Laboratório de Física

Tamanho: px
Começar a partir da página:

Download "Laboratório de Física"

Transcrição

1 Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5:

2 2/15 01 Associação d Rsistors 1.1. Objtivos Oprar um multímtro como ohmímtro slcionar scalas mais favorávis para uma mdida manusar protoboard para a montagm d circuitos létricos; Associar rsistors m séri parallo associaçõs mistas comparar a rsistência quivalnt tórica com os valors ncontrados xprimntalmnt Equipamntos Lista d quipamntos ncssários para a ralização do xprimnto: 1 Multímtro; 1 protoboard; 6 Rsistors d msma ordm d grandza (vit rptição nos valors nominais dos rsistors). 2. Aprsntação Nst xprimnto srá mprgado um conjunto d rsistors para o studo d associação m circuitos m séri parallo mistos com a intnção d vrificar a física das associaçõs dsnvolvr as habilidads no uso do multímtro com na mdida d rsistências d slção d scalas convnints Associação d Rsistors As rgras d associação d rsistors são mras aplicaçõs das Lis d Kirchhoff qu stablcm: 1. A soma das variaçõs d tnsão m uma malha fchada é smpr igual a zro; 2. A soma das corrnts qu ntram m um nó mnos a soma das corrnts qu sam d um nó é smpr nula Associação m Séri Suponha um circuito com três rsistors m séri como ilustra a Figura 1 alimntado por uma font d potncial qu fornc uma corrnt ao circuito. Nst caso o potncial létrico da font srá dividido m três qudas d potncial sobr os três rsistors como ilustra a figura. Est circuito muitas vzs é chamado d Divisor d Tnsão.

3 3/15 Figura 1: Circuito para associação m séri Ests potnciais são facilmnt dtrminados pla Li d Ohm são dados plas quaçõs: Portanto a soma dsts potnciais tm qu sr igual ao potncial da font ou sja Ou na forma da Li d Kirchhoff para as Malhas a soma dos potnciais m uma malha fchada é igual a zro D uma forma ou d outra podmos scrvr sta xprssão na forma ond é a soma das três rsistências m séri. Uma xprssão mais gral para sria (1) Portanto para a associação d rsistors m séri a rsistência quivalnt é dado pla soma das rsistências m séri. Um outro ponto rlvant qu pod ajudar a idntificação d rsistors m séri é o fato qu m todos os rsistors m séri flui a msma corrnt nquanto o potncial d divid Associação m Parallo A Figura 2 aprsnta o circuito da associação d três rsistors m parallo. Obsrv qu os pontos no circuito da Figura 2(a) possum o msmo potncial létrico uma vz qu não xistm rsistors ntr ls1. O msmo ocorr com os pontos na bas do circuito da Figura 2(a). Do pondo d vista létrico sts pontos são considrados o msmo ponto portanto possum o msmo potncial létrico. Ou sja o potncial létrico no polo suprior da font ( ) é o msmo nos trminais supriors dos rsistors. O msmo ocorr com o polo infrior da font ( ) qu é o msmo nos trminais infriors dos rsistors. Isto significa qu os três rsistors stão sobr o msmo potncial létrico no caso o potncial da font. 1 Nsts casos considramos os fios idais portanto não possum rsistência.

4 4/15 Figura 2: Duas rprsntaçõs da associação d três rsistors m parallo. No ntanto obsrv qu a corrnt létrica é dividida plos rsistors m três porçõs: A corrnt total pod sr dtrminada pla soma das três corrnts Ou pla Li d Kirchhoff para os Nós a soma das corrnts qu ntram m um nó mnos a soma das corrnts qu sam dst nó é smpr nula qu aplicada ao nó suprior dará a msma xprssão acima. Substituindo as xprssõs para as corrnts acima tmos: ond é dado por ou d uma forma mais compacta (2)

5 5/15 Portanto para a associação d rsistors m parallo a rsistência quivalnt é dada plo invrso da soma dos invrsos das rsistências m parallo Rsistors Comrciais Para as atividads srão mprgados rsistors comrciais d d potência máxima2 com d tolrância mbora alguns rsistors d possam sr ncontrados no laboratório. Ests rsistors são constituídos por um cilindro d crâmica pintados por uma tinta d compostos d carbono mais algum mtal usualmnt frro. O comprimnto a spssura dstas faixas rsultam na rsistência do dispositivo. Rsistors comrciais são constituídos m valors padrõs d rsistências como múltiplos d dsts valors para rsistors d dois algarismos. Ests valors comrciais são chamados d Valor Nominal do rsistor gralmnt são rprsntados através d um código d cors gravados nos rsistors m 4 faixas. A Tabla 1 mostra o código d cors para cada faixa m um rsistor d 4 faixas. COR 1ª Faixa Prto Marrom Vrmlho 1 2 2ª Faixa 3ª Faixa 4ª Faixa Laranja Amarlo Vrd Azul Violta 7 7 Cinza 8 8 Branco 9 9 Dourado Pratado % % Tabla 1: Tabla com código d cors para rsistors d carbono. Nsts rsistors as duas primiras faixas rprsntam dois dígitos a trcira uma potência d a quarta a tolrância do rsistor. A Figura 3 aprsnta um rsistor comrcial d d tolrância. S olhar na Tabla 1 vrá qu a primira faixa amarla corrspond ao dígito a sgunda violta ao dígito. Estas duas faixas rprsntam os dígitos do valor da rsistência. A trcira faixa cor vrmlha corrspond a potência d. Portanto o valor nominal dst rsistor é d. A última faixa é smpr dourada ou pratada qu corrspondm a tolrância d conform a Tabla 1. 2 Conhcidos como rsistors d 1/4 d potência. A potência do rsistor é dada plo tamanho do dispositivo consquntmnt ára d dissipação d nrgia.

6 6/15 Figura 3: Exmplo d um rsistor d carbono d Dsta forma para o rsistor da Figura 3 su Valor Nominal srá. Est é o valor ajustado plo fabricant com a tolrância d o su valor mdido pod sr qualqur valor ntr 3 ou sja qualqur valor ntr até. O Valor Nominal não o Valor Mdido é o valor mprgado m projtos utilizados na dtrminação das corrnts tnsõs no circuito. Os rsistors stão arranjados m gavtas d uma caixa d miudzas ond cada gavta possui rsistors d uma msma ordm d grandza (msma quarta faixa). Na Figura 4 a caixa d rsistors stá abrta nos rsistors d (trcira faixa laranja). Cada nicho sta prnchido com rsistors d difrnts valors como. Figura 4: Caixa d Rsistors com a gavta ordm 10³ 2.3. O Protoboard Protoboard são pranchas mprgadas na montagm d protótipos d circuitos para fins d tsts projtos. O Laboratório d Física possui dois tipos d protoboard o MP2420 o MP1680A. Ambos os protoboards são compostos por dois tipos d lmntos tipo A tipo B como ilustra a Figura 5 no ntanto dispostos m arranjos difrnts. Esta aprsntação srá focada no modlo Minipa MP2420. Ests protoboards são compostos d dois tipos d lmntos marcados como A B na Figura 5 3 Obsrv qu a prcisão da rsistência dpndrá da prcisão do quipamnto d mdida mprgado.

7 7/15 quatro borns coloridos idntificados no como trra 4 vja a Figura 5. Ests borns não stão conctados ao rstant do protoboard sua conxão dv sr fita com o mprgo d fios mtálicos como srá aprsntado adiant. Da msma forma os lmntos tipo A B não possum conxõs ntr si sndo totalmnt indpndnts. Para conctálos ltricamnt é ncssário a utilização d fios dispositivos létricos. Figura 5: Protoboard Minipa MP2420 (2420 pontos) O protoboard MP2420 possui três lmntos do tipo A 5 lmntos do tipo B nquanto qu o protoboard MP1680A possui apnas 2 lmntos do tipo A 4 do tipo B. A disposição dsts lmntos também difrm d um modlo para o outro ntrtanto o su funcionamnto é o msmo m ambos os modlos. O lmnto tipo A possui 64 trilhas dispostas m duas linhas d 32 trilhas cada. Cada trilha linhas dstacadas m vrds na Figura 6 possui 5 furos cada conctados vrticalmnt. Obsrv qu as 32 trilhas da linha suprior são compltamnt indpndnts das 32 trilhas na linha infrior. Figura 6: Elmnto tipo A: 64 trilhas com 5 pontos conctados cada. Já o lmnto do tipo B é composto por 4 trilhas ond cada trilha é composta d 25 furos ltricamnt conctados agrupados m 5 colunas vja as linhas m vrd na Figura 7. Figura 7: Elmnto tipo B: 4 trilhas d 25 pontos conctados Montando Circuitos no Protoboard Em gral a montagm d um circuito é mais confortavlmnt ralizada nos lmntos do tipo A dado a sua disposição. Os lmntos do tipo B são mais utilizados para lvar um potncial létrico a pontos distants do protoboard. Isto não significa qu os lmntos do tipo B não possam sr usados na montagm do circuito apnas não são convnints para st srviço. 4 O modlo MP1680A possui apnas três borns

8 8/15 Nas sçõs a sguir são aprsntados algumas montagns d circuitos simpls ilustrando o mprgo do protoboard. Atnção: Ants d iniciar o xprimnto na sção 3 raliz todas as montagns das sçõs sguints: Rsistors m Séri; Rsistors m Parallo; Circuitos Mistos. Dmonstr as xprssõs (3) (4) (5) calcul as rsistências dos arranjos compar com os valors mdidos. Ao final aprsnt os rsultados m uma folha avulsa para su profssor Rsistors m Séri A Figura 8 aprsnta um circuito simpls com quatro rsistors associados m séri. O primiro passo na montagm do circuito no protoboard é idntificar os pontos d conxão ntr dois ou mais dispositivos. Ests pontos foram nomados com as ltras d a no circuito da Figura 8. O primiro ponto ltra rprsnta a conxão ntr o rsistor o trminal positivo da font o ponto a conxão ntr os rsistors o ntr os rsistors o ntr por fim ntr o rsistor o trminal ngativo da font. Cada conxão pontos a no circuito da Figura 8 s tornará uma trilha no protoboard. Uma possívl montagm para st circuito é aprsntada na Figura 9. Obsrv qu cada ponto d conxão ntr os dispositivos ocupam uma das trilhas no protoboard. Figura 8: Circuito Séri Figura 9: Montagm d quatro rsistors m séri. Em vrd stão vidnciados os trchos das trilhas por ond a corrnt létrica passaria caso o circuito foss alimntado por uma font d tnsão. Obsrv qu a conxão podria tr sido fita na trilha m vrmlho sm qualqur problma na funcionalidad do circuito. Isto é possívl pois a trilha da conxão sta na linha suprior do lmnto tipo A portanto stá isolada das trilhas da linha infrior como é o caso da trilha m vrmlho. A rsistência quivalnt é calculada por aplicação dirta da xprssão (1) associação m séri aprsntada m sção antrior. Para o circuito da Figura 8 a rsistência quivalnt srá dada pla xprssão: (3) Rsistors m Parallo Um circuito com quatro rsistors m parallo é aprsntado na Figura 10. Obsrv qu nst circuito xit apnas dois pontos ond os dispositivos são conctados nomados d. Todos pontos na part suprior do circuito corrspondm a uma msma conxão assim com na

9 9/15 part infrior qu corrspond a conxão. Obsrv qu st é o msmo caso da Figura 2(a) (b) da sção Associação m Parallo. Figura 10: Circuito Parallo Uma possívl montagm no protoboard para st circuito é aprsntado na Figura 11. As trilhas são marcadas m vrd para vidnciar as conxõs do circuito. Figura 11: Montagm d quatro rsistors m parallo. A rsistência quivalnt é calculada por aplicação dirta da xprssão (2) associação m parallo aprsntada m sção antrior. Para o circuito da Figura 10 a rsistência quivalnt srá dada pla xprssão: (4) Circuitos Mistos Para finalizar considr o circuito misto aprsntado na Figura 12 com quatro rsistors. Os pontos d conxão são vidnciados no circuito nomados como as ltras a. As conxõs são conxõs spciais chamadas d nós. Chamamos d nós todas as conxõs qu unm três ou mais dispositivos m um circuito létrico. O nó concta o polo positivo da font aos rsistors. O nó concta os rsistors. A conxão concta os trminais dos rsistors nquanto qu a conxão concta os rsistors já a conxão liga a rsistência ao polo ngativo da font fchando o circuito.

10 10/15 Figura 12: Circuito misto com 4 rsistors. A Tabla 2 traz um rsumo das conxõs para a montagm dst circuito. Conxão Concta dispositivos Nó Nó trminal positivo da font ao squrdo do rsistor trminal dirito do rsistor com o suprior do trminal infrior do rsistor ao dirito do trminal infrior do ao trminal squrdo do o suprior do o dirito do trminal ngativo da font ao trminal squrdo do Tabla 2: Conxõs para o circuito da Figura 12. Como st circuito possui 5 conxõs sta montagm dv ocupar 5 trilhas distintas no protoboard. Uma possívl montagm para st circuito é aprsntado na Figura 13. Figura 13: Montagm do circuito misto m protoboard. As trilhas stão vidnciadas m vrd na Figura 13. Obsrv qu uma boa montagm é aqula qu mantêm a disposição física dos rsistors smlhants à do circuito original. A rsistência quivalnt para o circuito da Figura 12 é facilmnt dtrminada por mio das associaçõs m séri parallo com o mprgo das xprssõs (1) (2) rsultando na xprssão (5) a sguir. (5) 3. Exprimnto Os rsistors stão guardados no laboratório m uma caixa d psca com as rsistências guardadas m gavtas por ordm d grandzas difrnts. A primira gavta corrspond aos rsistors d ordm a sgunda ordm a trcira ordm assim sucssivamnt. Escolha sis rsistors d msma ordm d grandza s possívl difrnts prncha a Tabla 3

11 11/15 com os sus Valors Nominais os Valors Mdidos plo Ohmímtro: Nominal Tolrância Mdido Tabla 3: Rsistors slcionados. Em sguida associ os rsistors conform solicitado a sguir Associação m Séri Paras as montagns a sguir utiliz algarismos significativos para os cálculos com os valors mdidos (ou nominais) dos rsistors. Ests cálculos são apnas para avaliação das grandzas a srm mdidas. Mont os sis rsistors m séri. Calcul o valor da rsistência quivalnt: : Mça o valor da rsistência quivalnt com o Ohmímtro: : 3.2. Associação m Parallo Slcion quatro dos rsistors os mont m parallo: Rsistors Slcionados: Calcul a rsistência quivalnt: : Mça a rsistência quivalnt: : 3.3. Associação Mista Copi os circuitos para as associaçõs mistas aprsntadas no quadro no spaço da Figura 14; Mont os circuitos no protoboard conform os squmas; Calcul a rsistência quivalnt vista plos trminais da font ( (b): ) para os circuitos (a)

12 12/15 Figura 14: Associaçõs mistas Mça a rsistência quivalnt do circuito vista plos trminais A B prncha a Tabla 4. Circuito (a) (b) Tabla 4: Associaçõs mistas 4. Rsultados: Associação d Rsistors Utilizando a tolrância como incrtza prncha a Tabla 5. Rsistor Valors Nominais Tabla 5: Rsistências nominais mprgadas. Em sguida com os valors nominais dos rsistors acima calcul as rsistências quivalnts dos problmas suas rspctivas incrtzas.

13 Associaçõs Rsistências Equivalnts Séri Parallo Ccto Misto 1 Ccto Misto 2 Tabla 6: Rsistors quivalnts para os circuitos. 13/15

14 14/15 5. Exprimnto 01 Associação d Rsistors Profssor: Turma: Data: / /20 Alunos: 1: 2: 3: 4: 5: 5.1. Dados Exprimntais Copi os dados das tablas antriors nas tablas abaixo: Nominal Tolrância Mdido Tabla 7: Rsistors slcionados dados da Tabla 7. Copi na Tabla 8 os dados rlativos as rsistências mdidas calculadas plos valors nominais nos xprimntos. Circuito Séri Parallo Mistoa Mistob Tabla 8: Associaçõs Séri Parallo Mistos Rsistors Slcionados para a associação m parallo: 6. Equaçõs Exprssõs Rlvants Nsta sção são aprsntados as xprssõs quaçõs dfiniçõs ncssárias para o dsnvolvimnto do xprimnto. O Formulário aponta as quaçõs dfiniçõs ssnciais para o dsnvolvimnto das xprssõs na Composição nquanto qu st último aprsnta as xprssõs finais gralmnt para a rsolução do problma aprsntado no xprimnto.

15 15/ Formulário (6) Associação d rsistors m séri (7) 6.2. Composição Est xprimnto não possui quação d composição pré dfinida uma vz qu os circuitos séri parallo são muito simpls os circuitos mistos são variávis. (8) Rsistência quivalnt do circuito mistoa. (9) Rsistência quivalnt do circuito mistob.

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon

ABNT NBA NORMA BRASILEIRA. Informação e documentação - Sumário - Apresentação T~CNICAS. lnformation and documentatíon - Contents físt - Presentatíon NORMA BRASILEIRA ABNT NBA 6027 Sgunda dição 11.12.2012 Válida a partir d 11.01.201 3 Informação documntação - Sumário - Aprsntação lnformation and documntatíon - Contnts físt - Prsntatíon ICS 01.140.20

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

Vitória, 31 de maio de EDITAL DE SELEÇÃO DE TUTOR DO GRUPO PET PET Engenharia de Computação

Vitória, 31 de maio de EDITAL DE SELEÇÃO DE TUTOR DO GRUPO PET PET Engenharia de Computação UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PRO-REITORIA DE GRADUAÇÃO COMITÊ LOCAL DE ACOMPANHAMENTO E AVALIAÇÃO Av. Frnando Frrari, 54 - Campus Univrsitário Goiabiras 29060-900 Vitória - ES Tlfon: (27)4009-24

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Capítulo 1 ELETROSTÁTICA

Capítulo 1 ELETROSTÁTICA Capítulo 1 ELETROSTÁTICA 1.1 Introdução No século VI A.C., na Grécia Antiga, o grgo Thals d Milto dscobriu uma rsina fóssil (o âmbar), cujo nom m grgo é lktron, qu adquiria a propridad d atrair corpos

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Forças de implantação nas pontes estaiadas

Forças de implantação nas pontes estaiadas Forças d implantação nas ponts staiadas Pdro Afonso d Olivira Almida (); Rui Oyamada (); Hidki Ishitani () () Profssor Doutor, Dpartamnto d Engnharia d Estruturas Fundaçõs Escola Politécnica, Univrsidad

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

FT44 Purgador de Bóia em Aço Carbono

FT44 Purgador de Bóia em Aço Carbono Página 1 d 5 BR Rv 00 Purgador d Bóia m Aço Carbono DN15, DN20 DN25 DN15 (mostrado na figura) DN40 DN50 DN50 (mostrado na figura) -C Dscrição O é um purgador d bóia com corpo produzido m Aço Carbono. Possui

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA

REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA GABINETE COORDENADOR DO DESPORTO ESCOLAR REGULAMENTO ESPECIFICO DE GINÁSTICA AERÓBICA (CÓDIGO DE PONTUAÇÃO) 2002-2003 DESPORTO ESCOLAR - CÓDIGO DE GINÁSTICA AERÓBICA 2 ÍNDICE 1. QUADRO ORGANIZATIVO Pág.

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações.

uma estrutura convencional. Desta forma, o desempenho de um sistema estrutural está diretamente relacionado com o desempenho de suas ligações. ISSN 1809-5860 ESTUDO DE UMA LIGAÇÃO VIGA-PILAR UTILIZADA EM GALPÕES DE CONCRETO PRÉ- MOLDADO Anamaria Malachini Miotto 1 & Mounir Khalil El Dbs 2 Rsumo Em gral, as ligaçõs ntr lmntos pré-moldados d concrto

Leia mais

GERADOR ELETROSTÁTICO

GERADOR ELETROSTÁTICO GERADOR ELETROSTÁTICO Est artigo irá mostrar como construir um grador ltrostático, projto muito famoso m firas d Ciências. É uma máquina muito intrssant dvido às pqunas faíscas qu gra, dmonstrando claramnt

Leia mais

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano.

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano. Qustão 5 O squma abaixo rprsnta a distribuição média dos lmntos químicos prsnts no corpo humano. (Adaptado d SNYDER, Carl H. Th xtraordinary chmistry of ordinary things. Nw York: John Wily & Sons, Inc.,

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

Controlabilidade, Observabilidade e Estabilidade

Controlabilidade, Observabilidade e Estabilidade Capítulo 2 Controlabilidad, Obsrvabilidad Estabilidad O principal objtivo dst capítulo é dfinir Controlabilidad, Obsrvabilidad Estabilidad, suas dcorrências dirtas Ests três concitos fundamntam o projto

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab TEORMA DA FUNÇÃO INVERSA Torma Dada f : Ω ab R n R n (n função com drivadas parciais contínuas m P Ω Suponhamos qu dt(jf((p Então xist ɛ > uma bola abrta B B(P ɛ uma função g : B R n (B f(ω com todas as

Leia mais

NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS

NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS Sgurança Saúd do Trabalho ao su alcanc! NR-33 SEGURANÇA E SAÚDE NOS TRABALHOS EM ESPAÇOS CONFINADOS PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação

Leia mais

ASSUNTO: Contrato Simples (alunos dos 1º, 2º e 3º Ciclos do Ensino Básico e Ensino Secundário) e Contrato de Desenvolvimento (Pré-Escolar)

ASSUNTO: Contrato Simples (alunos dos 1º, 2º e 3º Ciclos do Ensino Básico e Ensino Secundário) e Contrato de Desenvolvimento (Pré-Escolar) ASSUNTO: Contrato Simpls (alunos dos 1º, Ciclos do Ensino Básico Ensino Scundário) Contrato d Dsnvolvimnto (Pré-Escolar) Ano Lctivo 2015/2016 Exmo. Sr. Encarrgado d Educação 1 D acordo com a Portaria nº

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

Edital de Seleção Programa de Pós-Graduação em Saúde Turma 2016/ 2 o Semestre

Edital de Seleção Programa de Pós-Graduação em Saúde Turma 2016/ 2 o Semestre Edital d Slção Programa d Pós-Graduação m Saúd Turma 2016/ 2 o Smstr O Colgiado do Programa d Pós-Graduação m Saúd (PPgSaúd), ára d concntração Saúd Brasilira, torna público qu starão abrtas as inscriçõs

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES

EC1 - LAB - CIRCÚITOS INTEGRADORES E DIFERENCIADORES - - EC - LB - CIRCÚIO INEGRDORE E DIFERENCIDORE Prof: MIMO RGENO CONIDERÇÕE EÓRIC INICII: Imaginmos um circuito composto por uma séri R-C, alimntado por uma tnsão do tipo:. H(t), ainda considrmos qu no

Leia mais

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba

Catálogo M2404. PowerTrap. Série GP Série GT. Bomba Mecânica e Purgador Bomba Catálogo M404 PowrTrap Mcânica Séri GP Séri GT Rcupração ficaz do Mlhora a ficiência da planta Aumnto da produtividad qualidad dos produtos são, alguns dos bnfícios da drnagm rcupração do, além d rduzir

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO

APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO Marlon Rosa d Gouvêa Açominas Grais S. A., doutorando UFMG - mgouva@acominas.com.br Douglas Rodrigus d Olivira Açominas Grais

Leia mais

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo

Análise em Frequência de Sistemas Lineares e Invariantes no Tempo Anális m Frquência d Sistmas Linars Invariants no Tmpo Luís Caldas d Olivira Rsumo. Rsposta m Frquência 2. Sistmas com Função d Transfrência Racional 3. Sistmas d Fas Mínima 4. Sistmas d Fas Linar Gnralizada

Leia mais

Controle Modal e Observador de Estado - Estabilizador 1

Controle Modal e Observador de Estado - Estabilizador 1 Capítulo 3 Control Modal Obsrvador d Estado - Estabilizador 1 O principal objtivo dst capítulo é dfinir o concito d obsrvador d stado d control modal, como pré-rquisitos d projto d stabilizadors 31 Princípio

Leia mais

Circular Normativa. Assunto: Síndroma Respiratória Aguda - Plano de Contingência. Referenciação Hospitalar

Circular Normativa. Assunto: Síndroma Respiratória Aguda - Plano de Contingência. Referenciação Hospitalar Ministério da Saúd Dircção-Gral da Saúd Circular Normativa Assunto: Síndroma Rspiratória Aguda - Plano d Contingência. Rfrnciação Hospitalar Nº 7/DT Data: 6/5/2003 Para: Todos os Hospitais Cntros d Saúd

Leia mais

TERMODINÂMICA BÁSICA APOSTILA 02

TERMODINÂMICA BÁSICA APOSTILA 02 Engnharia Aronáutica Engnharia d Produção Mcânica Engnharia Mcatrônica 4º / 5 Smstr TERMODINÂMICA BÁSICA APOSTILA 0 Prof Danil Hass Calor Trabalho Primira Li da Trmodinâmica SÃO JOSÉ DOS CAMPOS, SP Capítulo

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013

ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL. 11º Ano. MATEMÁTICA Exercícios de Exames e Testes Intermédios. Ano Letivo de 2012/2013 ESCOLA SECUNDÁRIA DE ALCÁCER DO SAL MATEMÁTICA Exrcícios d Exams Tsts Intrmédios 11º Ano Ano Ltivo d 2012/2013 Trigonomtria 1 Na figura stá rprsntado o quadrado é a amplitud m radianos do ângulo Mostr

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais