Campo elétrico. Antes de estudar o capítulo PARTE I

Tamanho: px
Começar a partir da página:

Download "Campo elétrico. Antes de estudar o capítulo PARTE I"

Transcrição

1 PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa sobr a aprndizagm d cada tma Tmas principais do capítulo Domino o tma Vai sr fácil Vai sr difícil Analogia d com campo gravitacional Força létrica uniform Vja abaixo alguns trmos concitos qu você ncontrará no capítulo Marqu um X naquls qu você julga qu stão rlacionados à imagm X campo gravitacional trrstr linhas d força fito d borda Cadrno do studant FÍSICA Justifiqu suas scolhas Rsposta pssoal + 14

2 Capítulo 2 Sção 21 Sção 22 Trmos concitos ConCito D Campo létrico Campo létrico D CarGaS puntiforms Dfina os trmos ou concitos a sguir campo gravitacional trrstr linhas d força Campo gravitacional trrstr: spaço m torno da Trra no qual os corpos ali colocados fi cam sujitos à ação d forças : são linhas tangnts ao vtor m cada um dos sus pontos las são orintadas no sntido do vtor campo Guia d studo 1 48 Rvja o concito d compltando as frass abaixo Uma carga létrica puntiform fixa (Q ) origina, na rgião qu a nvolv, um campo d forças chamado Uma carga puntiform d prova (q) colocada num ponto dssa rgião fica sob ação d uma força létrica A carga létrica d prova (q) snt a prsnça da carga (Q ) por mio do qu a carga Q origina 2 Analogia d com campo gravitacional Compar os campos gravitacional létrico compltanto os spaços abaixo Campo gravitacional Força qu ag num corpo d prova d massa m colocado num ponto P do campo gravitacional da Trra: P 5 m fator scalar: fator vtorial: g m g Força qu ag numa carga létrica d prova q colocada num ponto P d um campo létrico: 5 q fator scalar: fator vtorial: S q 0, têm msmo sntido q Cadrno do studant FÍSICA S q, 0, têm sntidos opostos têm smpr a msma dirção 15

3 Dsnh as linhas d força do originado por uma carga puntiform positiva originado por uma carga puntiform ngativa Força létrica 49 a 54 Analis as afirmaçõs abaixo assinal V para as vrdadiras F para as falsas Dpois, rscrva as falsas corrigindo o qu for ncssário F S xist a prsnça d um m um ponto P, xist também nst ponto a prsnça d uma força létrica S xist a prsnça d um m um ponto P, só xistirá uma força létrica s m P for colocada uma carga d prova F O vtor produzido por uma carga ngativa é d afastamnto O vtor produzido m cada ponto por uma carga ngativa fixa é d aproximação Nomi os trmos da quação indiqu as unidads d mdida d cada um dos trmos no SI 5OqO 5 OqO 5 5 intnsidad da força létrica (N) valor absoluto da carga létrica (C) intnsidad do (N/C) Cadrno do studant FÍSICA Dsnh os vtors do parciais no ponto P, considrando o campo grado plas cargas Q 1 0, Q 2 Q, 0 Após fazr o dsnho, scrva a quação qu prmit ncontrar o campo rsultant no ponto P Q 1 2 P 1 Q Q 2 R

4 Capítulo 2 Sção 2 uniform Trmos concitos Dfina o trmo ou concito a sguir fito d borda ntr as placas fito d borda ntr as placas: considr o grado por duas placas parallas ltrizadas com cargas d sinais opostos Quando a distância ntr as placas não for dsprzívl, comparada com suas dimnsõs, a rgião das bordas das placas trá um não uniform, difrnt d sua rgião cntral, qu trá um campo uniform Guia d studo uniform 59 Rvja o concito d uniform compltando a fras a sguir uniform é aqul m qu o vtor é o msmo m todos os pontos Assim, m cada ponto, o vtor tm a, a o msma intnsidad msma dirção msmo sntido Caractriz os campos létricos uniforms compltando o diagrama a sguir Duas placas ltrizadas com cargas létricas d sinais opostos Para placas com distância dsprzívl comparada com suas dimnsõs Para placas com distância não dsprzívl comparada com suas dimnsõs Faça a conxão Campo uniform Campo não uniform nas bordas Os concitos d linhas d força foram introduzidos plo cintista inglês Michal Faraday Faça uma psquisa sobr a vida as contribuiçõs dss notávl psquisador Rsposta pssoal Michal Faraday, físico xprimntal inglês, é rsponsávl pla dscobrta da indução ltromagnética, sndo um dos Cadrno do studant física primiros psquisadors a studar as conxõs ntr a ltricidad o magntismo 17

5 PART I Capítulo 2 FCHANDO O CAPÍTULO Marqu um X na coluna qu mlhor rflt o su aprndizado d cada tma Dpois, compar sta tabla com a qu você prnchu no Ants d studar o capítulo Tmas principais do capítulo Já sabia tudo Aprndi sobr o tma Não ntndi Socorro!!! Analogia d com campo gravitacional Força létrica uniform S você não ntndu algum dsss tmas, rvja as atividads do Cadrno do studant rvis su livro-txto Quando for ncssário, pça ajuda a su profssor ou a um colga Rvja a sgunda atividad do Ants d studar o capítulo ravali as suas scolhas S julgar ncssário, scrva novas justificativas compar-as com suas considraçõs iniciais Na fi gura tmos a rprsntação das linhas d força do campo grado por duas cargas létricas puntiforms d msmo valor absoluto sinais contrários As linhas d força prmitm visualizar um Sinttiz Rsuma as principais idias do capítulo, aprsntando o concito d campo létrico analisando o grado por uma carga létrica puntiform por divrsas cargas Rsposta pssoal Uma carga létrica ou uma distribuição d cargas origina, na rgião qu a nvolv, um campo d forças dnominado A cada ponto do campo associa-s uma grandza vtorial dnominada vtor O sntido dss vtor dpnd da carga qu o grou sua intnsidad é 5 q ou 5 k Q 0 d sua dirção é smpr radial O vtor rsultant m um 2 R ponto P, dvido à prsnça d n cargas létricas, é dado pla soma R n Cadrno do studant FÍSICA 18

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Lista 2 - Campo Elétrico e Potencial Elétrico Terceiros anos Etec. estão

Lista 2 - Campo Elétrico e Potencial Elétrico Terceiros anos Etec. estão Lista - ampo létrico Potncial létrico Trciros anos tc. (G - ifsul 07) As cargas létricas puntiforms q 0 μ q 4 μ stão 9 fixas no vácuo 0 k 9 0 Nm, rspctivamnt nos pontos A B, conform a figura a sguir. om

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Capítulo 1 ELETROSTÁTICA

Capítulo 1 ELETROSTÁTICA Capítulo 1 ELETROSTÁTICA 1.1 Introdução No século VI A.C., na Grécia Antiga, o grgo Thals d Milto dscobriu uma rsina fóssil (o âmbar), cujo nom m grgo é lktron, qu adquiria a propridad d atrair corpos

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

ATIVIDADES RECUPERAÇÃO PARALELA

ATIVIDADES RECUPERAÇÃO PARALELA ATIVIDADES RECUPERAÇÃO PARALELA Nom: Nº Ano: 6ºD Data: / /0 Bimstr: Profssor: Dnis Rocha Disciplina: Matmática Orintaçõs para studo:. Rvisar os contúdos trabalhados no bimstr.. Rfazr os xrcícios do cadrno

Leia mais

A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação).

A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação). Rita Vloso - matriais d PPE Faculdad d Ltras da Univrsida d Lisboa Cosão intrfrásica assgurada por procssos d squncialização qu xprimm vários tipos d intrdpndência smântica das frass qu ocorrm na suprfíci

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Vantagens e Desvantagens do método de ABP

Vantagens e Desvantagens do método de ABP Vantagns Dsvantagns do método d ABP TÓPICO VANTAGEM AUTOR DESVANTAGEM AUTOR - Dsnvolvhabilidads atituds, como Ribiro - Dificuldads dos alunos individualistas, Ribiro comunicação oral, scrita trabalho m

Leia mais

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider

SP 09/11/79 NT 048/79. Rotatória como Dispositivo de Redução de Acidentes. Arq.ª Nancy dos Reis Schneider SP 09/11/79 NT 048/79 Rotatória como Dispositivo d Rdução d Acidnts Arq.ª Nancy dos Ris Schnidr Rsumo do Boltim "Accidnts at off-sid priority roundabouts with mini or small islands", Hilary Grn, TRRL Laboratory

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

A ferramenta de planeamento multi

A ferramenta de planeamento multi A frramnta d planamnto multi mdia PLANVIEW TELEVISÃO Brv Aprsntação Softwar d planamnto qu s basia nas audiências d um príodo passado para prvr asaudiências d um príodo futuro Avrsatilidad afacilidad d

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

A prova tem como referência o Programa de PRÁTICAS DE CONTABILIDADE E GESTÃO do 12º Ano de Escolaridade.

A prova tem como referência o Programa de PRÁTICAS DE CONTABILIDADE E GESTÃO do 12º Ano de Escolaridade. Informação - Prova Equivalência à Frquência Práticas Contabilida Gstão Prova Equivalência à Frquência Práticas Contabilida Gstão Duração da prova: 120 minutos / 24.06.2013 12º Ano Escolarida Curso Tcnológico

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

Sistema COC de Educação Unidade Portugal

Sistema COC de Educação Unidade Portugal Sistma COC d Educação Unidad Portugal Ribirão Prto, d d 2009. Nom: 3 o ano (2 a séri) AVALIAÇÃO DE CONTEÚDO DO GRUPO V 2 o BIMESTRE Eixo tmático Açõs d cidadania Disciplina/Valor Português 4,0 Matmática

Leia mais

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como

Coordenadas polares. a = d2 r dt 2. Em coordenadas cartesianas, o vetor posição é simplesmente escrito como Coordnadas polars Sja o vtor posição d uma partícula d massa m rprsntado por r. S a partícula s mov, ntão su vtor posição dpnd do tmpo, isto é, r = r t), ond rprsntamos a coordnada tmporal pla variávl

Leia mais

ESCOLA SECUNDÁRIA C/3º CEB DE MANUEL DA FONSECA, SANTIAGO DO CACÉM

ESCOLA SECUNDÁRIA C/3º CEB DE MANUEL DA FONSECA, SANTIAGO DO CACÉM Módulo 1 Sistma Financiro Simpls 1. Concito d juro 1.1. Sistmas d Capitalização 1.2. Taxa d juro 1.3. Rprsntação gráfica do juro 1.4. Implicaçõs algébricas práticas da utilização do ano comrcial do ano

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

Período/Série: 5ª a 8ª série Turno: ( ) Matutino ( ) Vespertino ( x ) Noturno

Período/Série: 5ª a 8ª série Turno: ( ) Matutino ( ) Vespertino ( x ) Noturno Pág. 1 Caractrização Curso: PROEJA-FIC ( Curso d Formação Inicial Continuada m Alimntação Intgrado ao Ensino Fundamntal na Modalidad d EJA) Ano/Smstr ltivo: 2011 Príodo/Séri: 5ª a 8ª séri Turno: ( ) Matutino

Leia mais

GERADOR ELETROSTÁTICO

GERADOR ELETROSTÁTICO GERADOR ELETROSTÁTICO Est artigo irá mostrar como construir um grador ltrostático, projto muito famoso m firas d Ciências. É uma máquina muito intrssant dvido às pqunas faíscas qu gra, dmonstrando claramnt

Leia mais

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano.

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano. Qustão 5 O squma abaixo rprsnta a distribuição média dos lmntos químicos prsnts no corpo humano. (Adaptado d SNYDER, Carl H. Th xtraordinary chmistry of ordinary things. Nw York: John Wily & Sons, Inc.,

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

PLANO de ESTUDO 6.º ANO - ANUAL

PLANO de ESTUDO 6.º ANO - ANUAL PLANO d ESTUDO 6.º ANO - ANUAL Contúdos 1. Trocas nutricionais ntr o organismo o mio nos animais. 1.1. Os alimntos como vículo d nutrints. 1.2.Sistma digstivo do sr d outros animais. 1.2.1. Órgãos do sistma

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

No N r o m r a m s a?

No N r o m r a m s a? Normas? EM ALGUMA CERÂMICA... NORMAS? O qu tnho a vr com isso? VENDAS NORMAS??? O qu é isso?...um clint dixou d fchar o pdido porqu o bloco não stava dntro das NORMAS... Grnt Produção...Uma carga d Blocos

Leia mais

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / /

LISTA MHS E ONDAS. FÍSICA Professor: Rodolfo DATA: / / FÍSICA Profssor: Rodolfo DATA: / / Nívl I LISTA MHS E ONDAS 1. A tabla traz os comprimntos d onda no spctro d radiação ltromagnética, na faixa da luz visívl, associados ao spctro d cors mais frquntmnt

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Estudo da Transmissão de Sinal em um Cabo co-axial

Estudo da Transmissão de Sinal em um Cabo co-axial Rlatório final d Instrumntação d Ensino F-809 /11/00 Wllington Akira Iwamoto Orintador: Richard Landrs Instituto d Física Glb Wataghin, Unicamp Estudo da Transmissão d Sinal m um Cabo co-axial OBJETIVO

Leia mais

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS

CAPÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS APÍTULO 06 ESTUDOS DE FILAS EM INTERSEÇÕES NÃO SEMAFORIZADAS As filas m intrsçõs não smaforizadas ocorrm dvido aos movimntos não prioritários. O tmpo ncssário para ralização da manobra dpnd d inúmros fators,

Leia mais

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO?

A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? A VARIAÇÃO ENTRE PERDA & PERCA: UM CASO DE MUDANÇA LINGUÍSTICA EM CURSO? Luís Augusto Chavs Frir, UNIOESTE 01. Introdução. Esta é uma psquisa introdutória qu foi concrtizada como um studo piloto d campo,

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

Plano de Estudo 5º ano - ANUAL

Plano de Estudo 5º ano - ANUAL Plano d Estudo 5º ano - ANUAL Disciplina: Ciências Naturais Unidad Tmática Contúdos 1 Importância das rochas do solo na manutnção dvida. Por qu razão xist vida na Trra? Qu ambint xistm na Trra? Ond xist

Leia mais

INSTRUÇÕES. Os formadores deverão reunir pelo menos um dos seguintes requisitos:

INSTRUÇÕES. Os formadores deverão reunir pelo menos um dos seguintes requisitos: INSTRUÇÕES Estas instruçõs srvm d orintação para o trino das atividads planadas no projto Europu Uptak_ICT2lifcycl: digital litracy and inclusion to larnrs with disadvantagd background. Dvrão sr usadas

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

UMA INTRODUÇÃO A TOPOLOGIA

UMA INTRODUÇÃO A TOPOLOGIA Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 0 a 3 d outubro, 014 0 UMA INTRODUÇÃO A TOPOLOGIA TÍTULO DO TRABALHO EM INGLES Mário Márcio dos Santos Palhars 1, Antonio Carlos Tamarozzi² Univrsidad

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funçõs Trigonométricas META: Introduzir as principais funçõs trigonométricas: sno, cossno tangnt. AULA 7 OBJETIVOS: Dfinir as funçõs sno, cossno tangnt. Mostrar algumas idntidads trigonométricas. Calcular

Leia mais

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA

com atrito Universidade Estadual de Santa Cruz, DCET, Ilhéus, BA Rvista Cintífica do Dpartamnto d Química Exatas volum 1 númro ano 1 páginas 7-3 Univrsidad Estadual do Sudost da Bahia Jquié - Bahia Corpo dslizando sobr uma suprfíci sférica convxa com atrito A. J. Mania

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

NOTAS CIENTÍFICAS UM MODELO QUADRÁTICO INVERSO NA DETERMINAÇÃO DO TAMANHO E FORMA DE PARCELAS PARA O CONSÓRCIO MILHO COM ALGODÃO 1

NOTAS CIENTÍFICAS UM MODELO QUADRÁTICO INVERSO NA DETERMINAÇÃO DO TAMANHO E FORMA DE PARCELAS PARA O CONSÓRCIO MILHO COM ALGODÃO 1 NOTAS CIENTÍFICAS UM MODELO QUADRÁTICO INVERSO NA DETERMINAÇÃO DO TAMANHO E FORMA DE PARCELAS PARA O CONSÓRCIO MILHO COM ALGODÃO 1 ENEDINO CORRÊA DA SILVA2, VALDENIR QUEIROZ RIBEIRO 3 DALTON FRANCISCO

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais