ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia

Tamanho: px
Começar a partir da página:

Download "ENERGIA CONCEITO. Ciências Físico-Químicas 8º ano de escolaridade. Ano letivo 2013/2014 Docente: Marília Silva Soares 1. Energia"

Transcrição

1 Física química - 10.º Contúdos nrgia Objtio gral: Comprndr m qu condiçõs um sistma pod sr rprsntado plo su cntro d massa qu a sua nrgia como um todo rsulta do su moimnto (nrgia cinética) da intração com outros sistmas (nrgia potncial); intrprtar as transfrências d nrgia como trabalho m sistmas mcânicos, os concitos d força consratia d força não consratia a rlação ntr trabalho ariaçõs d nrgia, rconhcndo situaçõs m qu há consração d nrgia mcânica. - nrgia tipos fundamntais d nrgia. nrgia intrna - Transfrências d nrgia Comptências Indicar qu um sistma físico (sistma) é o corpo ou o conjunto d corpos m studo. ssociar a nrgia cinética ao moimnto d um corpo a nrgia potncial (graítica, létrica, lástica) a intraçõs dss corpo com outros corpos. plicar o concito d nrgia cinética na rsolução d problmas nolndo corpos qu apnas têm moimnto d translação. ssociar a nrgia intrna d um sistma às nrgias cinética potncial das suas partículas. Idntificar um sistma mcânico como aqul m qu as ariaçõs d nrgia intrna não são tidas m conta. Indicar qu o studo d um sistma mcânico qu possua apnas moimnto d translação pod sr rduzido ao d uma única partícula com a massa do sistma, idntificando-a com o cntro d massa. Idntificar trabalho como uma mdida da nrgia transfrida ntr sistmas por ação d forças calcular o trabalho ralizado por uma força constant m moimntos rtilínos, qualqur qu sja a dirção dssa força, indicando quando é máximo. nunciar aplicar o Torma da nrgia Cinética. Dfinir forças consratias forças não consratias, idntificando o pso como uma força consratia. plicar o concito d nrgia potncial graítica ao sistma m intração corpo + Trra, a partir d um alor para o níl d rfrência. Rlacionar o trabalho ralizado plo pso com a ariação da nrgia potncial graítica aplicar sta rlação na rsolução d problmas. Dfinir aplicar o concito d nrgia mcânica. 3 NRGI CONCITO 4 no ltio 013/014 Docnt: Marília Sila Soars 1

2 O concito d nrgia nrgia stá smpr prsnt na linguagm do nosso dia-a-dia. nrgia, calor tmpratura são palaras qu muito utilizamos, d forma indiscriminada, mas qu têm significados muito difrnts. O concito d nrgia (cont.) Outras situaçõs do dia-a-dia m qu é utilizada a palara nrgia. Dizmos: O ptrólo é nrgia a nrgia stá a sgotar-s nsta sala stá muito calor. quando driamos dizr: o ptrólo é uma font d nrgia; crtas formas d nrgia stão a sgotar-s; nsta sala a tmpratura stá muito lada. Os jogadors stão chios d nrgia! Constança stá rcuprando nrgias! Nstas situaçõs associa-s nrgia a saúd ou actiidad. stou muito cansado, stou sm nrgia! 5 6 O concito d nrgia (cont.) Diariamnt, ous lês frass como: O carão é uma nrgia polunt. O concito d nrgia (cont.) nrgia é uma propridad d todos os corpos, qu s manifsta d difrnts formas, sndo dtctada plos fitos qu produz. nrgia d um sistma pod sr mdida ou calculada. nrgia é uma grandza scalar qu s xprim, no SI, m joul (J) s unidads práticas d nrgia são a caloria (cal) o quilowatt-hora (KW.h). Utiliza-s como múltiplo da caloria a quilocaloria (Kcal) Nstas frass. palara nrgia é utilizada como sinónimo d font d nrgia. 1J 1W.h 1kW.h J 6 1KW.h 3,6x10 J 1cal 4,18J 1 Kcal 4,18 KJ 7 8 no ltio 013/014 Docnt: Marília Sila Soars

3 Manifstaçõs d nrgia nrgia manifsta-s d difrnts maniras, toma difrnts dsignaçõs d acordo com os fitos qu produz: Manifstaçõs d nrgia (cont.) nrgia Química nrgia Térmica nrgia Sonora nrgia radiant nrgia léctrica nrgia mcânica /motora 9 10 Fonts d nrgia Fonts d nrgia (cont.) font d nrgia é um sistma qu fornc nrgia a outros sistmas com os quais intrag. O Sol é a nossa font d nrgia! NRGI Podmos classificar a nrgia quanto às suas manifstaçõs, também como às suas fonts. NRGI s fonts d nrgia podm classificar-s como: Primárias Scundárias ncontram-s na Obtêm-s a partir d outras naturza podm sr fonts d nrgia por ação utilizadas dirtamnt. humana. Gasólo Ptrólo rfinado Gasolina Rnoáis Não rnoáis Gás butano Gás propano ltricidad 11 1 no ltio 013/014 Docnt: Marília Sila Soars 3

4 Fonts d nrgia (cont.) s fonts d nrgia primárias podm classificar-s como: Rnoáis São as qu s rnoam continuamnt sndo insgotáis. Contribum para a sustntabilidad do planta O Sol; O nto; s ondas as marés; nrgia hídrica; gotrmia; biomassa; O biogás Primárias Não rnoáis São as aqulas cujas rsras s sgotam, uma z qu o su procsso d formação é muito lnto, quando comparado com o su consumo; são rcursos limitados Combustíis fóssis: Urânio carão; ptrólo; gás natural. Fonts d nrgia Primárias (cont.) R n o á i s Fonts d nrgia Primárias(cont.) Física química - 10.º N ã o r n o á i s Combustíis Fossis FORMS D NRGI NRGI INTRN no ltio 013/014 Docnt: Marília Sila Soars 4

5 nrgia intrna Sistma, izinhança frontira Um sistma é uma part do Unirso qu s prtnd studar. Um sistma pod sr classificado como abrto, fchado ou isolado, tndo m conta s ocorrm trocas d nrgia matéria com o xtrior. Vizinhança é o rsto do Unirso qu rodia o sistma. frontira é a linha qu spara o sistma do unirso Frontira Sistma izinhança Todos os sistmas possum nrgia. nrgia é uma só só assum duas formas fundamntais dsignadas por: nrgia cinética ( c ) nrgia potncial ( p ) É a forma d nrgia associada ao moimnto dpnd da locidad () a qu o corpo s dsloca da sua massa (m). soma da nrgia cinética ( c) com a nrgia potncial ( p) constitui a nrgia total do sistma a nrgia mcânica ( m) : m= C + p É a nrgia qu s ncontra armaznada nos corpos d-s à intracção ntr as partículas qu o constitum. xistm árias formas d nrgia potncial: nrgia potncial graítica ( pg); nrgia potncial lástica ( p); nrgia potncial létrica ( p.lt.) nrgia potncial magnética ( pm); nrgia potncial química ( pq) nrgia cinética ( c ) Quanto maior for a massa (m kg) ou a locidad (m m/s) d um corpo, maior é a nrgia cinética (m J) qu l possui 1 m S dois corpos tirm a msma massa, o S dois corpos tirm massas difrnts, s qu tir maior locidad é o qu tm dslocarm à msma locidad, tm maior maior nrgia cinética nrgia cinética o qu tir maior massa. c nrgia cinética ( c ) xmplo: 1. Considra duas bolas, d massas iguais (5 kg) com locidads d 10 m/s 7 m/s, rsptiamnt. Qual a bola com maior nrgia cinética?. Considra duas bolas difrnts qu s dslocam à msma locidad. Qual a bola qu tm maior nrgia cinética? m m, c c m m, c c 19 m m, c c c 1 m m m, c c 0 no ltio 013/014 Docnt: Marília Sila Soars 5

6 nrgia potncial graítica ( pg ) nrgia potncial graítica rsulta da intração dos corpos com a Trra; dpnd da massa (m) do corpo da distância (h) a qu l s ncontra da trra. pg h m g nrgia potncial graítica ( pg ) xmplo 1. Considra dois corpos d massas difrnts, 3 kg 7 kg rsptiamnt, mas à msma altura do solo (8 m). Qual o corpo qu tm maior nrgia potncial graítica? Tndo duas bolas d massas difrnts, à msma altura, a d maior massa tm maior nrgia potncial graítica. Tndo duas bolas d massas iguais, a bola a maior altura tm maior nrgia potncial do qu a bola a mnor altura.. Considra dois corpos d massas iguais (6 kg) a alturas difrnts d 3 8 m, rsptiamnt. Qual o corpo qu tm maior nrgia potncial graítica? pg pg pg pg pg pg pg h m g pg pg 1 nrgia intrna nrgia intrna Para studar a nrgia total d um sistma tm d s contabilizar uma nrgia qu tm m conta a strutura do sistma qu é constituído microscopicamnt por muitas partículas qu é uma propridad do sistma - nrgia intrna. Para a nrgia intrna contribum duas formas básicas d nrgia: a nrgia potncial intrna qu rsulta das árias intraçõs ntr as partículas qu constitum o sistma a níl microscópico; a nrgia cinética intrna associada ao moimnto dssas msmas partículas. Um aumnto d cada uma dssas parclas (massa tmpratura) contribui para o aumnto da nrgia intrna do sistma. nrgia total ( total) d um sistma corrspond à soma da nrgia mcânica, macroscópica, com a nrgia intrna, microscópica: total = m + i 3 4 no ltio 013/014 Docnt: Marília Sila Soars 6

7 Física química - 10.º nrgia intrna nrgia intrna d um sistma rsulta dpnd Da nrgia cinética das partículas do sistma Da nrgia potncial associada às intraçõs ntr ssas partículas Da agitação corpuscular das partículas, portanto, da tmpratura do sistma Do númro d partículas do sistma (quanto maior for a quantidad d matéria no sistma, maior srá a sua nrgia intrna. SISTM MCÂNICO MODLO D PRTÍCUL MTRIL 5 6 nrgia Transfrências transformação d nrgia Sistma Mcânico Modlo do cntro d massa Quando s considram sistmas m qu as ariaçõs d nrgia intrna não são tidas m conta apnas s considram altraçõs na nrgia mcânica sts sistmas são considrados por sistmas mcânicos. nrgia Transfrências transformação d nrgia Sistma Mcânico Modlo do cntro d massa Modlo do cntro d massaaplica-s: a sistmas mcânicos constituídos por sólidos indformáis m moimntos d translação. quando não s tm m conta ariaçõs d nrgia intrna do sistma. studar o moimnto d um sistma mcânico implica studar moimnto d todas as partículas qu o constitum Considra-s o sistma como uma única partícula ond s ncontra toda a massa. m qualqur sistma mcânico, o cntro d massa mo-s como um ponto isolado d massa total do sistma no qual atua uma força igual à soma torial d todas as forças xtriors aplicadas. Cntro d massa: ponto qu rprsnta um sistma a qu s associa a massadss sistma. Considram-s aplicadas nss ponto todas as forças qu atuam sobr o sistma. Limitaçõs: Ignora ariaçõs d nrgia intrna; Não prmit o studo dos moimntos d rotação (nm das dformaçõsdo sistma). Quando um sistma é rprsntado plo cntro d massa o chamado modlo do cntro d massa (ou modlo da partícula matrial) diz-s qu o sistma foi rduzido a uma partícula 7 8 no ltio 013/014 Docnt: Marília Sila Soars 7

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é:

A energia cinética de um corpo de massa m, que se desloca com velocidade de módulo v num dado referencial, é: nrgia no MHS Para studar a nrgia mcânica do oscilador harmônico vamos tomar, como xmplo, o sistma corpo-mola. A nrgia cinética do sistma stá no corpo d massa m. A mola não tm nrgia cinética porqu é uma

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano

Olimpíada Brasileira de Física a Fase. Prova para alunos de 3 o ano Olimpíada Brasilira d Física 00 1 a Fas Proa para alunos d o ano Lia atntamnt as instruçõs abaixo ants d iniciar a proa: 1 Esta proa dstina-s xclusiamnt a alunos d o ano. A proa contm int qustõs. Cada

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano

Escola Básica Tecnopolis Matemática - PLANIFICAÇÃO ANUAL 6ºano DGEstE Dirção-GraL dos Establcimntos Escolars DSRAI Dirção d Srviços da Rgião Algarv AGRUPAMENTO DE ESCOLAS JÚLIO DANTAS LAGOS (145415) Escola Básica Tcnopolis Matmática - PLANIFICAÇÃO ANUAL 6ºano 2013-2014

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

LISTA DE EXERCÍCIOS 4 GABARITO

LISTA DE EXERCÍCIOS 4 GABARITO LISTA DE EXERCÍCIOS 4 GABARITO 1) Uma sfra d massa 4000 g é abandonada d uma altura d 50 cm num local g = 10 m/s². Calcular a vlocidad do corpo ao atingir o solo. Dsprz os fitos do ar. mas, como o corpo

Leia mais

Campo elétrico. Antes de estudar o capítulo PARTE I

Campo elétrico. Antes de estudar o capítulo PARTE I PART I Unidad A 2 Capítulo Sçõs: 21 Concito d 22 d cargas puntiforms 2 uniform Ants d studar o capítulo Vja nsta tabla os tmas principais do capítulo marqu um X na coluna qu mlhor traduz o qu você pnsa

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos.

a b TERMOLOGIA 1- Definição É o ramo da física que estuda os efeitos e as trocas de calor entre os corpos. TERMOLOGI 1- Dfinição É o ramo da física qu studa os fitos as trocas d calor ntr os corpos. 2- Tmpratura É a mdida do grau d agitação d suas moléculas 8- Rlação ntr as scalas trmométricas Corpo Qunt Grand

Leia mais

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas

Planificação de Ciências Naturais. 9.ºAno. Alterações climáticas Planificação d Ciências Naturais 9.ºAno Altraçõs climáticas Inês Hnriqus Sandra Mnds Tma: Biosfra Aula n.º: 1 Duração: 90 minutos Introdução à unid Altraçõs climáticas. Biosfra, concito importância. Dgração

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações:

= 80s. Podemos agora calcular as distâncias percorridas em cada um dos intervalos e obtermos a distância entre as duas estações: Solução Comntada da Prova d Física 53 Um trm, após parar m uma stação, sor uma aclração, d acordo com o gráico da igura ao lado, até parar novamnt na próxima stação ssinal a altrnativa qu aprsnta os valors

Leia mais

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015

Faculdade de Engenharia. Óptica de Fourier OE MIEEC 2014/2015 Faculdad d Engnharia Óptica d Fourir sin OE MIEEC 4/5 Introdução à Óptica d Fourir Faculdad d Engnharia transformada d Fourir spacial D função d transfrência para a propagação m spaço livr aproimação d

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Dualidade e Complementaridade

Dualidade e Complementaridade Dualidad Complmntaridad O concito d partícula o concito d onda provêm da intuição qu os srs umanos dsnvolvram ao longo do tmpo, pla xpriência cotidiana com o mundo dos fnômnos físicos m scala macroscópica.

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Claudia gina Campos d Carvalho Módulo sistors Circuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. Como o rsistor é um condutor d létrons, xistm aquls

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

- Fontes e formas de energia - Transferências de energia

- Fontes e formas de energia - Transferências de energia nergia 8º ano de Ciências Físico-químicas - - Fontes e formas de energia - Transferências de energia Conteúdos nergia 1. Fontes e formas de energia Conceito de energia Manifestações de energia; Fontes

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação

Física 3. k = 1/4πε 0 = 9, N.m 2 /C Uma partícula, que se move em linha reta, está sujeita à aceleração a(t), cuja variação Física 3 Valors d algumas constants físicas clração da gravidad: 10 m/s 2 Dnsidad da água: 1,0 g/cm 3 Calor spcífico da água: 1,0 cal/g C Carga do létron: 1,6 x 10-19 C Vlocidad da luz no vácuo: 3,0 x

Leia mais

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr RESUMO d LIMITES X CONTINUIDADE I. Limits finitos no ponto 1. Noção d Limit Finito num ponto Sjam f uma função x o IR. Dizmos qu f tm it (finito) no ponto x o (m símbolo: f(x) = l IR) quando x convn x

Leia mais

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema

03/04/2014. Força central. 3 O problema das forças centrais TÓPICOS FUNDAMENTAIS DE FÍSICA. Redução a problema de um corpo. A importância do problema Força cntral 3 O problma das forças cntrais TÓPICOS FUNDAMENTAIS DE FÍSICA Uma força cntralé uma força (atrativa ou rpulsiva) cuja magnitud dpnd somnt da distância rdo objto à origm é dirigida ao longo

Leia mais

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador

Prof. Antonio Carlos Santos. Aula 9: Transistor como amplificador IF-UFRJ lmntos d ltrônica Analógica Prof. Antonio Carlos Santos Mstrado Profissional m nsino d Física Aula 9: Transistor como amplificador st matrial foi basado m liros manuais xistnts na litratura (id

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA

PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA PERFIL DE SAÍDA DOS ESTUDANTES DA 5ª SÉRIE DO ENSINO FUNDAMENTAL, COMPONENTE CURRICULAR MATEMÁTICA CONTEÚDOS EIXO TEMÁTICO COMPETÊNCIAS Sistma d Numração - Litura scrita sistma d numração indo-arábico

Leia mais

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros

ANÁLISE DIMENSIONAL E SEMELHANÇA. Determinação dos parâmetros ANÁLISE IMENSIONAL E SEMELHANÇA trminação dos parâmtros Procdimnto: d Buckingham 1. Listar todas as grandzas nvolvidas.. Escolhr o conjunto d grandzas fundamntais (básicas), x.: M, L, t, T. 3. Exprssar

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO

Experiência n 2 1. Levantamento da Curva Característica da Bomba Centrífuga Radial HERO 8 Expriência n 1 Lvantamnto da Curva Caractrística da Bomba Cntrífuga Radial HERO 1. Objtivo: A prsnt xpriência tm por objtivo a familiarização do aluno com o lvantamnto d uma CCB (Curva Caractrística

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

EQUILÍBRIO QUÍMICO MÓDULO III. 1. Equilíbrio Químico. 2. Equilíbrio Ácido-Base. 3. Equilíbrio de Solubilidade

EQUILÍBRIO QUÍMICO MÓDULO III. 1. Equilíbrio Químico. 2. Equilíbrio Ácido-Base. 3. Equilíbrio de Solubilidade MÓDULO III EQUILÍBRIO QUÍMICO 1. Equilíbrio Químico. Equilíbrio Ácido-Bas 3. Equilíbrio d Solubilidad Carla Padrl d Olivira, Univrsidad Abrta, 005 1 1. EQUILÍBRIO QUÍMICO OBJECTIVOS: Idntificar a trminologia

Leia mais

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1

Proposta de Resolução do Exame Nacional de Física e Química A 11.º ano, 2011, 1.ª fase, versão 1 Proposta d Rsolução do Exam Nacional d ísica Química A 11.º ano, 011, 1.ª fas, vrsão 1 Socidad Portugusa d ísica, Divisão d Educação, 8 d Junho d 011, http://d.spf.pt/moodl/ 1. Movimnto rctilíno uniform

Leia mais

TERMODINÂMICA BÁSICA APOSTILA 02

TERMODINÂMICA BÁSICA APOSTILA 02 Engnharia Aronáutica Engnharia d Produção Mcânica Engnharia Mcatrônica 4º / 5 Smstr TERMODINÂMICA BÁSICA APOSTILA 0 Prof Danil Hass Calor Trabalho Primira Li da Trmodinâmica SÃO JOSÉ DOS CAMPOS, SP Capítulo

Leia mais

POTÊNCIAS EM SISTEMAS TRIFÁSICOS

POTÊNCIAS EM SISTEMAS TRIFÁSICOS Tmática ircuitos Eléctricos apítulo istmas Trifásicos POTÊNA EM TEMA TRÁO NTRODÇÃO Nsta scção studam-s as potências m jogo nos sistmas trifásicos tanto para o caso d cargas dsquilibradas como d cargas

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

- Função Exponencial - MATEMÁTICA

- Função Exponencial - MATEMÁTICA Postado m 9 / 07 / - Função Eponncial - Aluno(a): TURMA: FUNÇÃO EXPONENCIAL. Como surgiu a função ponncial? a n a n, a R n N Hoj, a idia d s scrvr. ² ou.. ³ nos parc óbvia, mas a utilização d númros indo

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

Laboratório de Física

Laboratório de Física Laboratório d Física Exprimnto 01: Associação d Rsistors Disciplina: Laboratório d Física Exprimntal II Profssor: Turma: Data: / /20 Alunos (noms compltos m ordm alfabética): 1: 2: 3: 4: 5: 2/15 01 Associação

Leia mais

Capítulo 1 ELETROSTÁTICA

Capítulo 1 ELETROSTÁTICA Capítulo 1 ELETROSTÁTICA 1.1 Introdução No século VI A.C., na Grécia Antiga, o grgo Thals d Milto dscobriu uma rsina fóssil (o âmbar), cujo nom m grgo é lktron, qu adquiria a propridad d atrair corpos

Leia mais

02 de outubro de 2013

02 de outubro de 2013 Gnralidads planjamnto Exprimntos Univrsidad Fdral do Pampa (Unipampa) 02 d outubro d 2013 Gnralidads planjamnto 1 Gnralidads planjamnto 2 3 4 5 6 Contúdo 7 Parclas subdivididas (split plot) Gnralidads

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano planjamnto Anális d Exprimntos Instituto Fdral Goiano planjamnto Anális d 1 planjamnto 2 Anális d 3 4 5 6 7 Contúdo 8 Parclas subdivididas (split plot) planjamnto Anális d É um dlinamnto xprimntal? Parclas

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações

Lista 9: Integrais: Indefinidas e Definidas e Suas Aplicações GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA MATEMÁTICA APLICADA À ADM 5. Lista 9: Intgrais:

Leia mais

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano.

O esquema abaixo representa a distribuição média dos elementos químicos presentes no corpo humano. Qustão 5 O squma abaixo rprsnta a distribuição média dos lmntos químicos prsnts no corpo humano. (Adaptado d SNYDER, Carl H. Th xtraordinary chmistry of ordinary things. Nw York: John Wily & Sons, Inc.,

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Plano de Trabalho Docente Ensino Médio. Habilitação Profissional: Técnico em informática para Internet Integrado ao Ensino Médio

Plano de Trabalho Docente Ensino Médio. Habilitação Profissional: Técnico em informática para Internet Integrado ao Ensino Médio Plano d Trabalho Docnt - 2015 Ensino Médio Código: 0262 ETEC ANHANQUERA Município: Santana d Parnaíba Ára d Conhcimnto: Ciências da Naturza Componnt Curricular: Física Séri: 1ª Eixo Tcnológico: Informação

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Módulo II Resistores, Capacitores e Circuitos

Módulo II Resistores, Capacitores e Circuitos Módulo laudia gina ampos d arvalho Módulo sistors, apacitors ircuitos sistência Elétrica () sistors: sistor é o condutor qu transforma nrgia létrica m calor. omo o rsistor é um condutor d létrons, xistm

Leia mais

A JUNÇÃO P-N E O DIODO RETIFICADOR

A JUNÇÃO P-N E O DIODO RETIFICADOR A JUNÇÃO P-N E O DIODO RETIFICADOR JOSÉ ARNALDO REDINZ Dpartamnto d Física - Univrsidad Fdral d Viçosa CEP : 36571-, Viçosa MG 8/2 1) A TEORIA DE BANDAS PARA A CONDUÇÃO ELÉTRICA A única toria capaz d xplicar

Leia mais

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n.

. A é uma matriz linha se m=1, A é uma matriz coluna se n=1, A é uma matriz quadrada se m=n, e neste caso diz-se que A é uma matriz de ordem n. Apontamntos d álgbra Linar 1 - Matrizs 11 - Dfiniçõs A é uma matriz linha s m=1 A é uma matriz coluna s n=1 A é uma matriz quadrada s m=n nst caso diz-s qu A é uma matriz d ordm n 12 - Opraçõs com matrizs

Leia mais

ENSAIO EDOMÉTRICO. 1. Objectivo

ENSAIO EDOMÉTRICO. 1. Objectivo ENSAIO EDOMÉTRIO 1. Objctio É d conhcimnto gral qu qualqur matrial sujito a uma dtrminada solicitação s dforma no sntido d suortar ssa solicitação. Isto é, nnhum matrial od suortar uma solicitação sm s

Leia mais

Plano de Estudo 5º ano - ANUAL

Plano de Estudo 5º ano - ANUAL Plano d Estudo 5º ano - ANUAL Disciplina: Ciências Naturais Unidad Tmática Contúdos 1 Importância das rochas do solo na manutnção dvida. Por qu razão xist vida na Trra? Qu ambint xistm na Trra? Ond xist

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Escola de Engenharia de Lorena USP Cinética Química Exercícios

Escola de Engenharia de Lorena USP Cinética Química Exercícios Escola d Engnharia d Lorna USP Lista 8 1 (P2 2003) - Esboc os sguints gráficos: 1) Concntração vrsus tmpo 2) Convrsão vrsus tmpo para uma ração rvrsívl com: ) Baixa convrsão no quilíbrio; B) Elvada convrsão

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV))

Versão ratificada pela Entidade Reguladora para a Comunicação Social (Deliberação ERC/2016/206 (OUT-TV)) Vrsão ratificada pla Entidad Rguladora para a Comunicação Social (Dlibração ERC/2016/206 (OUT-TV)) ACORDO DE AUTORREGULAÇÃO DEFINIÇÃO DE VALOR COMERCIAL SIGNIFICATIVO, PARA EFEITOS DA DISTINÇÃO ENTRE AJUDA

Leia mais

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU

AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU ANEXO II Coficint d Condutibilidad Térmica In-Situ AII. ANEXO II COEFICIENTE DE CONDUTIBILIDADE TÉRMICA IN-SITU AII.1. JUSTIFICAÇÃO O conhcimnto da rsistência térmica ral dos componnts da nvolvnt do difício

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) /1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA FÍSICA III (FIM230) - 2009/1 GABARITO DA PROVA FINAL UNIFICADA DATA: 03/07/2009 PROBLEMA 1 (Cilindros coaxiais) [ 2,5 ponto(s)] Um cilindro condutor

Leia mais

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor

9.1 Relação entre o Ciclo de Absorção e o de Compressão de Vapor 9.0 Rfriração por Absorção 9.1 Rlação ntr o Ciclo d Absorção o d Comprssão d Vapor O ciclo d absorção possui o vaporador, o condnsador o dispositivo d xpansão xatamnt como o ciclo d comprssão d vapor.

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

4.1 Sistema em contato com um reservatório térmico

4.1 Sistema em contato com um reservatório térmico Capítulo 4 Ensmbl Canônico 4. Sistma m contato com um rsrvatório térmico O nsmbl microcanônico dscrv sistmas isolados, i.. sistmas com N, V fixos, com nrgia total E fixa ou limitada dntro d um pquno intrvalo

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom.

2 Mbps (2.048 kbps) Telepac/Sapo, Clixgest/Novis e TV Cabo; 512 kbps Cabovisão e OniTelecom. 128 kbps Telepac/Sapo, TV Cabo, Cabovisão e OniTelecom. 4 CONCLUSÕES Os Indicadors d Rndimnto avaliados nst studo, têm como objctivo a mdição d parâmtros numa situação d acsso a uma qualqur ára na Intrnt. A anális dsts indicadors, nomadamnt Vlocidads d Download

Leia mais

Lista d xrcícios - Bloco 2 - Aula 17 a 21 - Estudo dos gass 1. (Ufsc 2016) Para chgar até a piscina tomar um banho rfrscant no vrão, você dcid dslocar-s utilizando um automóvl, com um grupo d familiars.

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela

Gabarito - Colégio Naval 2015/2016 Matemática Prova Amarela Gabarito - Colégio Naval 05/06 Profssors: Carlos Eduardo (Cadu) André Flip Bruno Pdra Rafal Sabino Gilbrto Gil QUESTÃO Dada a inquação, podmos rscrvê-la, a partir do Torma d Bolzano, concluímos: 5 0 0

Leia mais

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena

ENGENHARIA DE MANUTENÇÃO. Marcelo Sucena ENGENHARIA DE MANUTENÇÃO Marclo Sucna http://www.sucna.ng.br msucna@cntral.rj.gov.br / marclo@sucna.ng.br ABR/2008 MÓDULO 1 A VISÃO SISTÊMICA DO TRANSPORTE s A anális dos subsistmas sus componnts é tão

Leia mais

PENSANDO E DESCOBRINDO!!!

PENSANDO E DESCOBRINDO!!! PENSANDO E DESCOBRINDO!!! Sobr o Chuviro Elétrico... Falarmos agora sobr outra facilidad qu a ltricidad os avanços tcnológicos trouxram, trata-s d um aparlho muito usado m nosso dia a dia, o CHUVEIRO ELÉTRICO!

Leia mais

guia rápido de configuração CFX-750 trimble Precisa 6m³

guia rápido de configuração CFX-750 trimble Precisa 6m³ guia rápido d configuração CFX-750 trimbl Prcisa 6m³ 1.1 1.2 1.3 1.4 1º passo Configurando o GPS L i g u o CF X 750 (s g u r 3 s g u n d o s) Aprt (cliqu) m GPS (GPS)Config G PS (Font Corrig. D GPS) Aprt

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

ISOMERIA - EXERCÍCIOS - AVANÇADO

ISOMERIA - EXERCÍCIOS - AVANÇADO ISMERIA - EXERCÍCIS - AVANÇAD artigo abaixo aprsnta uma séri d xrcícios sobr Isomria. Est assunto stá ntr os mais rcorrnts dntro do contúdo d Química rgânica nos vstibulars mais difícis do país. As provas

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

6ª LISTA DE EXERCÍCIOS - DINÂMICA

6ª LISTA DE EXERCÍCIOS - DINÂMICA UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA DEPARTAMENTO DE FÍSICA DA TERRA E DO MEIO AMBIENTE CURSO: FÍSICA GERAL E EXPERIMENTAL I E SEMESTRE: 2008.1 6ª LISTA DE EXERCÍCIOS - DINÂMICA Considr g=10

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

CONTINUIDADE A idéia de uma Função Contínua

CONTINUIDADE A idéia de uma Função Contínua CONTINUIDADE A idéia d uma Função Contínua Grosso modo, uma função contínua é uma função qu não aprsnta intrrupção ou sja, uma função qu tm um gráfico qu pod sr dsnhado sm tirar o lápis do papl. Assim,

Leia mais

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de

Uma característica importante dos núcleos é a razão N/Z. Para o núcleo de Dsintgração Radioativa Os núclos, m sua grand maioria, são instávis, ou sja, as rspctivas combinaçõs d prótons nêutrons não originam configuraçõs nuclars stávis. Esss núclos, chamados radioativos, s transformam

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO

ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO ADSORÇÃO DE COBALTO UTILIZANDO CASCA DE ARROZ E INFLUÊNCIA DO TRATAMENTO SUPERCRÍTICO G. F. DÖRTZBACHER 1, J. M. da CUNHA 1,D. A. BERTUOL, E. H. TANABE G. L. DOTTO 1 Univrsidad Fdral d Santa Maria, Curso

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS.

ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. ESTUDO DA TRANSMISSÃO DE CALOR RADIANTE E CONVECTIVO EM CILINDROS CONCÊNTRICOS PELOS MÉTODOS DE MONTE CARLO E RESÍDUOS PONDERADOS. Carlos Albrto d Almida Villa Univrsidad Estadual d Campinas - UNICAMP

Leia mais