3 Modelagem de motores de passo

Tamanho: px
Começar a partir da página:

Download "3 Modelagem de motores de passo"

Transcrição

1 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt, apsar d sr struturalmnt difrnt do híbrido [15]. Uma anális d como o motor d passo é capaz d grar torqu é aprsntada. toria do comportamnto dinâmico aprsntado é basada no modlo proposto por Lawrnson Hughs [19]. O modlo é basado m um modlo létrico um mcânico. Ests dois modlos stão conctados plo torqu qu aparc m ambos. No létrico, aparc o torqu grado pla força ltromagnética. No mcânico, o torqu aparc na quação d moimnto d um rotor com inércia apoiado m mancais com atrito. Uma modlagm mais prcisa dos motors d passo xig um modlo m lmntos finitos tridimnsional do su intrior [0]. Ests modlos são utilizados por fabricants para otimizar o dsmpnho dos motors d passo. modlagm aprsntada a sguir é mais simpls, basada m um circuito quialnt linar. Est modlo é suficint para aaliação d algoritmos d control [1]. sguir é aprsntado o circuito quialnt dst modlo Circuito quialnt O circuito quialnt aprsntado s basia m um circuito RL (Rsistor- Indutor) com uma font d tnsão adicional. Est circuito não considra a indutância mútua ntr as fass do motor a saturação do circuito. Figura 15 mostra o circuito quialnt da fas. Figura 15 Circuito quialnt

2 3 Nsta figura, a tnsão nos trminais R é a rsistência quialnt da fas, L a indutância, a tnsão induzida. Esta tnsão induzida é grada dido à ariação do fluxo magnético com o moimnto do imã prmannt. O fluxo induzido aria d acordo com o cossno do ângulo do rotor. Sndo um motor d duas fass, o fluxo induzido, m cada uma das fass, pod sr rprsntado por ( pθ ) = cos (3.1) ( pθ ) = cos π / (3.) ond p é o númro d dnts do rotor, θ o ângulo d rotação é o fluxo induzido máximo. Nst caso é considrado qu quando θ = 0 o pólo nort do rotor stá alinhado com a fas. tnsão induzida é igual à taxa d ariação do fluxo induzido. No caso d um rotor girando com locidad, as tnsõs induzida nas fass são dadas por d = = p sn( pθ ) (3.3) d = = p sn( pθ π / ) (3.4) quação da tnsão no trminal do circuito quialnt da fas é di = (3.5) Ri + L + Substituindo a q. (3.3) na q. (3.5), a quação da tnsão nos trminais da fas é obtida: di = Ri + L p sn( pθ ) (3.6) nalogamnt, a quação da tnsão da fas é di = Ri + L p sn( pθ π / ) (3.7) sguir é aprsntado um modlo para o torqu grado. 3.. Torqu grado O torqu grado m um motor d passo é rsultado d dois fitos: ariação da rlutância ao longo da rotação do rotor o torqu ltromagnético grado plo imã prmannt. Entrtanto, m motors híbridos, o torqu ltromagnético é

3 33 dominant [1]. No modlo proposto, o torqu grado pla ariação da rlutância é dsprzado. Figura 16 aprsnta o squma d um motor híbrido. Nst modlo, o ângulo ntr as fass stá sndo considrado λ = π /. Como os circuitos magnéticos são considrados linars, a indução ntr as duas fass é dsprzíl, é assumido qu o torqu total é a soma dos torqus grados por cada uma das fass [15]. partir disto, o torqu grado pla corrnt i no nrolamnto é dado por por ( ) τ = p i sin pθ (3.8) Dido à fas star dfasada da fas, o torqu grado pod sr dscrito ( θ ) τ = p i sin p π / (3.9) lém dsts torqus grados, xist o torqu dido à intração dos dnts do stator com os pólos magnéticos do rotor. Est torqu é chamado d torqu d rtnção T dm, ou dtnt torqu. Est fito faz os motors d passo aprsntarm torqu magnético d rtnção msmo quando dsligados. Tipicamnt, o torqu d rtnção stá ntr 1% 10% do torqu máximo. Somando os fitos dos torqus grados na fas, na fas o torqu d rtnção, tmos para o torqu ltromagnético grado: [ i sin( pθ ) + i sin( pθ π / ) ] T sin( pθ ) τ = p (3.10) dm sguir é aprsntado o fito do torqu no moimnto do motor Equação d moimnto do motor Figura 16 Esquma imã híbrido [15] O torqu grado plo motor pod sr acoplado a uma carga na xtrmidad. Est torqu grado também é utilizado para aclrar o rotor a carga. lém disso,

4 34 o atrito dos mancais do motor da carga dissipa part da potência grada plo motor. Logo, a quação d moimnto dst sistma é dada por d θ τ = J + D + T L (3.11) ond: D - Coficint d atrito iscoso total (motor+carga). J - Inércia total (motor+carga). TL - Torqu xtrno aplicado. s quaçõs dos trminais das fass, (3.6) (3.7), junto com as quaçõs do torqu, (3.10) (3.11), são utilizadas para modlar o motor d passo. Dido à sua complxidad, a simulação do modlo é fita usando o softwar Simulink/TL para a solução numérica. O modlo utilizado considra o circuito quialnt RL (Rsistor-Indutor) linar, ou sja, sm saturação. lgumas prdas d fluxo magnético também são dsconsidradas Rlação ntr dnts, fass númro d passos Os dnts no intrior dos motors d passo são ncssários para grar torqu posicionar o rotor. Figura 17 mostra como os dnts d um motor d passo são arranjados no rotor no stator. O númro d passos por rolução, quando os dnts no stator no rotor têm o msmo passo d fabricação, é dado por ond: Figura 17 Dnts rotor stator [15] S = mn r (3.1)

5 35 m Númro d fass N r Númro d dnts do rotor; m um motor híbrido, N r = p. ssim, o ângulo d passo, i.. incrmnto na rotação fito por cada passo complto, é dado por θ S = 360 (3.13) S 3.5. Cálculo do fluxo induzido máximo O modlo do motor d passo xig o fluxo ltromagnético máximo induzido. Entrtanto, st parâmtro dificilmnt é forncido plos fabricants d motors d passo. Est parâmtro pod sr calculado girando o motor com locidad constant mdindo a tnsão nos trminais d uma das fass. Como nsta situação o circuito stá abrto, não há corrnt na fas, logo a q. (3.6) pod sr rscrita por al = p sn (3.14) ( pθ ) partir dsta quação, a tnsão máxima mdida nos trminais da fas E = pθ & (3.15) Proalmnt sria utilizado um tacômtro com scala m rotaçõs por minuto (RP) para mdir a locidad angular. Logo, é intrssant colocar a xprssão d para o cálculo d m função d N, com unidad d RP. xprssão utilizada m função dos alors mdidos rsulta ntão m 30E = (3.16) pπn No próximo capítulo, o control dos motors d passo é discutido.

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

Ori Junior. Ano: 3º Turma: Turno: Data: / / Listão Física Geral (3º ANO)

Ori Junior. Ano: 3º Turma: Turno: Data: / / Listão Física Geral (3º ANO) Profssor(a): Ori Junior Aluno(a): CPMG MAJOR OSCAR ALVELOS Ano: 3º Turma: Turno: Data: / / Listão Física Gral (3º ANO) Procdimnto d ralização: - Lista rspondida m papl almaço dvrá contr cabçalho complto

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Amplificador diferencial com transistor bipolar

Amplificador diferencial com transistor bipolar Amplificador difrncial com transistor bipolar - ntrodução O amplificador difrncial é um bloco funcional largamnt mprgado m circuitos analógicos intgrados, bm como nos circuitos digitais da família ECL.

Leia mais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais

ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO. Tensor de Tensões. σ ij = Tensões Principais ANÁLISE DAS TENSÕES ESTADO GERAL DE TENSÃO Tnsor d Tnsõs ij Tnsõs Principais ij Tnsõs Principais Estado d tnsão D Estado plano d tnsão I I I P p P ( ), x x x ± I, I, I Invariants das tnsõs z x I x z zx

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior Fundação Escola écnica Librato Salzano Viira da Cunha Curso d Eltrônica Eltrônica d Potência Prof. Irinu Alfrdo onconi Junior Introdução: O rsnt txto dvrá tratar d uma art da Eltrônica conhcida como Eltrônica

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

Atrito Fixação - Básica

Atrito Fixação - Básica 1. (Pucpr 2017) Um bloco d massa stá apoiado sobr uma msa plana horizontal prso a uma corda idal. A corda passa por uma polia idal na sua xtrmidad final xist um gancho d massa dsprzívl, conform mostra

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

4. RESULTADOS E DISCUSSÃO

4. RESULTADOS E DISCUSSÃO 4. RESULTADOS E DISCUSSÃO O conjunto d dados original aprsntava alguns valors prdidos, uma vz qu houv a mort d plantas nas parclas ants da colta dos dados, grando assim um conjunto d dados dsalancado,

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

Analisar a operação do amplificador diferencial. Entender o significado de tensão de modo diferencial e de modo comum

Analisar a operação do amplificador diferencial. Entender o significado de tensão de modo diferencial e de modo comum LTÔN NLÓG PLNO D NNO MTL D POO 3 PÁGN DO POFO: http://www.joinill.udsc.br/po rtal/profssors/raimundo/ OBJTO nalisar a opração do amplificador difrncial ntndr o significado d tnsão d modo difrncial d modo

Leia mais

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA

CAPÍTULO 4 - TEORIA DOS SISTEMAS DE REFERÊNC IA CAPÍULO 4 - EORIA DOS SISEMAS DE REERÊNC IA 4. INRODUÇÃO A quação d tnsão, potência torqu as quais dscrvm o comportamnto da máquina oram stablcidas no parágrao (C.5). Mostramos qu as indutâncias mútuas

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore?

v 4 v 6 v 5 b) Como são os corte de arestas de uma árvore? 12 - Conjuntos d Cort o studarmos árors gradoras, nós stáamos intrssados m um tipo spcial d subgrafo d um grafo conxo: um subgrafo qu mantiss todos os értics do grafo intrligados. Nst tópico, nós stamos

Leia mais

Exercício: Exercício:

Exercício: Exercício: Smântica Opracional Estrutural Smântica Opracional Estrutural O ênfas dsta smântica é nos passos individuais d xcução d um programa A rlação d transição tm a forma rprsnta o primiro passo d xcução do programa

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem

PSI-2432: Projeto e Implementação de Filtros Digitais Projeto Proposto: Conversor de taxas de amostragem PSI-2432: Projto Implmntação d Filtros Digitais Projto Proposto: Convrsor d taxas d amostragm Migul Arjona Ramírz 3 d novmbro d 2005 Est projto consist m implmntar no MATLAB um sistma para troca d taxa

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

GRANDEZAS SINUSOIDAIS

GRANDEZAS SINUSOIDAIS www.-l.nt mática Circuitos Eléctricos Capítulo Rgim Sinusoidal GRANDEZAS SINUSOIDAIS INRODUÇÃO Nst capítulo, faz-s uma pquna introdução às grandzas altrnadas ond s aprsntam algumas das razõs porqu os sistmas

Leia mais

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 09. Professora: Mazé Bechara Instituto d Física USP Física Modrna I Aula 09 Profssora: Mazé Bchara Aula 09 O fito fotolétrico a visão corpuscular da radiação ltromagnética 1. Efito fotolétrico: o qu é, o qu s obsrva xprimntalmnt,

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito

CURSO de ENGENHARIA (MECÂNICA) VOLTA REDONDA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o smstr ltivo d 8 o smstr ltivo d 9 CURSO d ENGENHARIA MECÂNICA VOLTA REDONDA - Gabarito INSTRUÇÕES AO CANDIDATO Vriiqu s st cadrno contém: PROVA DE CONHECIMENTOS

Leia mais

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1

Física A 1. Na figura acima, a corda ideal suporta um homem pendurado num ponto eqüidistante dos dois apoios ( A 1 Física Vstibular Urj 98 1ª fas Qustão 16 A 1 A 2 θ Na figura acima, a corda idal suporta um homm pndurado num ponto qüidistant dos dois apoios ( A 1 A 2 ), a uma crta altura do solo, formando um ângulo

Leia mais

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento.

Preenchimento de Áreas. Preenchimento de Áreas Algoritmo Scanline. Preenchimento de Áreas. Preenchimento. Teste dentro-fora. Preenchimento. Prnchimnto d Áras Algoritmo Scanlin Fonts: Harn & Bakr, Cap. - Apostila CG, Cap. Prnchimnto d Áras Problma d convrsão matricial d áras gométricas Aproimar uma primitiva gométrica por pils Primitivas D

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M.

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M. Módulo d Círculo Trigonométrico Scant, Cosscant Cotangnt a séri EM Círculo Trigonométrico Scant, Cosscant Cotangnt Exrcícios Introdutórios ] π Exrcício Sja α ; π tal qu sn α, dtrmin, s xistir, o rsultado

Leia mais

APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO

APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO APLICAÇÃO DE INTELIGÊNCIA COMPUTACIONAL NA DETERMINAÇÃO DA FORÇA DE LAMINAÇÃO Marlon Rosa d Gouvêa Açominas Grais S. A., doutorando UFMG - mgouva@acominas.com.br Douglas Rodrigus d Olivira Açominas Grais

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como:

Desta maneira um relacionamento é mostrado em forma de um diagrama vetorial na Figura 1 (b). Ou poderia ser escrito matematicamente como: ASSOCIAÇÃO EDUCACIONA DOM BOSCO FACUDADE DE ENGENHAIA DE ESENDE ENGENHAIA EÉICA EEÔNICA Disciplina: aboratório d Circuitos Elétricos Circuitos m Corrnt Altrnada EXPEIMENO 9 IMPEDÂNCIA DE CICUIOS SÉIE E

Leia mais

ESTUDO DAS REAÇÕES DINÂMICAS DE UM MECANISMO PLANAR DE QUATRO BARRAS USANDO O MS EXCEL

ESTUDO DAS REAÇÕES DINÂMICAS DE UM MECANISMO PLANAR DE QUATRO BARRAS USANDO O MS EXCEL ESTUDO DAS EAÇÕES DINÂMICAS DE UM MECANISMO PLANA DE QUATO BAAS USANDO O MS EXCEL Marclo d Souza ocha 1 ; orintador 1 : Osvaldo Prado d znd ; orintador : Carlos Srgio Pivtta 1,, ETEP aculdad d Tcnologia

Leia mais

REDUÇÃO DAS DIMENSÕES DE LINHAS DE TRANSMISSÃO, ACOPLADORES E FILTROS UTILIZANDO MICROSTRIP COMBLINES EM MICROONDAS

REDUÇÃO DAS DIMENSÕES DE LINHAS DE TRANSMISSÃO, ACOPLADORES E FILTROS UTILIZANDO MICROSTRIP COMBLINES EM MICROONDAS UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA PAULO NOVAIS DE SOUSA FILHO REDUÇÃO DAS DIMENSÕES DE LINHAS DE TRANSMISSÃO ACOPLADORES

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

Caderno Algébrico Medição Física

Caderno Algébrico Medição Física Cadrno Algébrico Vrsão 1.0 ÍNDICE MEDIÇÃO FÍSICA 3 1. O Esquma Gral 3 2. Etapas d 5 2.1. Aquisição das informaçõs do SCDE 5 2.2. Intgralização Horária dos Dados Mdidos 6 2.3. Cálculo das Prdas por Rd Compartilhada

Leia mais

MÁQUINAS SÍNCRONAS PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS. Princípio de Funcionamento Aplicado ao Motor Elétrico

MÁQUINAS SÍNCRONAS PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS. Princípio de Funcionamento Aplicado ao Motor Elétrico PRINCÍPIO DE FUNCIONAMENTO DAS MÁQUINAS ELÉTRICAS MÁQUINAS SÍNCRONAS Princípio d indução aplicado ao grador d tnsão Princípio d Funcionamnto Aplicado ao Motor Elétrico Princípio d Funcionamnto Aplicado

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

INTEGRAÇÃO DE FERRAMENTAS CAE PARA PROJETO E SIMULAÇÃO DE ESTRUTURAS ADAPTATIVAS

INTEGRAÇÃO DE FERRAMENTAS CAE PARA PROJETO E SIMULAÇÃO DE ESTRUTURAS ADAPTATIVAS INTEGRAÇÃO DE FERRAMENTAS CAE PARA PROJETO E SIMULAÇÃO DE ESTRUTURAS ADAPTATIVAS Gastão M. da Silva, Instituto Tcnológico d Aronáutica Cntro Técnico Arospacial CTA CEP 12228-901 São José dos Campos - SP

Leia mais

ELT 313 LABORATÓRIO DE ELETRÔNICA ANALÓGICA I ENGENHARIA ELÉTRICA LABORATÓRIO N O 6: AMPLIFICADORES COM TRANSISTOR BIPOLAR DE JUNÇÃO

ELT 313 LABORATÓRIO DE ELETRÔNICA ANALÓGICA I ENGENHARIA ELÉTRICA LABORATÓRIO N O 6: AMPLIFICADORES COM TRANSISTOR BIPOLAR DE JUNÇÃO LT 313 LBOTÓIO D LTÔNIC NLÓGIC I NGNHI LÉTIC LBOTÓIO N O 6: MPLIFICDOS COM TNSISTO BIPOL D JUNÇÃO mplificadors Um amplificador é constituído d transistor d uma font d alimntação m corrnt contínua qu é

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Processo Avaliativo TRABALHO - 1º Bimestre/2017 Disciplina: Física A 2ª série EM A Data: Nome do aluno Nº Turma

Processo Avaliativo TRABALHO - 1º Bimestre/2017 Disciplina: Física A 2ª série EM A Data: Nome do aluno Nº Turma Procsso Avaliativo TRABALHO - 1º Bimstr/2017 Disciplina: Física A 2ª séri EM A Data: Nom do aluno Nº Turma Atividad Avaliativa: A atividad dv sr rspondida ENTREGUE. Todas as qustõs, dvm contr as rsoluçõs,

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO: LISTA Ciclo trigonométrico, rdução d arcos, quaçõs trigonométricas - (UFJF MG) Escrvndo os númros rais x, y, w, z y, x,

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

indicando (nesse gráfico) os vectores E

indicando (nesse gráfico) os vectores E Propagação Antnas Eam 5 d Janiro d 6 Docnt Rsponsávl: Prof Carlos R Paiva Duração: 3 horas 5 d Janiro d 6 Ano Lctivo: 5 / 6 SEGUNDO EXAME Uma onda lctromagnética plana monocromática é caractrizada plo

Leia mais

ANÁLISE DAS ASSOCIAÇÕES DE MÓDULOS FOTOVOLTAICOS SOMBREADOS

ANÁLISE DAS ASSOCIAÇÕES DE MÓDULOS FOTOVOLTAICOS SOMBREADOS X Congrsso Brasiliro d Automática / a 6stmbro, BonitoM ANÁLE DA AAÇÕE DE MÓDULO FOOOLACO OMBREADO AULA DO ANO*, CARLO A. GALLO**, ENO R. RBERO* *Grupo d squisa m Eltrônica d otência Aplicaçõs(GEA), nstituto

Leia mais

ELETRÔNICA DE POTÊNCIA I Retificadores monofásicos e trifásicos

ELETRÔNICA DE POTÊNCIA I Retificadores monofásicos e trifásicos ELETÔNCA DE POTÊNCA POF. AAGÃO 1 ENGENHAA ELÉTCA ELETÔNCA DE POTÊNCA tificadors monofásicos trifásicos Prof. Wilson Aragão Filho SBN: 978-85-909910-3-8 [01] [ E D Ç Ã O D O A U T O ] WLSON AAGÃO FLHO ELETÔNCA

Leia mais

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Química Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Química Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EQ3M Smstr: 1 sm/2017 Data: 27/04/2017 Avaliação: 1 a Prova Bimstral Valor: 10,0 p tos INSTRUÇÕES

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

2.2 Transformada de Fourier e Espectro Contínuo

2.2 Transformada de Fourier e Espectro Contínuo 2.2 Transformada d Fourir Espctro Contínuo Analisam-s a sguir, sinais não priódicos, concntrados ao longo d um curto intrvalo d tmpo. Dfinição: sinal stritamnt limitado no tmpo Dado um sinal não priódico

Leia mais

4 Modelos para rochas consolidadas e não consolidadas

4 Modelos para rochas consolidadas e não consolidadas 4 Molos para rochas consoliaas não consoliaas No capítulo antrior, aprsntou-s um molo física rochas calibrávl para o rsrvatório m qustão, qu é o molo proposto para ralizar stimativas prssõs poros, qu srá

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

Transformada de Fourier

Transformada de Fourier Transformada d orir Séri d orir: Uma fnção priódica pod sr rprsntada pla soma d m conjnto d snos o cosnos d difrnts frqências cada ma mltiplicada por m por m coficint Transformada d orir: Uma fnção não

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

TIPOS DE GERADORES DE CC

TIPOS DE GERADORES DE CC ANOTAÇÕS D MÁQUINAS LÉTRICAS 17 TIPOS D GRADORS D CC S dfnm m função dos tpos d bobnas dos pólos. ssas bobnas, atravssadas pla corrnt d xctação, produzm a força magntomotrz qu produz o fluxo magnétco ndutor.

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

TRABALHO DA FORÇA ELÉTRICA I) RESUMO DAS PRINCIPAIS FÓRMULAS E TEORIAS: A) TABELA -------------------------------------------------------------------------------------------------------------------------------

Leia mais