ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

Tamanho: px
Começar a partir da página:

Download "ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA"

Transcrição

1 ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Vlmar Gomes da Fonseca IFRJ Wallace Vallory Nunes IFRJ Resumo: Este mncurso propõe a expermentação da cração de atos de compreensão a partr do enrentamento a alguns dos obstáculos epstemológcos, descrtos por Serpnska, relatvos ao conceto de Função. A abordagem prvlega a análse e descrção dos aspectos geométrcos dnâmcos do gráco de unções por meo do sotware GeoGebra. Palavras-chave: Obstáculos Epstemológcos, Função, GeoGebra. 1. Introdução Serpnska (1992) destaca entre os obstáculos epstemológcos do conceto de unção o entendmento da varabldade da unção. Entendemos que a varabldade de uma unção, assocada por Rezende (2003a, 2007, 2008a, 2008b) ao desenvolvmento hstórco do conceto de unção se dá pela observação dos aspectos e característcas de crescmento ou decrescmento de uma unção, da velocdade com a qual esse crescmento ou decrescmento acontece, e do tpo de relação de cada elemento do domíno com o contradomíno e vce-versa. Isso nclu a caracterzação do domíno, a classcação reerente à njetvdade, sobrejetvdade e bjeção e consequentemente da exstênca e caracterzação da unção nversa. 2. Objetvos Para este mncurso escolhemos propor a expermentação da cração de atos de compreensão a partr do enrentamento a alguns dos obstáculos epstemológcos, descrtos por Serpnska, relatvos ao conceto de unção a partr de uma abordagem Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 1

2 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 que prvlega aspectos geométrcos. Esta abordagem é sugestão dos trabalhos de Ballejo (2009), Souza e Slva (2006) e Bazzo (2009), mas prncpalmente se aproveta do aspecto dnâmco do sotware GeoGebra e também contrapõe o prvlégo algébrco constatado na análse dos lvros ddátcos ressaltados nos trabalhos de Rezende (2008a, 2008b, 2007, 2003a, 2003b) e Botelho (2005). 3. Atvdades Atvdade 1 Reconhecmento e caracterzação dos subconjuntos do domíno onde uma unção é estrtamente crescente, decrescente ou constante. 1. Complete a tabela desta atvdade a partr da movmentação do seletor no arquvo do GeoGebra. 2. Agora responda: a) Os ntervalos onde a unção é CRESCENTE estão sendo marcados sempre com a mesma cor. Que cor é essa? b) Isso aconteceu em todos os casos? c) A outra cor o utlzada nos ntervalos onde a unção é DECERESCENTE? d) Isso acontece em todos os casos? 3. Quas destas unções não admtram alteração de crescmento? 4. Há alguma sempre crescente? 5. Há alguma sempre decrescente? 6. Escreva para as unções de 1 a 7 os ntervalos onde cada uma é crescente e onde á decrescente. 7. Um aluno dsse que consegua dentcar se uma unção era crescente ou decrescente pensando que um ponto do plano percorre da esquerda para dreta o gráco da unção, sendo que esta unção será crescente enquanto o ponto estver subndo e decrescente no caso contráro. A denção destes concetos aparece a segur. Explque se este aluno está ou não correto justcando sua resposta a partr das denções abaxo. Denção. Uma unção é dta crescente em um subconjunto I de seu domíno se ao tomarmos quasquer x1, x2i Dom, com x1 x2 mplcar x x. 1 2 Denção. Uma unção é dta decrescente em um subconjunto I de seu domíno se ao tomarmos quasquerx1, x2i Dom, com x1 x2 mplcar x x. 1 2 Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 2

3 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 Nesta atvdade uma reta tangente ao gráco de cada uma das unções está sendo utlzada. Nas unções 1 e 2 esta reta concdu com o gráco da unção, mas nas outras não. Consderaremos o coecente angular da reta tangente ao gráco de neste ponto P (este coecente aparece assnalado junto à reta tangente ao gráco) como a velocdade de crescmento de uma unção no ponto P x, x. Decorrem de nossa consderação algumas mportantes caracterzações. 8. Reveja os exemplos e verque se de acordo com os exemplos desta atvdade o snal da velocdade está assocado ao crescmento da unção. Ou seja, se podemos dentcar pelo snal da velocdade de crescmento quando uma unção é crescente ou quando é decrescente? Se armatvo, como? 9. A nclnação do gráco da unção está relaconada com a velocdade de crescmento. Como é esta relação? 10. Como são os grácos das unções que têm velocdade de crescmento constante? Importante: Para responder ao próxmo tem consdere, por exemplo, a = 0 e 1/ 2 na unção 3, ou a = -1 ou 0 ou 1 com mesmo na unção Quando uma unção tem velocdade de crescmento nula (zero) para um ponto de abscssa a, o que podemos observar (consdere os exemplos desta atvdade) com respeto ao crescmento da unção nos ntervalos a, a e aa, sendo um número real postvo arbtráro, porém próxmo de zero? (Se necessáro use desenhos que srvam tanto de lustração como de exemplo para sua argumentação). 12. E quanto aos possíves snas da velocdade de crescmento dessa unção nos mesmos ntervalos a, a e aa,? Denção. Um valor x 1 é dto um extremo de uma unção quando em x 1 o comportamento de crescmento da unção se altera. Ou seja, quando nos ntervalos x, x e x, x a unção tem comportamentos de crescmento derentes. 13. Identque, quando exstr os valores extremos das unções de 1 a Quando unção é decrescente para todo o conjunto dos números reas esta pode assumr algum valor extremo? 15. E se estver denda no conjunto ab, pode assumr algum valor extremo? Se armatva, que valor será esse? (Ilustre se necessáro) Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 3

4 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 Antes de responder a questão 17 a segur selecone e expermente novamente o exemplo 8 da atvdade azendo n = O mesmo ocorre para se sso or verdade apenas em um ntervalo ab,? E num ntervalo ab,? (Dca: Observe que no exemplo 8 a unção não está denda para x k, k.) Faça um texto descrevendo com suas palavras como dentcar: (a) quando uma unção é crescente ou decrescente conhecendo o seu gráco e/ou a velocdade de crescmento. (b) os extremos de uma unção quando conhecdo seu gráco ou os ntervalos onde a unção é crescente ou decrescente. Tabela tem 4 Função 1 No subconjunto do domíno Este ntervalo se apresenta na cor vermelha Snal da Veloc. de cresc. No Subconjunto do domíno Este ntervalo se apresenta na cor Snal da Veloc. de cresc. 2 3,0 0, 4 5-2, 6 7 2,36,,-1-1,,1 1,,0 0, 3,14, 3,14 3,14, 6,28 Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 4

5 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 Atvdade 2 Injetvdade, Sobrejetvdade e Bjeção. 1. Construa o gráco das unções abaxo e, em cada caso, verque ao movmentar a reta s pelo ponto P quantas vezes esta reta o ntercepta a) x x 5x 6 b) x x x c) x x 3x 4 d) x 2x 2 e) x log( x ) 1 ) x x x g) x log 2 h) ( x ) 20,95 3 x 4 1 2x ) x 5 1 j) x e x 2. O que podemos dzer das magens dos números 1 e 4 de uma unção sabendo que a reta s nterceptou o gráco dessa unção nos pontos de abscssas 1 e 4? (expermente o subtem (a) do tem anteror) 3. Reveja o subtem (b) do tem 2 e responda quantos são os elementos do domíno que têm magem 4 quando uma reta s (y = 4) ntercepta o gráco dessa unção três vezes. 4. Quando o gráco de uma unção or nterceptado duas vezes por uma reta s podemos armar que há dos elementos do domíno com mesma magem? Dê um exemplo ou contraexemplo que justque sua resposta. 5. Uma unção é dta njetva se todos os elementos do domíno têm magens derentes, ou seja, se para quasquer x1 x2 do domíno temos que x x x 1 2. Quas são as unções do tem 2 que são njetvas? Justque com argumentos geométrcos e algébrcos suas respostas. 6. Lembrando que uma unção é dta sobrejetva quando os conjuntos contra domíno e magem concdem, determne o contra domíno de cada uma das unções do tem 2 para que aquelas unções sejam sobrejetvas. Justque com argumentos geométrcos e algébrcos suas respostas. 7. Sabendo que uma unção é dta uma bjeção quando é njetva e sobrejetva quas são as unções do tem 2 que são bjeções? 8. Um proessor dsse a outro que uma unção é uma bjeção se por qualquer ponto M de seu gráco exstrem as retas r e s, tas que r é perpendcular ao Exo Ox e s é perpendcular ao Exo Oy e ambas possuem apenas o ponto M como nterseção com o gráco dessa unção. Construa um ponto sobre o gráco das unções do tem 2 e verque se o crtéro desse proessor está correto. No caso armatvo explque este argumento geométrco de dentcação de uma unção bjetora. Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 5

6 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 Atvdade 3 O Gráco da Função Inversa 1. Movmente com o mouse o seletor e sga as nstruções que aparecerão durante o movmento. Pare sempre que or solctado, lendo os textos e azendo as devdas observações junto à gura que se transorma com o movmento do seletor. 2. Agora que você já vu como são as coordenadas dos Pontos A e C, e como estas se relaconam, consdere a denção abaxo, e sga as etapas da atvdade. Denção. Dados uma reta r e um ponto P, dzemos que P é um ponto smétrco à P com relação à reta r se são guas às dstâncas de P e P à reta r a reta PP é perpendcular à r. 3. Use a denção acma, e as propredades do quadrado ABCD para mostrar que, A e C são pontos smétrcos com relação à reta r. 4. O ato dos pontos A x, y e C y, x serem smétrcos com relação a uma reta A A A A r é um caso partcular, que só vale se esta reta é a reta de equação y = x. Para mostrar que sto é verdade aça segunte construção: () Construa com a erramenta uma reta, e com a erramenta um ponto. () Renomee a reta para s e o ponto para P. () Com a erramenta construa o smétrco P (renomee se necessáro) de P com relação à reta s. (v) Exba os rótulos de P e P. (v) Compare as coordenadas de P e P e responda se elas têm mesma relação que as de A e C do níco da atvdade. 5. Movmente lvremente a reta r e o ponto P para vercar que dos pontos smétrcos com relação a uma reta têm coordenadas trocadas, ou seja, somente se, a reta tem equação y = x. x y e y x, se, e P P P P 6. Façamos uma observação: Até o momento apresentamos de duas maneras um ponto smétrco com relação a uma reta r. No caso geral o ponto smétrco de um ponto P com relação a essa reta é obtdo tomando-se na perpendcular à r que contém P, o ponto P cuja dstânca concde com a de P à r. No caso partcular apresentado no níco da atvdade o ponto C smétrco de A o construído como o quarto vértce de um quadrado que tnha A como vértce e dos outros vértces na reta de equação y = r. Vercamos no tem 3, que nessa construção C satsaz as condções da denção de ponto smétrco. As perguntas que precsamos responder são: Por que C o construído Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 6

7 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 assm? Que propredade entre C e A ganhamos nesta construção? Esta propredade é geral? 7. Descreva uma manera de obter o gráco da unção nversa de uma unção sabendo que esta admte tal nversa e conhecendo-se apenas o seu gráco. Faça sua descrção de duas maneras: prmero sem utlzar o sotware e depos o utlzando. 8. Com auxílo do sotware, construa a reta r de equação y = x, o gráco das unções abaxo e em cada uma delas um ponto smétrco P com relação à reta r. Construa o lugar geométrco à P. P ( nome da respectva unção) e seu LG de P com relação 9. Movmente P e verque que seu smétrco percorre o lugar geométrco construído no tem 9. Com base nos tens anterores sabendo que P têm coordenadas x, x determne as coordenadas de P. 10. O lugar geométrco LG é a curva obtda pela relexão da curva do gráco da unção. Quando podemos dzer que esta curva é o gráco da unção nversa da unção? 11. Quas os lugares geométrcos do tem 9 que são grácos das respectvas unções que os orgnaram? 12. Faça um resumo explctando uma orma de determnar o gráco da unção nversa de uma unção quando esta admte uma unção nversa. Justque anda a segunte armatva: Para uma unção qualquer dado o seu gráco é sempre possível determnar uma curva smétrca a este gráco, mas nem sempre esta curva é o gráco da unção nversa. LG 4. Resultados Esperados Esperamos que o mncurso oereça aos partcpantes a oportundade de crar suas própros nstrumentos para o ensno de unção consderando o enrentamento aos obstáculos epstemológcos e as potencaldades do sotware GeoGebra. 5. Reerêncas BALLEJO, C. C. O uso de sotware no ensno de unções polnomas no ensno médo. Trabalho de conclusão de curso (lcencatura em Matemátca) UFRGS. Porto Alegre, 2009 Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 7

8 XI Encontro Naconal de Educação Matemátca Curtba Paraná, 18 a 21 de julho de 2013 BAZZO, B. O uso dos recursos das novas tecnologas, planlha de cálculo e o GeoGebra para o ensno de unção no ensno médo. IX Congresso Naconal de Educação III Encontro Sul Braslero de Pscopedagoga, BOTELHO, L. M. L. Funções Polnomas na Educação Básca: Uma Proposta. Monograa (Especalzação em Matemátca) - Insttuto de Matemátca, UFF, REZENDE, W.M. Dos Escolástcos às Novas Tecnologas: Uma contrbução para o Ensno da Função Quadrátca. VI Semnáro de Pesqusa em Educação Matemátca do Estado do Ro de Janero, 2008a.. Galleu e as Novas Tecnologas no Estudo das Funções Polnomas no Ensno Básco. IV Colóquo de Hstóra e Tecnologa no Ensno da Matemátca, Ro de Janero, 2008b.. O Ensno de Cálculo: Dculdades de Natureza Epstemológca. (Doutorado em Educação) Unversdade de São Paulo. São Paulo, 2003a. Tese. Proposta de emersão das déas báscas do Cálculo no ensno básco de matemátca. Projeto de Pesqusa. Unversdade Federal Flumnense, Pró-Retora de Pesqusa e Pós-Graduação, Nteró, 2003b.. Um Mapeamento do Ensno de Funções Reas no Ensno Básco. IX Encontro Naconal do Ensno Médo (Comuncação Centíca). Belo Horzonte, SIERPINSKA, A. On understandng the noton o uncton. In: Dubnsky, E.; Harel, G. (Org.) The concept o uncton: Elements o Pedagogy and Epstemology. Nova York: Notes And Reports Seres O The Mathematcal Assocaton O Amerca, v. 25, p SOUZA, A. R.; SILVA, G. A. Desenvolvmento e analse de uma metodologa para o ensno de unção quadrátca utlzando os sotwares parábola e ocna de unções. Cempem, FE, Uncamp, jan.jun/2006, v. 14 n. 25. Anas do XI Encontro Naconal de Educação Matemátca ISSN X Págna 8

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

NORMAS DE SELEÇÃO AO DOUTORADO

NORMAS DE SELEÇÃO AO DOUTORADO 1. INSCRIÇÕES PARA SELEÇÃO 1.1. Para a Área de Irrgação e Drenagem Poderão nscrever-se canddatos formados em Engenhara Agrícola, Agronoma, Meteorologa e demas Engenharas, ou em outras áreas afns a crtéro

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI.

* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI. O desempenho setoral dos muncípos que compõem o Sertão Pernambucano: uma análse regonal sob a ótca energétca. Carlos Fabano da Slva * Introdução Entre a publcação de Methods of Regonal Analyss de Walter

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução

Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca

Leia mais

e) 02) Com os dados fornecidos na figura abaixo (espelho côncavo), calcule a que distância do vértice (V) se encontra a imagem do objeto (O).

e) 02) Com os dados fornecidos na figura abaixo (espelho côncavo), calcule a que distância do vértice (V) se encontra a imagem do objeto (O). PROVA DE FÍSICA 2º ANO - ª MENSAL - 3º TRIMESTRE TIPO A 0) Um objeto O é colocado em rente a um eselho côncavo de centro de curvatura em C. Assnale a oção que melhor determna a osção e o tamanho da magem

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Metodologia IHFA - Índice de Hedge Funds ANBIMA

Metodologia IHFA - Índice de Hedge Funds ANBIMA Metodologa IHFA - Índce de Hedge Funds ANBIMA Versão Abrl 2011 Metodologa IHFA Índce de Hedge Funds ANBIMA 1. O Que é o IHFA Índce de Hedge Funds ANBIMA? O IHFA é um índce representatvo da ndústra de hedge

Leia mais

A LINGUAGEM MATEMÁTICA NA APRENDIZAGEM DA MÉDIA ARITMÉTICA

A LINGUAGEM MATEMÁTICA NA APRENDIZAGEM DA MÉDIA ARITMÉTICA Generated by Foxt PDF Creator Foxt Sotware http://www.oxtsotware.com For evaluaton only. Revsta Pesqusa em Foco: Educação e Flosoa A LINGUAGEM MATEMÁTICA NA APRENDIZAGEM DA MÉDIA ARITMÉTICA Elnaldo Coutnho

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil.

Palavras-chave: jovens no mercado de trabalho; modelo de seleção amostral; região Sul do Brasil. 1 A INSERÇÃO E O RENDIMENTO DOS JOVENS NO MERCADO DE TRABALHO: UMA ANÁLISE PARA A REGIÃO SUL DO BRASIL Prscla Gomes de Castro 1 Felpe de Fgueredo Slva 2 João Eustáquo de Lma 3 Área temátca: 3 -Demografa

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES

CÁLCULO DO ALUNO EQUIVALENTE PARA FINS DE ANÁLISE DE CUSTOS DE MANUTENÇÃO DAS IFES MIISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO SUPERIOR DEPARTAMETO DE DESEVOLVIMETO DA EDUCAÇÃO SUPERIOR TECOLOGIA DA IFORMAÇÃO CÁLCULO DO ALUO EQUIVALETE PARA FIS DE AÁLISE DE CUSTOS DE MAUTEÇÃO DAS IFES

Leia mais

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

Hansard OnLine. Guia Unit Fund Centre

Hansard OnLine. Guia Unit Fund Centre Hansard OnLne Gua Unt Fund Centre Índce Págna Introdução ao Unt Fund Centre (UFC) 3 Usando fltros do fundo 4-5 Trabalhando com os resultados do fltro 6 Trabalhando com os resultados do fltro Preços 7 Trabalhando

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO

METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

1 INTRODUÇÃO. 1 Segundo Menezes-Filho (2001), brasileiros com ensino fundamental completo ganham, em média, três vezes

1 INTRODUÇÃO. 1 Segundo Menezes-Filho (2001), brasileiros com ensino fundamental completo ganham, em média, três vezes A amplação da jornada escolar melhora o desempenho acadêmco dos estudantes? Uma avalação do programa Escola de Tempo Integral da rede públca do Estado de São Paulo 1 INTRODUÇÃO O acesso à educação é uma

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral Establdade de Lyapunov e Propredades Globas para Modelo de Dnâmca Vral Nara Bobko Insttuto de Matemátca Pura e Aplcada 22460-320, Estrada Dona Castorna, Ro de Janero - RJ E-mal: narabobko@gmal.com. Resumo:

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Software para Furação e Rebitagem de Fuselagem de Aeronaves

Software para Furação e Rebitagem de Fuselagem de Aeronaves Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem

Leia mais

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS

ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS ANÁLISE DE RISCO E EFEITOS DA INCERTEZA NA CARTEIRA DE INVESTIMENTOS Dogo Raael de Arruda RESUMO Constam, neste trabalho, concetos relaconados aos rscos e as ncertezas exstentes nas carteras de nvestmento

Leia mais

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe

Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss Pro. Alberto Rcardo Präss A VELOCIDADE ESCALAR O conceto de velocdade. Imagnemos que um jornal tenha envado um correspondente especal à selva amazônca a m de azer uma reportagem sobre o Pco da Neblna,

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL,

ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL, ANÁLISE COMPARATIVA DA PRODUTIVIDADE SETORIAL DO TRABALHO ENTRE OS ESTADOS BRASILEIROS: DECOMPOSIÇÕES USANDO O MÉTODO ESTRUTURAL- DIFERENCIAL, 1980/2000 2 1. INTRODUÇÃO 2 2. METODOLOGIA 3 3. ANÁLISE COMPARATIVA

Leia mais

GST0045 MATEMÁTICA FINANCEIRA

GST0045 MATEMÁTICA FINANCEIRA GST0045 MATEMÁTICA FINANCEIRA Concetos Báscos e Smbologa HP-12C Prof. Antono Sérgo A. do Nascmento asergo@lve.estaco.br GST0045 Matemátca Fnancera 2 Valor do dnhero no tempo q O dnhero cresce no tempo

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS 3 CICUITOS COM AMPOP S UTILIZADOS NOS SAPS 3. CICUITOS COM AMPOP S UTILIZADOS NOS SAPS - 3. - 3. Introdução Numa prmera fase, apresenta-se os crcutos somadores e subtractores utlzados nos blocos de entrada

Leia mais

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES Medção da Aceleração da Gravdade co u Pêndulo Sples MEDIÇÃO DA ACEERAÇÃO DA GRAVIDADE COM UM PÊNDUO SIMPES O Relatóro deste trabalho consste no preenchento dos espaços neste texto Fundaento Teórco O pêndulo

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Software. Guia do professor. Como comprar sua moto. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação números e funções Gua do professor Software Como comprar sua moto Objetvos da undade 1. Aplcar o conceto de juros compostos; 2. Introduzr o conceto de empréstmo sob juros; 3. Mostrar aplcações de progressão

Leia mais