Econometria: Regressão por Variáveis Instrumentais (VI)

Tamanho: px
Começar a partir da página:

Download "Econometria: Regressão por Variáveis Instrumentais (VI)"

Transcrição

1 Economtra: Rgrssão por Varávs Instrmntas VI Slds do crso d conomtra d Marco Cavalcant da Pontfíca Unvrsdad Católca do Ro d Janro PUC-Ro

2 Smáro Motvação para o so d VI Prncpas casas do vés do stmador d MQO Erros d mnsração Smltandad Estmação por VI Mínmos Qadrados m Estágos

3 Motvação para o so d VI Vmos antrormnt q: Sob a hpóts cov,, MQO é consstnt Sob a hpóts E, MQO é não-vsado I II S ssas hpótss form voladas, MQO srá vsado nconsstnt, sndo ncssáro bscar m novo método d stmação O método d rgrssão por varávs nstrmntas VI é ma solção possívl q fornc stmadors consstnts dos parâmtros d ntrss 3

4 Prncpas casas do vés do stmador d MQO As razõs mas comns para a stênca d corrlação ntr o dstúrbo algma varávl plcatva são: Omssão d varávs rlvants Erros d mnsração 3 Smltandad O caso já fo dsctdo antrormnt A sgr, vrmos brvmnt os casos 3 4

5 Erros d mnsração Consdr o modlo d rgrssão smpls: * ond cov*, E*. Nss modlo, a stmação por MQO dvra grar stmadors consstnts dos parâmtros. Spõ-s, porém, q a varávl * sja obsrvada com rro Isto é, o q obsrvamos na prátca é * ond E cov*, E* cov, E 5

6 Erros d mnsração Emplo: Para plcar o CR d m alno da PUC, podmos star ntrssados m sar como varávs plcatvas dntr otras: rnda famlar, númro d horas ddcadas ao stdo, tmpo ncssáro para o trajto casa-puc tc. Todas ssas varávs stão sjtas a rros d mnsração, pos os alnos podm rrar dlbradamnt o não ao rspondr à psqsa S os rros form pramnt alatóros, sto é, não stvrm corrlaconados com otras varávs rlvants, as hpótss do modlo acma srão satsftas. 6

7 Erros d mnsração Rscrvndo o modlo m fnção da varávl obsrvada : Agora, a stmação por MQO não gra ε * Agora, a stmação por MQO não gra stmadors consstnts dos parâmtros, pos: 7 ] [ ] [, cov * * * * * E E E E E E E σ ε ε

8 Erros d mnsração Lmbr q n n n ˆ ε 8 E not q n ε * * var var var σ σ

9 Erros d mnsração Aplcando a L dos Grand Númros: plm ˆ σ cov, var * σ σ ε σ σ * σ Prgnta : o stmador d MQO é smpr nconsstnt na rgrssão acma? Prgnta : o vés assntótco do stmador d MQO é para cma, para bao, o dpnd? Prgnta 3: o q acontcrá s o rro d mnsração for na varávl dpndnt? 9

10 Smltandad Consdr a qação: γ' v ond é a ncdênca da AIDS por país m%, é a porcntagm d jovns q sam camsnha nas rlaçõs sas d alto rsco, v é m vtor q ncl otras varávs rlvants para plcar, tal q covv,. Não sra razoávl sprar q o modlo strtral q rlacona as varávs acma contvss ma sgnda qação, δ' w α α, o sja, q também dpndss d?

11 Smltandad Sponha q stjamos ntrssados m stmar a prmra qação q é a mas ntrssant do ponto d vsta da formlação d polítcas sóco-conômcas Srá q a stmação por MQO é ma boa altrnatva? A rsposta é, m gral, não! D fato, mostrarmos a sgr q, na prmra qação, m gral a condção cov, é volada, portanto, o stmador d MQO é nconsstnt.

12 Smltandad O fato d q dvm sr corrlaconados na qação pod sr vrfcado faclmnt. Not q: qando vara, vara na msma drção, pla qação ; qando vara, também vara, pla qação ; 3 logo, há corrlação ntr : qando vara, também vara!

13 Smltandad No nosso mplo: dgamos q crto país tnha m alto m dcorrênca d algm fator pramnt alatóro por mplo, maor promscdad, o q mplca maor ncdênca d AIDS, ctrs parbs. Mas sso sgnfca, por sa vz, q mas jovns sarão camsnha para s protgr pos a maor ncdênca d AIDS torna o so sm protção mas arrscado. Logo, há corrlação ntr os fators m a porcntagm d jovns q sam camsnha. 3

14 Smltandad Em trmos mas formas, tmos m sstma d das qaçõs das ncógntas o modlo strtral : Rsolvndo o sstma para m fnção δ'w γ'v α α 4 das varávs ógnas v w dos dstúrbos, obtmos a forma rdzda : ] [ ] [ α α α α α α α δ'w γ'v γ'v δ'w

15 Smltandad Para q o stmador d MQO da prmra qação sja consstnt, é ncssáro q cov,. O sja, a covarânca ntr cada trmo q compõ na forma rdzda dv sr nla. Por hpóts, spõ-s: covw,covv,cov,. Isso anla a maor part dos trmos. Mas a forma rdzda do modlo mostra plctamnt q também dpnd d. Logo, é vdnt q, m gral, há corrlação ntr : cov, E α σ α 5

16 Smltandad Portanto, o stmador d MQO aplcado à qação é vsado nconsstnt! Ess tpo d vés do stmador d MQO é dnomnado vés d qaçõs smltânas o smplsmnt vés d smltandad. Em gral, não é possívl sabr a drção do vés. Em modlos smpls, porém, sso é possívl. 6

17 Smltandad Por mplo, sponha q o modlo sja: Novamnt tmos n δ'w α α 7 E portanto n ˆ var, cov ˆ plm α α σ

18 Smltandad Otros mplos: Crmnaldad X númro d polcas m dtrmnada rgão Horas trabalhadas X saláro médo m dtrmnado stor da ndústra ofrta dmanda Consmo d bbdas alcoólcas X prodtvdad do trabalhador Consmo d bbdas alcoólcas X dsmpnho do alno Abrtra comrcal X crscmnto conômco Dmocraca X crscmnto conômco Corrpção X crscmnto conômco 8

19 Varávs Instrmntas Consdr a qação: ond: E cov, * Indpndntmnt do motvo para a stênca d corrlação ntr, o método d varávs nstrmntas VI fornc m stmador consstnt dos parâmtros d ntrss. O método s basa na tlzação d ma varávl adconal z, não nclída m *, q satsfaça crtas condçõs. 9

20 Varávs Instrmntas Tas condçõs são: Covz, Covz, Qando ma varávl z satsfaz ambas as condçõs acma, dzmos q z é m nstrmnto váldo para. Val notar q a condção não é tstávl, pos rfr-s à covarânca ntr z m rro não obsrvávl Você prcsa d ma boa hstornha para jstfcar s nstrmnto! A condção, porém, pod sr tstada m ma rgrssão d m z [tst d sgnfcânca d qal cofcnt?]

21 Varávs Instrmntas Vjamos como tas condçõs prmtm stmar consstntmnt o parâmtro. Lmbr q o stmador d MQO poda sr ntrprtado como m stmador d momntos q sava os sgnts momntos poplaconas: E ; E Analogamnt, o stmador d VI é m stmador d momntos q sa E ; Ez ond vdntmnt samos a condção [covz,].

22 Varávs Instrmntas Logo, tmos os momntos poplaconas: E ss análogos amostras: [ ] E E z ˆ ˆ ˆ ˆ n VI VI n VI VI z n n

23 Varávs Instrmntas Rsolvndo: ˆ VI ˆ VI n z z ˆ VI n z z Compar ssas fórmlas com as fórmlas d MQO. O q mda? 3

24 Varávs Instrmntas Pla LGN: p ˆVI cov z, lm cov z, ond fca vdnt a rlvânca da condção [covz, ], na a. galdad, samos a condção [covz,]. Logo, vmos q m nstrmnto váldo prmt ftvamnt obtr m stmador consstnt do parâmtro 4

25 Varávs Instrmntas Inflzmnt, não é smpr fácl ncontrar nstrmntos váldos para nossos modlos Na vrdad, é mto dfícl! Uma das razõs dssa dfcldad rsd no fato d q as das condçõs rqrdas d m nstrmnto são mtas vzs confltants Emplo: stmação d qação d saláro m fnção da dcação Varávl omtda: habldad do ndvído vsa cofcnt da dcação Possívl nstrmnto: dcação da mã corrlaconada com a dcação do ndvído Mas: dcação da mã também dv sr corrlaconada com a habldad do ndvído prsnt no rro! 5

26 Varávs Instrmntas Val notar q a condção pod sr satsfta com ma corrlação ntr z dfrnt d zro, mas baa. Ess é o caso d m nstrmnto fraco Em consqênca dsso, a varânca assntótca do stmador VI amnta o sja, o stmador prd prcsão. D fato: var ˆ VI n var var [ corr, z] Por ssa razão, dvmos procrar m nstrmnto q tnha a mas alta corrlação possívl com 6

27 Mínmos Qadrados m Estágos O q acontc qando tmos dos nstrmntos váldos para a varávl ndógna? O sja, tmos o modlo ond: E cov, * covz, ; covz, covz, ; covz, Srá mlhor sar z o z como nstrmnto? 7

28 Mínmos Qadrados m Estágos A rsposta é: é mlhor sar os dos! Not q podmos scolhr a combnação lnar d z z q tnha a maor corrlação possívl com Além dsso, como z z tm corrlação zro com, qalqr combnação lnar dssas varávs também trá corrlação zro com Tmos, portanto, m nstrmnto váldo rlatvamnt fcnt Sob homocdastcdad, ss sra o mlhor nstrmnto possívl 8

29 Mínmos Qadrados m Estágos Como ncontramos a combnação lnar d z z com a maor corrlação possívl com? Smplsmnt rgrdndo contra z z : ˆ ˆ π ˆ πz ˆ π z D poss dssa nova varávl, podmos tlzá-la como nstrmnto para nos msmos molds vstos antrormnt 9

30 Mínmos Qadrados m Estágos ˆ Usar como nstrmnto para é qvalnt a stmar por MQO a rgrssão: ˆ ˆ ˆ Logo, qando tmos mas d m nstrmnto o stmador VI pod sr obtdo através d das rgrssõs por MQO: ˆ Estma Estma ˆ ˆ π ˆ πz ˆ π ˆ ˆ ˆ ˆ z Por ssa razão, ss stmador é dnomnado mínmos qadrados m stágos 3

31 Sstmas d Eqaçõs: Idntfcação A stmação d ma qação q faça part d m sstma d qaçõs smltânas pod sr fta plo método d MQE ˆ ˆ ˆ Logo, qando tmos mas d m nstrmnto o stmador VI pod sr obtdo ˆ através d das rgrssõs por MQO: Estma Estma ˆ ˆ π ˆ πz ˆ π ˆ ˆ ˆ Por ssa razão, ss stmador é dnomnado mínmos qadrados m stágos ˆ z 3

Análise de regressão

Análise de regressão Análs d rgrssão Slvana Lags Rbro Garca FDV Hlo Garca Lt UFV Um dos usos da análs d rgrssão é vrfcar s, como, uma ou mas varávs ndpndnts nfluncam o comportamnto d outra varávl dpndnt Y. As varávs ndpndnts

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS

MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS MODELOS DE REGRESSÃO PARA DADOS BINÁRIOS Introdução Intrss m modlar algum fnômno alatóro com dos dsfchos possívs ( sucsso ou fracasso ) m função d uma ou mas covarávs. Assoca-s ao rsultado do fnômno uma

Leia mais

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson

MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM. O modelo log-linear de Poisson MODELOS DE REGRESSÃO PARA DADOS DE CONTAGEM O modlo log-lnar d Posson Intrss m modlar a dstrbução d uma varávl rfrnt a algum tpo d contagm m função d covarávs. A stratéga mas comum para modlagm nssas stuaçõs

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

sendo classificado como modelo de primeira ordem com (p) variáveis independentes.

sendo classificado como modelo de primeira ordem com (p) variáveis independentes. RGRSSAO MULTIPLA - comlmtação Itrodução O modlo lar d rgrssão múltla é da forma: sdo classfcado como modlo d rmra ordm com () varávs ddts. od: é a varávl d studo (ddt, xlcada, rsosta ou dóga); é o cofct

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2/4 FICHA d AVALIAÇÃO d MATEMÁTICA A.º Ano Vrsão / Nom: N.º Trma: Aprsnt o s raciocínio d orma clara, indicando todos os cálclos q tivr d tar todas as jstiicaçõs ncssárias. Qando, para m rsltado, não é pdida

Leia mais

28 a Aula AMIV LEAN, LEC Apontamentos

28 a Aula AMIV LEAN, LEC Apontamentos 8 a Aula 49 AMIV LEAN, LEC Apontamntos (RcardoCoutnho@mathstutlpt) 8 Exponncal d matrzs smlhants Proposção 8 S A SJS ond A, S J são matrzs n n,(comdt S 6 ), ntão A S J S Dmonstração Tmos A SJS, dond por

Leia mais

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra.

Resolver problemas com amostragem aleatória significa gerar vários números aleatórios (amostras) e repetir operações matemáticas para cada amostra. Dscplna: SComLMol Numann, Ulam Mtropols (945-947) Numann Ulam [945] prcbram qu problmas dtrmnístcos podm sr transormados num análogo probablístco qu pod sr rsolvdo com amostragm alatóra. Els studavam dusão

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade

Estatística Multivariada Normal Multivariada Função densidade conjunta e contorno de probabilidade Estatístca ultvarada Normal ultvarada Função dnsdad conjunta contorno d robabldad Prof. José Francsco orra Pssanha rofssorjfm@hotmal.com Dstrbução normal unvarada Sja uma varávl alatóra normalmnt dstrbuída

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Patrca Mara Bortolon, D. Sc. Modlos d Escolha Qualtatva Font: GUJARATI; D. N. Economtra Básca: 4ª Edção. Ro d Janro. Elsvr- Campus, 2006 Modlos d scolha qualtatva Varávl dpndnt: bnára

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

1. Contratos com informação completa 2. Contratos na presença de incerteza 3. Contratos com informação assimétrica

1. Contratos com informação completa 2. Contratos na presença de incerteza 3. Contratos com informação assimétrica PROGRAMA 1. Contratos com nformação complta 2. Contratos na prsnça d ncrtza 3. Contratos com nformação assmétrca 3.1. Rsco moral 3.2. Slção advrsa 3.3. Snalzação 4. O problma do hold-p 5. A tragéda dos

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR.

( ) π π. Corolário (derivada da função inversa): Seja f uma função diferenciável e injectiva definida num intervalo I IR. Capítlo V: Drivação 9 Corolário (drivada da nção invrsa): Sja ma nção dirnciávl injctiva dinida nm intrvalo I IR Sja I tal q '( ), ntão ( é drivávl m y ) ' ( ) ( y ) '( ) Ercício: Dtrmin a drivada d ()

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo problm d P.L. pod sr sbsttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Problm Prml j n j n c j j j j j j b {... n} {...m} Problm Dl Mn W m m b j c {... m} j

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

ANOVA Modelos de Efeitos Aleatórios

ANOVA Modelos de Efeitos Aleatórios O Modlos d Eftos latóros Modlos d Eftos latóros Ex. Tmpratura Corporal (ºC d mas Rpl 3 4 5 6 3 5 8 3 8 8 7 3 3 5 4 4 9 8 4 9 7 3 3 Obtvo do Exprmto: Estmar a tmpratura corporal dos amas d crta spéc m codçõs

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

Dualidade. Fernando Nogueira Dualidade 1

Dualidade. Fernando Nogueira Dualidade 1 Dldd Frnndo Nogr Dldd Todo prolm d P.L. pod sr ssttído por m modlo qvlnt dnomndo Dl. O modlo orgnl é chmdo Prml. Prolm Prml M Sjto j n j n c j j j j j j {... n} {... m} Prolm Dl Sjto W m m j c {... m}

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

Função do 2 o Grau. Uma aplicação f der emr

Função do 2 o Grau. Uma aplicação f der emr UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Dfinição Uma aplicação f

Leia mais

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS

AÇÕES BÁSICAS DE CONTROLE E CONTROLADORES AUTOMÁTICOS INDUSTRIAIS Projto Rng - Eng. Elétrca Apostla d stmas d Control I V- &$3Ì78/ 9 AÇÕE BÁICA DE CONTROLE E CONTROLADORE AUTOMÁTICO INDUTRIAI Conform havíamos mnconado no Capítulo I, a busca da qualdad, fcênca prcsão

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear 1ªAula. Lúcia Dinis Setembro

Sumário e Objectivos. Mecânica dos Sólidos não Linear 1ªAula. Lúcia Dinis Setembro Smáro Obctos Smáro: Vctors, nsors. Opraçõs Com Vctors nsors d ª Ordm. nsors d ordm spror à ª. Mdança d Bas. Valors Vctors Própros. Campos Escalars, Vctoras nsoras. Obctos da Ala: Famlarzação com as notaçõs

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo

3 O Método Híbrido dos Elementos de Contorno e sua formulação simplificada aplicados a problemas estáticos em domínio infinito e multiplamente conexo 3 O Método Hírdo dos Elmntos d Contorno sua formulação smplfcada aplcados a prolmas státcos m domíno nfnto multplamnt conxo A valdad d amas as formulaçõs hírdas aprsntadas no capítulo antror stá na possldad

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

Limite Escola Naval. Solução:

Limite Escola Naval. Solução: Limit Escola Naval (EN (A 0 (B (C (D (E é igal a: ( 0 In dt r min ação, do tipo divisão por zro, log o não ist R par q pod sr tão grand qanto qisrmos, pois, M > 0, δ > 0 tal q 0 < < δ > M M A última ha

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Comparação entre Gráficos de Controle para Resíduos de Modelos

Comparação entre Gráficos de Controle para Resíduos de Modelos Comparação ntr Gráfcos d Control para Rsíduos d Modlos Danlo Cuzzuol Pdrn (PPGEP/UFRGS) danlo@producao.ufrgs.br Carla Schwngbr tn Catn (PPGEP/UFRGS) tncatn@producao.ufrgs.br Rsumo: Os gráfcos d control

Leia mais

a x Solução a) Usando a Equação de Schrödinger h m

a x Solução a) Usando a Equação de Schrödinger h m www.fsc.com.br Consdr m rtícl d mss m confnd ntr os ontos / /, q od s movr lvrmnt nst rgão o longo do o. Son q s rds q lmtm st rgão sjm comltmnt mntrávs (oço d otncl nfnto ndmnsonl) rtícl stá sbmtd m otncl

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

/ d0) e economicamente (descrevendo a cadeia de causação

/ d0) e economicamente (descrevendo a cadeia de causação UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroconoma I º Smstr 27 Profssor Frnano Rugtsky Lsta Exrcícos [] Consr uma macroconoma scrta

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Memorize as integrais imediatas e veja como usar a técnica de substituição.

Memorize as integrais imediatas e veja como usar a técnica de substituição. Blém, d maio d 0 aro aluno, om início das intgrais spro qu vocês não troqum as rgras com as da drivada principalmnt d sno d sno. Isso tnho dito assim qu comçamos a studar drivada, lmbra? Mmoriz as intgrais

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

TÓPICOS. Valores singulares. Interpretação geométrica.

TÓPICOS. Valores singulares. Interpretação geométrica. Not bm: a ltra dsts apontamntos não dspnsa d modo algm a ltra atnta da bblografa prncpal da cadra Chama-s a atnção para a mportânca do trabalho pssoal a ralzar plo alno rsolvndo os problmas aprsntados

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

Estudo de diversidade populacional: efeito da taxa de mutação

Estudo de diversidade populacional: efeito da taxa de mutação IA369 - Guwn & Von Zubn (s/98) Estuo vrsa populaconal: fto a taxa mutação. Ausênca prssão sltva ausênca mutação é assumo qu caa nvíuo a população é ao por um cromossomo hapló qu o crossovr é unform. um

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

Conteúdo Programático

Conteúdo Programático Toria Macroconômica I Prof. Andrson Litaiff Prof. Salomão Nvs 2 Contúdo Programático 3ª Avaliação Rfinamntos do modlo IS-LM Taxas d juros nominais rais Expctativas nas dcisõs d consumo d invstimntos Expctativas

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução

Fenômenos de adsorção em interfaces sólido/solução. Fenômenos de adsorção em interfaces sólido/solução Fnômnos d adsorção m Construção modlagm d isotrmas d adsorção no quilíbrio químico Fnômnos d adsorção m Para procssos qu ocorrm no quilíbrio químico, podm-s obtr curvas d adsorção, ou isotrmas d adsorção,

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Sistemas de coordenadas em movimento

Sistemas de coordenadas em movimento Sistmas d coordnadas m movimnto Na suprfíci da Trra stamos m movimnto d translação m torno do Sol rotação m torno do ixo trrstr, além, é claro, do movimnto qu o sistma solar intiro tm pla nossa galáxia.

Leia mais

Segunda Prova de Física Aluno: Número USP:

Segunda Prova de Física Aluno: Número USP: Sgunda Prova d Física 1-7600005 - 2017.1 Aluno: Númro USP: Atnção: i. Não adianta aprsntar contas sm uma discussão mínima sobr o problma. Rspostas sm justificativas não srão considradas. ii. A prova trá

Leia mais

Calor Específico. Q t

Calor Específico. Q t Calor Espcífico O cocint da quantidad d nrgia () forncida por calor a um corpo plo corrspondnt acréscimo d tmpratura ( t) é chamado capacidad térmica dst corpo: C t Para caractrizar não o corpo, mas a

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Principais Modelos Contínuos

Principais Modelos Contínuos rincipais Modlos Contínuos . Modlo uniform Uma v.a. contínua tm distribuição uniform com parâmtros < s sua função dnsidad d probabilidad é dada por c c f. 0. Var E F 0 0 A função d distribuição acumulada

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 26 Macroconoma I º Smstr 27 Príoo Durno Profssors: lbrto Tau Lma Pro arca Duart Lsta Exrcícos

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Análise de dados industriais

Análise de dados industriais Análs d dados ndustras Escola Poltécnca Dpartamnto d Engnhara Químca Robrto Guardan 014 ANÁLISE DE COMPONENES PRINCIPAIS 3.1. Introdução Componnts prncpas são combnaçõs lnars das varávs orgnas d procsso,

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin Tora dos Jogos Prof. Mauríco Bugarn Aula B Tora dos Jogos Mauríco Bugarn Cap. 7. Jogos Dnâmcos com Informação Incomplta Rotro Capítulo 7. Jogos Dnâmcos com Informação Incomplta Dfção xmplos Dfção d Raconaldad

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca 3 Undad C Capítulo 15 Indução ltromagnétca soluçõs dos xrcícos propostos 1 P.368 D L v, vm: 0,5 0, 1 5 2 V P.369 D L v, vm: 15 6 1 20 3 4 V P.370 a) L v 1,5 0,40 2 1,2 V b) 1,2 2 0,6 Pla rgra

Leia mais

Formas simplificadas das equações de Navier-Stokes

Formas simplificadas das equações de Navier-Stokes Formas simplificadas das qaçõs d Navir-Stoks Eqaçõs d camada limit o camadas d cort dlgadas (Bondar lar, tin sar lar qations) Prssão dtrminada plo scoamnto xtrior à rgião viscosa, p Difsão na dircção principal

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

Projetos de um forno elétrico de resistência

Projetos de um forno elétrico de resistência Projtos d um forno létrico d rsistência A potência para um dtrminado forno dpnd do volum da câmara sua tmpratura, spssura condutividad térmica do isolamnto do tmpo para alcançar ssa tmpratura. Um método

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Capítulo Doze Demanda Agregada numa Economia Aberta

Capítulo Doze Demanda Agregada numa Economia Aberta Capítulo Doz Dmanda Agrgada numa Economia Abrta Mannig J. Simidian Chaptr Twlv 1 Introduzindo LM* Taxa d câmbio d Equilíbrio Rnda d Equilíbrio IS* Rnda, Produto, Y Chaptr Twlv 2 Comc com ssas duas quaçõs:

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Univrsidad Fdral d Minas Grais Instituto d Ciências Exatas Dpartamnto d Estatística Métodos Estatísticos Avançados m Epidmiologia Aula 2- Rgrssão Logística: Modlando Rspostas Dicotômicas Lmbrando... No

Leia mais

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc.

TRANSMISSÃO DE CALOR II. Prof. Eduardo C. M. Loureiro, DSc. TRANSMISSÃO DE CALOR II Prof. Eduardo C. M. Lourro, DSc. ANÁLISE TÉRMICA Dtrmnação da ára rqurda para transfrr o calor, numa dtrmnada quantdad por undad d tmpo, dadas as vlocdads d scoamnto as tmpraturas

Leia mais

Raciocínio-Lógico (Receita Federal 2009 Prova 1 - Gabarito 1):

Raciocínio-Lógico (Receita Federal 2009 Prova 1 - Gabarito 1): Racocío-Lógco (Rcta Fdral 009 Prova 1 - Gabarto 1): 1 Cosdr a sgut proposção: S chov ou va, tão o chão fca molhado. Sdo assm, pod-s afrmar qu: a) S o chão stá molhado, tão chovu ou vou b) S o chão stá

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo

CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS. Figura 1: Pontos de máximo e mínimo Introdução S CÁLCULO DIFERENCIAL E INTEGRAL II MÁXIMOS E MÍNIMOS DE FUNÇÕES DE DUAS VARIÁVEIS é uma unção d duas variávis ntão dizmos qu 1 a b é no máimo igual a a Gomtricamnt o gráico d tm um máimo quando:

Leia mais

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço

3 Modelo para o Sistema de Controle (Q, R) com Nível de Serviço 3 Modlo paa o Sstma d Contol (, com Nívl d Svço No Capítulo, fo apsntado um modlo paa o sstma d contol d stou (,, ond a dmanda é uma vaávl alatóa contínua sgundo uma dstbução nomal, uando foam consdados

Leia mais

Definição de Termos Técnicos

Definição de Termos Técnicos Dfinição d Trmos Técnicos Eng. Adriano Luiz pada Attack do Brasil - THD - (Total Harmonic Distortion Distorção Harmônica Total) É a rlação ntr a potência da frqüência fundamntal mdida na saída d um sistma

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico

Fenômenos de adsorção em interfaces sólido/solução. Construção e modelagem de isotermas de adsorção no equilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Construção modlagm d isotrmas d adsorção no uilíbrio químico Fnômnos d adsorção m intrfacs sólido/solução Para procssos qu ocorrm no uilíbrio químico, podm-s

Leia mais

Cap. 7. Princípio dos trabalhos virtuais

Cap. 7. Princípio dos trabalhos virtuais Cap. 7. Prncípo dos trabalhos vrtuas. Enrga d dformação ntrna. Dfnção prssupostos adoptados. Dnsdad da nrga d dformação ntrna.3 Caso partcular: L consttutva é rprsntada pla rcta.4 Enrga d dformação ntrna.

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que. AUTOVALORES E AUTOVETORES Dfiniçõs Sja um oprador linar Um vtor, é dito autovtor, vtor próprio ou vtor caractrístico do oprador T, s xistir tal qu O scalar é dnominado autovalor, valor próprio ou valor

Leia mais

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx

( ) a. 2 e x dx = 2. b. 2 = e dx. e dx e 2 dx. = u. Integrais Exponenciais e Logarítmicas. e dx = e du = e + C dx UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Aplicação da rgra

Leia mais

Atrito Cinético. de deslizamento. Ela é devida à interacção entre as partículas dos dois corpos em contacto.

Atrito Cinético. de deslizamento. Ela é devida à interacção entre as partículas dos dois corpos em contacto. Atrito Cinético Introdução Tórica Smpr qu dois corpos stão m contacto como, por xmplo, um livro m cima d uma msa, xist uma força qu s opõ ao movimnto rlativo dos dois corpos. Suponha qu mpurra um bloco

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

n = η = / 2 = 0, c

n = η = / 2 = 0, c PTC4 - TEORIA DA COMUNICAÇÕE II - //5 - PJEJ REOLUÇÃO DA EGUNDA LITA DE EXERCÍCIO QUETÃO Consdr sstmas bnáros om transmssão d ormaçõs quprovávs λ >>. Compar os dsmpnhos om sm odfação dos sstmas a sgur,

Leia mais

Não vou sair, não quero sua companhia. 00 Não vou sair, quero sua companhia. 01. Vou sair, não quero sua companhia. 10 Vou sair, quero sua companhia.

Não vou sair, não quero sua companhia. 00 Não vou sair, quero sua companhia. 01. Vou sair, não quero sua companhia. 10 Vou sair, quero sua companhia. Corrção d rros Provavlmnt você já nfrntou problmas com rros d comunicação. É muito comum não ntndr alguma coisa qu você ouv alguém dizr. Quantas vzs você já tv qu rptir algo qu acabou d falar? Há rros

Leia mais

EXERCÍCIO: BRECHA ALEATÓRIA

EXERCÍCIO: BRECHA ALEATÓRIA EXERCÍCIO: BRECHA ALEATÓRIA Considr uma manobra qu tm d sr fita nas brchas ntr passagns d vículos do fluxo principal rqur uma brcha mínima d 6 sgundos para qu o motorista possa xcutá-la Uma contagm d tráfgo

Leia mais