EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

Tamanho: px
Começar a partir da página:

Download "EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9"

Transcrição

1 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos algumas noçõs básicas d Lógica Proposicional para qu sjamos capazs d ntndr alguns tipos d dados xprssõs utilizados nos algoritmos qu dsnvolvrmos. No ntanto, a rlação ntr lógica, rsolução d problmas programação d computadors é muito mais ampla, rica complxa do qu a discussão qu aprsntamos aqui. A Lógica Proposicional consist d uma linguagm d um formalismo d cálculo para falar dduzir fatos, rspctivamnt, sobr proposiçõs. Uma proposição é uma sntnça dclarativa à qual podmos atribuir um valor vrdadiro ou falso. Há vários tipos d sntnças: Imprativas: Multipliqu 2 por 3. Exclamativas: Qu crvja glada! Intrrogativas: Está chovndo lá fora? Dclarativas: Todo aluno da UFRN é maior d idad. O qu distingu as sntnças dclarativas das dmais é o fato d qu à las podmos atribuir um valor vrdadiro ou falso, mbora nm smpr sjamos capazs d sabr qu valor atribuir. Em lógica, assumimos qu as proposiçõs satisfazm dois princípios: 1. Trciro Excluído: uma proposição ou é vrdadira ou é falsa, isto é, não xist uma trcira possibilidad. 2. Não-Contradição: uma proposição não pod sr, ao msmo tmpo, vrdadira falsa. As sntnças: os únicos intiros positivos qu dividm 7 são 1 o próprio 7 para todo intiro positivo n, xist um primo maior do qu n são xmplos d proposiçõs. Aqui, usamos ltras minúsculas, tais como p, q r, para rprsntar proposiçõs adotamos a notação para dfinir p como sndo a proposição = 3. 1 Conjunto d argumntos ou idéias pnsadas por alguém. 1

2 9.2 PROPOSIÇÕES COMPOSTAS Proposiçõs compostas A linguagm utilizada m lógica para rprsntar proposiçõs ralizar cálculos sobr las foi cuidadosamnt dsnvolvida para vitar ambiguidads. Est não é o caso da língua portugusa, qu nos prmit facilmnt construir sntnças ambíguas: Grands carros aviõs. O qu é grand? Só os carros ou carros aviõs? José stá vndo o jogo m cima das dunas. Qum stá m cima das dunas? O jogo? José? Ambos? A linguagm qu usarmos para construir algoritmos as linguagns d programação também não são ambíguas, mas não srvm para dscrvr argumntos, conhcimnto, vrdads, tc. É por isso qu studarmos uma linguagm própria para falar d proposiçõs. Uma das caractrísticas dsta linguagm é o uso d conctivos lógicos para criar novas proposiçõs, proposiçõs compostas, a partir d proposiçõs xistnts. Sjam p q duas proposiçõs. A conjunção d p q, rprsntada por p q, é a proposição p q. A disjunção d p q, rprsntada por p q, é a proposição p ou q. Por xmplo, s ntão a conjunção d p q é q : uma década quival a 10 anos a disjunção d p q é p q : = 3 uma década quival a 10 anos p q : = 3 ou uma década quival a 10 anos. Os valors vrdads das proposiçõs, tais como conjunçõs disjunçõs, podm sr dscritos através d tablas vrdads. A tabla vrdad d uma proposição p dfinida a partir das proposiçõs p 1,..., p n lista todas as possívis combinaçõs d valors lógicos d p 1,..., p n, com T dnotando vrdadiro F dnotando falso, para cada combinação dsss valors lógicos, a tabla vrdad lista o valor lógico d p. O valor lógico da proposição composta p q é dfinido pla tabla vrdad 9.1. Por xmplo, s q : uma década quival a 10 anos

3 9.2 PROPOSIÇÕES COMPOSTAS 3 p q p q V V V V F F F V F F F F Tabla 9.1: Tabla vrdad da conjunção. ntão p é falsa q é vrdadira, o qu implica qu a conjunção é falsa. p q : = 3 uma década quival a 10 anos O valor lógico da proposição composta p q é dfinido pla tabla vrdad 9.2: p q p q V V V V F V F V V F F F Tabla 9.2: Tabla vrdad da disjunção. Por xmplo, s q : uma década quival a 10 anos ntão p é falsa q é vrdadira, o qu implica qu a disjunção p q : = 3 ou uma década quival a 10 anos é vrdadira. Exist ainda uma outra proposição important: Sja p uma proposição qualqur. Então, a ngação d p, dnotada por p, é a proposição não é vrdad qu p. O valor lógico da proposição p é dfinido pla tabla vrdad 9.3. p V F p F V Tabla 9.3: Tabla vrdad da ngação. Por xmplo, s

4 9.2 PROPOSIÇÕES COMPOSTAS 4 ntão p é falsa q é vrdadira, o qu implica qu é vrdadira é falsa. q : q : uma década quival a 10 anos p : não é vrdad qu = 3 não é vrdad qu uma década quival a 10 anos Nós podmos utilizar conjunção, disjunção ngação para construir uma nova proposição a partir d duas proposiçõs, ond cada uma dlas pod sr uma proposição composta. Quando isto acontc, usamos parêntss rgras d prcdência para dtrminar, d forma não-ambígua, como avaliar o valor lógico da proposição rsultant. Por xmplo, s p, q r são proposiçõs, ntão (p q) r também é uma proposição. Como podmos avaliar o valor lógico dssa proposição? Nós supomos qu o oprador d ngação possui prcdência sobr os conctivos d conjunção disjunção. Então, a proposição p q significa a conjunção d p com q. Isto é, o oprador d ngação atua sob q ants qu o conctivo d conjunção atu sobr p q. Finalmnt, quando tmos mais duas proposiçõs conctadas por ou, usamos parêntss para dtrminar a ordm d composição das proposiçõs. Por xmplo, (p q) r significa a disjunção da proposição p q com a proposição r. Isto é, os parêntss srvm para dtrminar qu a conjunção d p com q dv ocorrr ants da disjunção d p q com r. S os parêntss fossm rmovidos, isto é, s tivéssmos p q r não podríamos dtrminar s a sntnça acima s trata da conjunção d p com q r ou da disjunção d p q com r. Agora, s supusrmos qu p é V, q é V r é F, o valor lógico d (p q) r é (p q) r = (V V) F = (V F) F = F F = F. Em alguns casos, no ntanto, o uso d parêntss é dsncssário. Por xmplo, (p q) (p q) (p q) (p q) No caso acima, não importa a ordm m qu agrupamos as proposiçõs dfinidas dntro dos parêntss, pois o valor lógico da proposição rsultant srá smpr o msmo. Isto porqu o conctivo fora qu concta as proposiçõs parntizadas é o msmo:.

5 9.3 OPERADORES LÓGICOS Opradors lógicos Como vimos na Aula 7, uma rlação é, na vrdad, uma proposição, pois la é uma sntnça dclarativa (m particular, uma comparação ntr dois valors) cujo valor só pod sr vrdadiro ou falso. Logo, é bastant natural nos prguntarmos s podmos combinar rlaçõs usando algum oprador, assim como fizmos com as proposiçõs qu vimos na Sção 9.2 usando conctivos lógicos, conjunção disjunção. A rsposta é sim. Em particular, podmos construir xprssõs lógicas, qu são xprssõs cujo rsultado é um valor lógico. Toda rlação é, portanto, uma xprssão lógica. No ntanto, uma xprssão lógica pod consistir d mais d uma rlação, as quais são combinadas através dos opradors lógicos. No Portugol da frramnta VISUALG, os opradors lógicos são os mostrados na Tabla 9.4. Oprador nao xou ou Dscrição Ngação Conjunção Disjunção Exclusiva Disjunção Tabla 9.4: Opradors lógicos da linguagm Portugol. Suponha qu a, b c são variávis do tipo intiro. Então, é uma conjunção das rlaçõs O rsultado da avaliação da xprssão lógica (a > b + c) (c <= 5 a) a > b + c c <= 5 a. (a > b + c) (c <= 5 a) (ou sja, da conjunção das duas rlaçõs acima) srá o valor vrdadiro s, somnt s, o rsultado das duas rlaçõs for o valor vrdadiro. Por outro lado, s a xprssão lógica for (a > b + c) ou (c <= 5 a) ntão o rsultado da avaliação da xprssão lógica (ou sja, da disjunção) srá o valor vrdadiro s, somnt s, o rsultado d uma ou d ambas as rlaçõs for o valor vrdadiro. Já é uma ngação da rlação nao (a > b + c) a > b + c. O rsultado da avaliação da xprssão lógica (ou sja, da ngação) srá o valor vrdadiro s, somnt s, o rsultado da avaliação da rlação for o valor falso. As xprssõs lógicas podm combinar mais d duas rlaçõs. Por xmplo, (a <> 4 + b) ou (2 5 % c = 1) (a <= 5 c)

6 9.3 OPERADORES LÓGICOS 6 nao (c 2 > 10) ou (c 3 <> 4) ou (b > c 4). Como a utilização dmasiada d parêntss pod prjudicar a lgibilidad da xprssão, o uso d rgras d prcdência d opradors é smpr útil. A Tabla 9.5 xib a prioridad dos opradors lógicos da linguagm Portugol da frramnta VISUALG. Estas prioridads podm sr modificadas plo uso d parêntss, assim como fizmos com as xprssõs aritméticas. Prioridad mais alta mais baixa Oprador nao xou ou Tabla 9.5: Prioridad d todos os opradors da linguagm Portugol vistos até o momnto. D acordo com ssas prcdências, o valor da xprssão lógica é vrdadiro, pois (2 > 3) (3 < 2) ou (2 < 3) (2 > 3) (3 < 2) ou (2 < 3) falso (3 < 2) ou (2 < 3) falso falso ou (2 < 3) falso ou (2 < 3) falso ou vrdadiro vrdadiro. Por outro lado, s o oprador ou tivss maior prioridad do qu o oprador, ntão avaliaria para falso, pois (2 > 3) (3 < 2) ou (2 < 3) (2 > 3) (3 < 2) ou (2 < 3) (2 > 3) falso ou (2 < 3) (2 > 3) falso ou vrdadiro (2 > 3) vrdadiro falso vrdadiro falso. No xmplo acima, as rlaçõs foram crcadas com parêntss. Na Lógica Proposicional, sss parêntss sriam dsncssários, pois qualqur oprador rlacional possui prioridad sobr todo oprador lógico. No ntanto, a frramnta VISUALG xig qu as rlaçõs qu compõm uma xprssão lógica sjam crcadas por parêntss. Logo, usando a linguagm Portugol dsta frramnta, as xprssõs lógicas acima não podm sr rscritas como mostrado a sguir: 2 > 3 3 < 2 ou 2 < 3.

7 9.4 EXERCÍCIOS RESOLVIDOS Exrcícios rsolvidos 1. Avali as sguints xprssõs lógicas: (a) falso ou ( 10 % 5 2 <> ) (b) nao falso ( 3 3 \ 3 < 15 5 % 7 ) solução: (a) (b) falso ou ( 10 % 5 2 <> ) falso ou ( 0 2 <> ) falso ou ( 0 <> ) falso ou ( 0 <> ) falso ou ( 0 <> 11 ) falso ou vrdadiro vrdadiro. nao falso ( 3 3 \ 3 < 15 5 % 7 ) vrdadiro ( 3 3 \ 3 < 15 5 % 7 ) vrdadiro ( 9 \ 3 < 15 5 % 7 ) vrdadiro ( 3 < 15 5 % 7 ) vrdadiro ( 3 < 15 5 ) vrdadiro ( 3 < 10 ) vrdadiro vrdadiro vrdadiro. 2. Suponha qu x sja uma variávl do tipo intiro considr a sguint xprssão lógica: (x % 3 = 0) (x % 7 = 0) Então, para quais valors d x a xprssão lógica acima avalia para o valor vrdadiro? solução: Para todo valor intiro qu sja um múltiplo comum d 3 d 7. Por xmplo, Suponha qu x sja uma variávl do tipo intiro. Então, scrva uma xprssão lógica nvolvndo x qu avali para o valor vrdadiro s, somnt s, o valor d x for par não for maior do qu 11. solução: (x % 2 = 0) (x <= 11)

8 9.5 EXERCÍCIOS PROPOSTOS Exrcícios propostos 1. Avali o valor da xprssão p (q ou r) quando sab-s qu: (a) p é vrdad, q é falso r é falso (b) p é vrdad, q é vrdad r é falso (c) p é falso, p é falso r é vrdad 2. Rsolva as xprssõs lógicas: (a) nao (2 > 3) (b) (6 < 8) ou (3 > 7) (c) nao (2 <> 2.0) (d) (5 >= 6) ou (6 < 7) ou nao (a = 8), ond a = 5 () ((34 < 9) (5 + u = 34)) ou ((5 = 15/3) (8 > 12)), ond u = Avali as sguints xprssõs lógicas: (a) nao (7 <> 15 \ 2) ou vrdadiro (4 6 > 4 20) (b) (2 5 > 3) ou (5 + 1 < 2) (2 < 7 2) 4. Suponha qu x sja uma variávl do tipo ral considr a sguint xprssão lógica: x x 4 > 5 Então, para quais valors d x a xprssão lógica acima avalia para o valor falso? 5. Suponha qu x sja uma variávl do tipo logico. Então, scrva uma xprssão lógica nvolvndo x qu avali para o valor falso s, somnt s, o valor d x for vrdadiro. 6. Suponha qu x sja uma variávl do tipo logico. Então, scrva uma xprssão lógica nvolvndo x qu avali para o valor vrdadiro s, somnt s, o valor d x for falso. 7. Suponha qu x sja uma variávl do tipo intiro. Então, scrva uma xprssão lógica nvolvndo x qu avali para o valor vrdadiro s, somnt s, o valor d x for par ou não for maior do qu 11, mas não ambos. 8. Escrva um algoritmo para dtrminar s um aluno stá aprovado ou rprovado m uma disciplina basando-s m sua porcntagm d faltas, média parcial nota do xam final. Um aluno para sr aprovado prcisa cumprir as sguints condiçõs: Sua porcntagm d faltas não dv ultrapassar 25%; Sua média parcial dv sr igual ou maior qu 7.0, ou a soma d sua média parcial d sua nota do xam final dv sr igual ou maior qu Os valors d porcntagm d faltas, média parcial nota do xam final do aluno dvm sr lidos plo algoritmo. A saída do algoritmo dv sr "aluno aprovado"ou "aluno rprovado".

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MATRIZES Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MATRIZES NOÇÃO DE MATRIZ REPRESENTAÇÃO DE UMA MATRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDAMENTAL MATRIZES ESPECIAIS IGUALDADE

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome *

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome * Estruturas Estruturas Também chamadas d rgistro Conjunto d uma ou mais variávis agrupadas sob um único nom * As variávis qu compõm uma strutura são chamadas campos *Damas, L. Linguagm C. Rio d Janiro:

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

10. EXERCÍCIOS (ITA-1969 a ITA-2001) . EXERCÍCIOS (ITA-969 a ITA-) - (ITA - 969) Sjam f() = + g() = duas funçõs rais d variávl ral. Então (gof)(y ) é igual a: a) y y + b) (y ) + c) y + y d) y y + ) y - (ITA -97) Sjam A um conjunto finito

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação).

A relação formal (parataxe ou hipotaxe) é assegurada pelas conjunções (no caso da coordenação e da subordinação). Rita Vloso - matriais d PPE Faculdad d Ltras da Univrsida d Lisboa Cosão intrfrásica assgurada por procssos d squncialização qu xprimm vários tipos d intrdpndência smântica das frass qu ocorrm na suprfíci

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O Prparar o Eam 05 Matmática A E X A M E 0.ª FASE, V E R S Ã O P R O P O S T A D E R E S O L U Ç Ã O. Tm-s qu P A P A P A GRUPO I ITENS DE ESCOLHA MÚLTIPLA 0, 0, 0,. Assim: P B A PB A 0,8 0,8 PB A 0,8 0,

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab

TEORMA DA FUNÇÃO INVERSA. Teorema 2. Dada f : Ω ab TEORMA DA FUNÇÃO INVERSA Torma Dada f : Ω ab R n R n (n função com drivadas parciais contínuas m P Ω Suponhamos qu dt(jf((p Então xist ɛ > uma bola abrta B B(P ɛ uma função g : B R n (B f(ω com todas as

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

PROGRAMAÇÃO SEMANA DO GUIA DE TURISMO 13 A 15 DE MAIO 2015

PROGRAMAÇÃO SEMANA DO GUIA DE TURISMO 13 A 15 DE MAIO 2015 PROGRAMAÇÃO SEMANA DO GUIA DE TURISMO 13 A 15 DE MAIO 2015 13 d Maio 2015 Horário Atividad Local Participants Orintaçõs aos Alunos Abrtura do Evnto Srvidors do Câmpus alunos do Comparcr à crimônia d abrtura

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%)

66 (5,99%) 103 (9,35%) Análise Combinatória 35 (3,18%) Distribuição das 0 Qustõs do I T A 9 (8,6%) 66 (,99%) Equaçõs Irracionais 09 (0,8%) Equaçõs Exponnciais (,09%) Conjuntos 9 (,6%) Binômio d Nwton (,9%) 0 (9,%) Anális Combinatória (,8%) Go. Analítica Funçõs

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

8. Expressões lógicas

8. Expressões lógicas 8. Expressões lógicas DIM0320 2015.1 DIM0320 8. Expressões lógicas 2015.1 1 / 27 Sumário 1 Lógica proposicional 2 Proposições compostas 3 Expressões lógicas em Portugol 4 Condições compostas 5 Exercícios

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Aula 01 Introdução e Revisão Matemática

Aula 01 Introdução e Revisão Matemática Aula 01 Introdução Rvisão Matmática Anális d Sinais Introdução Quando s fala m sinais gralmnt é associado à mdição ou ao rgisto d algum fnómno físico ou, m outras palavras, d um sistma. Portanto, sinais

Leia mais

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos

CURSO ON LINE RACIOCÍNIO LÓGICO PARA DESESPERADOS PROFESSORES: GUILHERME NEVES E VÍTOR MENEZES. Aula 1 Lógica de argumentação e diagramas lógicos 1 Aula 1 Lógica d argumntação diagramas lógicos I LÓGICA DE ARGUMENTAÇÃO (CONTINUAÇÃO).... 2 1 Rvisão..... 2 2 Técnica 1: liminando as linhas com prmissas falsas... 5 Técnica 2: tabla vrdad modificada...

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº Estatística I - Licnciatura m MAEG º Ano PADEF Junho 5 Part tórica Prova 753519 Nom: Nº 1. Prguntas d rsposta fchada ( valors) Para cada afirmação, assinal s sta é Vrdadira (V) ou Falsa (F). Uma rsposta

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

RDF -Resource Description Framework

RDF -Resource Description Framework RDF -R Dscription Framwork Rcomndação do W3C para padronizar a dfinição utilização d mta-dados d dscrição d rcursos da wb. Porém, RDF são adquados para rprsntar dados proporcionam uma forma simpls d xprssar

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

DISCIPLINA Algoritmos e Estruturas de Dados Curso: Web Design Publicitário Turma: 1º Período Prof.: Bruno Maia

DISCIPLINA Algoritmos e Estruturas de Dados Curso: Web Design Publicitário Turma: 1º Período Prof.: Bruno Maia DISCIPLINA Algoritmos Estruturas d Dados Curso: Wb Dsign Publicitário Turma: 1º Príodo Prof.: Bruno Maia Estruturas d Dados concitos Algoritmo! Origm do Trmo: Matmá6co iraniano Abu Abdullah Mohammad Ibn

Leia mais

As Abordagens do Lean Seis Sigma

As Abordagens do Lean Seis Sigma As Abordagns do Lan Sis Julho/2010 Por: Márcio Abraham (mabraham@stcnt..br) Dirtor Prsidnt Doutor m Engnharia d Produção pla Escola Politécnica da Univrsidad d São Paulo, ond lcionou por 10 anos. Mastr

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 03/12/2011 FILA A Aluno (a): Matrícula: Turma: x é: 4 UFJF ICE Dpartamnto d Matmática Cálculo I Trcira Avaliação 0/1/011 FILA A Aluno (a): Matrícula: Turma: Instruçõs Grais: 1- A prova pod sr fita a lápis, cto o quadro d rspostas das qustõs d múltipla scolha,

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

Dependências Funcionais (DFs) Dependências Funcionais. Normalização. Refinamento de Esquema. Esquemas. Alguns Exemplos de DFs

Dependências Funcionais (DFs) Dependências Funcionais. Normalização. Refinamento de Esquema. Esquemas. Alguns Exemplos de DFs Dpndências Funcionais (DFs) Dpndências Funcionais Normalização Um tipo d rstrição d intgridad portanto, faz part do squma Idntificá-las faz part do projto d um banco d dados Usadas também para a normalização

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

P (x i ) = f(x i ), f(x) p(x) < δ.

P (x i ) = f(x i ), f(x) p(x) < δ. Capítulo 4 Intrpolação Nst capítulo studarmos métodos qu prmitm ncontrar um valor aproximado para uma função f calculada m um ponto x do intrvalo I, através do conhcimnto d uma colção d pars ordnados (pontos)

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

MONITORIA DE LÓGICA. Resumo sobre proposições categóricas

MONITORIA DE LÓGICA. Resumo sobre proposições categóricas MONITORIA DE LÓGICA Rsumo sobr proposiçõs catgóricas Extraído d COPI, Introdução à Lógica, cap. 5. 1. Proposiçõs Classs Catgóricas Arg. Ddutivo: I. VÁLIDO: sndo as prm V, a concl dv sr V. II. A conclusão

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

PARTE 6 DERIVADAS PARCIAIS

PARTE 6 DERIVADAS PARCIAIS PARTE 6 DERIVADAS PARCIAIS 6.1 Introdução Vamos falar agora das drivadas parciais d uma função ral d várias variávis rais, f : Dom(f) R n R. Para simplificar, vamos comçar com uma função m R, para só dpois

Leia mais

Controle Modal e Observador de Estado - Estabilizador 1

Controle Modal e Observador de Estado - Estabilizador 1 Capítulo 3 Control Modal Obsrvador d Estado - Estabilizador 1 O principal objtivo dst capítulo é dfinir o concito d obsrvador d stado d control modal, como pré-rquisitos d projto d stabilizadors 31 Princípio

Leia mais

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento.

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento. Prnchimnto d Áras Algoritmo Scanlin Fonts: Harn & Bakr, Cap. - Apostila CG, Cap. Prnchimnto d Áras Problma d convrsão matricial d áras gométricas Aproimar uma primitiva gométrica por pils Primitivas D

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

ESCOLA SECUNDÁRIA C/3º CEB DE MANUEL DA FONSECA, SANTIAGO DO CACÉM

ESCOLA SECUNDÁRIA C/3º CEB DE MANUEL DA FONSECA, SANTIAGO DO CACÉM Módulo 1 Sistma Financiro Simpls 1. Concito d juro 1.1. Sistmas d Capitalização 1.2. Taxa d juro 1.3. Rprsntação gráfica do juro 1.4. Implicaçõs algébricas práticas da utilização do ano comrcial do ano

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Controlabilidade, Observabilidade e Estabilidade

Controlabilidade, Observabilidade e Estabilidade Capítulo 2 Controlabilidad, Obsrvabilidad Estabilidad O principal objtivo dst capítulo é dfinir Controlabilidad, Obsrvabilidad Estabilidad, suas dcorrências dirtas Ests três concitos fundamntam o projto

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais