȳ y y 2x x + x ȳ ( ) 2 ( ) f (x, y) ] , [. 4.1 Estimativas do Erro m Opraçõs Aritméticas Elmntars Considr-s a opração Soma dfinida por S = x + y. Então, S S x x + S ȳ y 1 x + 1 ȳ. Logo S x + ȳ. A opração Subtracção dfinida por D = x y, tm o rro majorado por D D x x + D ȳ y 1 x + 1 ȳ Logo D x + ȳ. A opração Produto Escalar dfinida por P k = kx, ond k R, tm o rro majorado por Pk P k x x k x. Exmplo. Sjam f (x, y) = 3x 5y, x ] , [ y ]2 0.1, [. Um valor aproximado d f, srá f ( x, ȳ) = =

12 o rro é majorado por f 3 x + 5 ȳ = 1.1. Logo f (x, y) ] , [. No caso da opração Produto dfinida por P = xy, tm-s qu P y x + x ȳ no caso da opração Quocint Q = x, tm-s qu y Q 1 y x + x ȳ. y Propagação d Erros Rlativos Já foi visto qu rro rlativo é dado por ou sja, r x = x x = x = x r x. x x x S s considrar uma função f = f (x 1, x 2,..., x n ) a fórmula fundamntal dos rros f n x i xi s substituir os rros absolutos plo rlativos, obtém-s n f r f x i=1 i x i r xi n x i x r f i r xi f i=1 n r f p i r xi. i=1 i=1 A sta última xprssão dá-s o nom d fórmula fundamntal para rros rlativos. Os factors p i p i = x i x i f são dnominados d númros d condição. Na prática o valor xacto d x é gralmnt dsconhcido, sndo comum substituir-s x por x na fórmula antrior. 12,

13 Em sguida, aprsntam-s stimativas para os rros rlativos das opraçõs aritméticas lmntars. O rro rlativo da opração Soma S = x + y é stimado por Ou sja, i.., r S p x r x + pȳ rȳ x x + ȳ r x + ȳ x + ȳ r ȳ. r S x + ȳ x + ȳ. Analogamnt o rro rlativo da opração Subtracção é stimado por r D x x ȳ r x + ȳ x ȳ r ȳ r D x + ȳ x ȳ. O rro rlativo da opração Produto P = xy é stimado por r P p x r x + p y rȳ xȳ xȳ r x + xȳ xȳ r ȳ r x + rȳ o rro rlativo da opração Quocint Q = x y é stimado r Q p x r x + p y rȳ ) ȳ ( xȳ r x + 2 r ȳ x 1 ȳ x ȳ r x + rȳ. A tabla sguint rsum os rros, absolutos rlativos, das opraçõs aritméticas: Erro Absoluto Erro Rlativo Soma S x + ȳ r S x+ ȳ x+ȳ Difrnça D x + ȳ r D x+ ȳ x ȳ Produto P y x + x ȳ r P r x + rȳ Quocint Q x + x y 2 ȳ r Q r x + rȳ 1 y Exmplo. Dtrmin-s o númro d algarismos significativos do rsultado d cada uma das opraçõs xy x + y m qu x = 1010 ȳ = S todos os algarismos são significativos, ntão x < 0.5 ȳ < x ȳ

14 r x = x x x x < rȳ Então, P y x + x ȳ = r P = Além disso, como xȳ = = P 1005 < 5000 = = , o produto tm 3 algarismos significativos. Em rlação aos rros da soma, tm-s qu S x + ȳ < = 1 r S x + ȳ x + ȳ = Além disso, como x + ȳ = 2010 = S 1 < 5 = = a soma tm 3 algarismos significativos. 14

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

3 Aritmética Computacional

3 Aritmética Computacional 33 3 Aritmética Computacional 3. Introdução Quando s utiliza um qualqur instrumnto d trabalho para ralizar uma tarfa dv-s tr um conhcimnto profundo do su modo d funcionamnto, das suas capacidads das suas

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab TEORMA DA FUNÇÃO INVERSA Torma Dada f : Ω ab R n R n (n função com drivadas parciais contínuas m P Ω Suponhamos qu dt(jf((p Então xist ɛ > uma bola abrta B B(P ɛ uma função g : B R n (B f(ω com todas as

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

Lista 1 - Problemas relativos a conversão de bases numéricas e propagação

Lista 1 - Problemas relativos a conversão de bases numéricas e propagação Lista d xrcícios - Cálculo numérico - 2013/1 - Prof. Fabio S. d Azvdo Lista 1 - Problmas rlativos a convrsão d bass numéricas propagação d rros Qustão 1. Convrta para bas dcimal cada um dos sguints númros:

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V

AGRUPAMENTO DE ESCOLAS D. JOÃO V ESCOLA SECUNDÁRIA c/ 2º e 3º CICLOS D. JOÃO V AGRUPAMENTO DE ESCOLAS D. JOÃO V 172431 ESCOLA SECUNDÁRIA c/ 2º 3º CICLOS D. JOÃO V Ensino Rgular Ára Disciplinar d Matmática Planificaçõs 2014/15 Ciclo 5.º ano Manual scolar adotado: Matmática 5.º ano,

Leia mais

III Integrais Múltiplos

III Integrais Múltiplos INTITUTO POLITÉCNICO DE TOMA Escola uprior d Tcnologia d Tomar Ára Intrdpartamntal d Matmática Anális Matmática II III Intgrais Múltiplos. Calcul o valor dos sguints intgrais: a) d d ; (ol. /) b) d d ;

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

Sucessões e Frações Contínuas

Sucessões e Frações Contínuas Sucssõs Fraçõs Contínuas JOÃO CARREIRA PAIXÃO Escola ES/3 d Maria Lamas jcpaixao@gmail.com 04 38 GAZETA DE MATEMÁTICA 166 Atualmnt a rprsntação d númros rais na notação dcimal parc sr a mais óbvia, mas

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Programa de Matemática - II Ciclo CONTEÚDOS

Programa de Matemática - II Ciclo CONTEÚDOS 3 a CLASSE 305 306 PROGRAMA DE MA DA 3ª CLASSE I Os Númros Naturais até 1000 Lr scrvr os númros naturais até 100; Dcompor os númros naturais até 100 m unidads, dznas cntnas; Escrvr os númros naturais até

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

a IIfi 11 -r'''' discutem-se aspectos retacionacos com

a IIfi 11 -r'''' discutem-se aspectos retacionacos com a IIfi 11 -r'''' discutm-s aspctos rtacionacos com dnsidad mínima d amostragm l. gológico do d Monchtqu, adaptado d xroncarvs (l vista prparação d um como a dnmçao das suas ciaudads m tndo m considos procssos

Leia mais

guia rápido de configuração CFX-750 trimble Precisa 6m³

guia rápido de configuração CFX-750 trimble Precisa 6m³ guia rápido d configuração CFX-750 trimbl Prcisa 6m³ 1.1 1.2 1.3 1.4 1º passo Configurando o GPS L i g u o CF X 750 (s g u r 3 s g u n d o s) Aprt (cliqu) m GPS (GPS)Config G PS (Font Corrig. D GPS) Aprt

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES DE 2ª ORDEM Caítulo II EQUAÇÕES DIFERENCIAIS LINEARES DE ª ORDEM Caítulo II Equaçõs Difrnciais Linars d ª Ordm Caítulo II Até agora já conhcmos uma séri d quaçõs difrnciais linars d rimira ordm Dfinirmos considrarmos

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL

MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL MATRIZ DE REFERÊNCIA PARA EM MATEMÁTICA AVALIA BH 1º, 2º E 3º CICLOS DO ENSINO FUNDAMENTAL Na ralização d uma avaliação ducacional m larga scala, é ncssário qu os objtivos da avaliação as habilidads comptências

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

Controle Modal e Observador de Estado - Estabilizador 1

Controle Modal e Observador de Estado - Estabilizador 1 Capítulo 3 Control Modal Obsrvador d Estado - Estabilizador 1 O principal objtivo dst capítulo é dfinir o concito d obsrvador d stado d control modal, como pré-rquisitos d projto d stabilizadors 31 Princípio

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Guião do Professor :: TEMA 2 1º Ciclo

Guião do Professor :: TEMA 2 1º Ciclo Guião do Profssor :: 1º Ciclo quipas! A roda dos alimntos ~ Guiao do Profssor Vamos fazr quipas! :: A roda dos alimntos quipas! Como xplorar o tma Slid 1 Aprsntam-s, no primiro slid d forma disprsa sm

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funçõs Trigonométricas META: Introduzir as principais funçõs trigonométricas: sno, cossno tangnt. AULA 7 OBJETIVOS: Dfinir as funçõs sno, cossno tangnt. Mostrar algumas idntidads trigonométricas. Calcular

Leia mais

MÉTODO DE RUNGE-KUTTA DE 2 ESTÁGIOS E ORDEM 2: SOLUÇÃO NUMÉRICA DE UM PROBLEMA DE VALOR INICIAL VIA MAPLET.

MÉTODO DE RUNGE-KUTTA DE 2 ESTÁGIOS E ORDEM 2: SOLUÇÃO NUMÉRICA DE UM PROBLEMA DE VALOR INICIAL VIA MAPLET. MÉTODO DE RUNGE-KUTTA DE 2 ESTÁGIOS E ORDEM 2: SOLUÇÃO NUMÉRICA DE UM PROBLEMA DE VALOR INICIAL VIA MAPLET. J. M. Prira, O. A. Gonzatto Júnior, T. M. P. Garcia, C. G. A. Prira, A. M. Lobiro, Coinf/UTFPR,

Leia mais

PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES

PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES PROCEDIMENTO DE MEDIÇÃO DE ILUMINÂNCIA DE EXTERIORES Rodrigo Sousa Frrira 1, João Paulo Viira Bonifácio 1, Daian Rznd Carrijo 1, Marcos Frnando Mnzs Villa 1, Clarissa Valadars Machado 1, Sbastião Camargo

Leia mais

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano.

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano. Qustão 5 O squma abaixo rprsnta a distribuição média dos lmntos químicos prsnts no corpo humano. (Adaptado d SNYDER, Carl H. Th xtraordinary chmistry of ordinary things. Nw York: John Wily & Sons, Inc.,

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS No capítulo qu irmos iniciar, studarmos as quaçõs difrnciais, sus aspctos, caractrísticas suas rspctivas soluçõs. Obviamnt sugrm a rsolução d algum tipo d quação nvolvndo drivadas.

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Forças de implantação nas pontes estaiadas

Forças de implantação nas pontes estaiadas Forças d implantação nas ponts staiadas Pdro Afonso d Olivira Almida (); Rui Oyamada (); Hidki Ishitani () () Profssor Doutor, Dpartamnto d Engnharia d Estruturas Fundaçõs Escola Politécnica, Univrsidad

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

TERMODINÂMICA BÁSICA APOSTILA 02

TERMODINÂMICA BÁSICA APOSTILA 02 Engnharia Aronáutica Engnharia d Produção Mcânica Engnharia Mcatrônica 4º / 5 Smstr TERMODINÂMICA BÁSICA APOSTILA 0 Prof Danil Hass Calor Trabalho Primira Li da Trmodinâmica SÃO JOSÉ DOS CAMPOS, SP Capítulo

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais