Apostila de Estatística Curso de Matemática. Volume II Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Tamanho: px
Começar a partir da página:

Download "Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna"

Transcrição

1 Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1

2 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade como: número de casos favoráves a A p(a) número total de casos possíves Ao conjunto desses casos possíves dá-se o nome de espaço amostral (S). E ao conjunto de casos favoráves a A dá-se o nome de evento A. Ex 1) Probabldade de se obter um número par como resultado de um lançamento de um dado: S {1,,3,4,5,6} e A {,4,6}, então p 3/6 1/ 0,5 ou 50 % Ex ) Probabldade de se obter o número 4 como resultado de um lançamento de um dado: S {1,,3,4,5,6} e A {4}, então p 1/6 0,167 ou 16,7 % Ex 3) Probabldade de se obter um número dferente de 4 no lançamento de um dado: S {1,,3,4,5,6} e A {1,,3,5,6}, então p 5/6 0,833 ou 83,3 % 8. Eventos Complementares O evento do exemplo 3 é denomnado de complementar do evento do exemplo. Ou seja, se p é a probabldade de um evento ocorrer e q é a probabldade de que ele não ocorra, então: 8.3 Eventos Independentes p + q 1 > q 1 - p Dos eventos são ndependentes quando a realzação de um não afeta a probabldade da realzação do outro. Portanto a probabldade de que dos eventos ndependentes se realzem smultaneamente é defndo por: p p A x p B Também conhecda como regra do "e" Ex 1) Probabldade de se obter, smultaneamente, 1 no prmero dado e 5 no segundo é: p p1 p 0,08,8% Eventos Mutuamente Exclusvos Dos eventos são mutuamente exclusvos quando a realzação de um exclu a realzação do outro. Nesse caso a probabldade de que um ou o outro se realze é: p p A + p B Também conhecda como regra do "ou" A B, então p (A B) p(a) + p(b) A B, então p(a B) p(a) + p(b) p(a B) Deve-se observar que se tvermos Mas se

3 Ex 1) A probabldade de se obter 1 ou 5 em um lançamento de dado é: p p1 + p + 0,333 33,3% Exercícos 1) Determne a probabldade de cada evento: a) Uma carta de ouros aparece ao se extrar uma carta de um baralho de 5 cartas b) Uma só coroa aparece no lançamento de 3 moedas Resp: a) p 1/4 b) p 3/8 ) Dos dados são lançados smultaneamente. Determne a probabldade de: a) a soma ser menor que 4; b) a soma ser 9; c) o prmero resultado ser maor que o segundo; d) a soma ser menor ou gual a 5. Resp: a) p 1/1 b) p 1/9 c) p 5/1 d) p 5/18 3

4 3) Em um lote de 1 peças, 4 são defetuosas. Sendo retradas aleatoramente peças, calcule: a) a probabldade de ambas serem defetuosas; b) a probabldade de ambas não serem defetuosas; c) a probabldade de ao menos uma ser defetuosa. Resp: a) p 1/11 b) p 14/33 c) p 19/33 4) Um casal planeja ter 3 flhos. Determne a probabldade de nascerem: a) três homens; b) dos homens e uma mulher. Resp: a) p 1/8 b) p 3/8 4

5 5) Um baralho de 5 cartas é subdvddo em 4 napes:copas, espadas, ouros e paus: a) Retrando-se uma carta ao acaso, qual a probabldade de que ela seja de ouros ou de copas? b) Retrando-se duas cartas ao acaso com reposção da prmera carta, qual a probabldade de ser a prmera de ouros e a segunda de copas? c) Recalcular a probabldade anteror se não houver reposção da prmera carta. d) Havendo reposção, qual a probabldade de sar a prmera carta de ouros ou então a segunda de copas? Resp: a) p 1/ b) p 1/16 c) p 13/04 d) p 7/16 6) Num grupo de 75 jovens, 16 gostam de músca, esporte e letura; 4 gostam de músca e esporte; 30 gostam de músca e letura; gostam de esporte e letura; 6 gostam somente de músca; 9 gostam somente de esporte; e 5 jovens gostam somente de letura. (Sugestão: utlze o dagrama de Venn) a) Qual a probabldade de, ao apontar, ao acaso, um desses jovens, ele gostar de músca? b) Qual a probabldade de, ao apontar, ao acaso, um desses jovens, ele não gostar de nenhuma dessas atvdades? Resp: a) p 44/75 b) p 11/75 7) Uma urna contém 0 bolas numeradas de 1 a 0. Seja o expermento: retrada de uma bola. Consdere os eventos: A {a bola retrada possu um múltplo de }; B{a bola retrada possu um múltplo de 5}. Então, qual é a probabldade do evento A U B? Resp: p 3/5 5

6 Capítulo 9 - Dstrbução Bnomal 9.1 Dstrbução de Probabldade Seja a segunte dstrbução de freqüênca: Número de Acdentes Freqüêncas Por da, Em 1 mês Total 30 Através dos dados apresentados pode-se calcular a probabldade de em um da: não ocorrer nenhum acdente: P /30 0,73 ocorrer 1 acdente: P 5/30 0,17 ocorrer acdentes: P /30 0,07 ocorrer 3 acdentes: P 1/30 0,03 Podemos então elaborar uma tabela denomnada dstrbução de probabldade: Número de Acdentes Probabldade Por da, Em 1 mês 0 0,73 1 0,17 0,07 3 0,03 Total 1,00 Pode-se então determnar uma função que assoce a varável acdentes com a sua probabldade, denomnada função probabldade denomnada por: F(x) P (X x ) 9. Dstrbução Bnomal Aplca-se a expermentos que satsfaçam as seguntes condções: 1) O expermento deve ser repetdo, nas mesmas condções, um número fnto de vezes, n ) As provas repetdas devem ser ndependentes, o resultado de uma não afeta o resultado da outra. 3) Tem-se apenas dos resultados possíves: sucesso ou nsucesso. 4) A probabldade do sucesso em uma tentatva é p e a do nsucesso é q 1-p A probabldade de se obter sucesso k vezes durante n tentatvas é determnado por: f ( X) P( X k) k! n! ( n k) p! k q n k 6

7 Exemplo 1) Uma moeda é lançada 5 vezes segudas e ndependentes. Calcule a probabldade de serem obtdas 3 caras nessa prova. n 5 k 3 p 1/ q 1-p 1-1/ 1/ P ( X 3) ! 3!! Exemplo ) Dos tmes de futebol, A e B, jogam entre s 6 vezes. Encontre a probabldade do tme A ganhar 4 jogos. n 6 k 4 p 1/3 q 1-p 1-1/3 /3 P ( X 4) Exercícos: ! 4!! Exercíco 1) Jogando-se um dado três vezes, determne a probabldade de se obter um múltplo de 3 duas vezes. Resp: p /9 Exercíco ) Ses parafusos são escolhdos ao acaso da produção de uma certa máquna, que apresenta 10% de peças defetuosas. Qual a probabldade de serem defetuosos dos deles? Resp: p 0,0984 7

8 Exercíco 3) Dos estudantes de um colégo, 41 % fumam cgarro. Escolhem-se ses ao acaso para darem uma opnão sobre o fumo. Determne a probabldade de: a) nenhum dos ses ser fumante b) todos os ses fumarem c) ao menos a metade dos ses ser fumante Resp: a) p 4,% b) p 0,48% c) 47,65% 8

9 Exercíco 4) 1% dos que reservam lugar num vôo faltam ao embarque. O avão comporta 15 passageros. a) Determne a probabldade de que todos os 15 que reservaram lugar compareçam ao embarque. b) Se houve 16 peddos de reserva, determne a probabldade de uma pessoa fcar de fora. c) Se houve 16 peddos de reserva, determne a probabldade do avão voar lotado Resp: a) p 14,70% b) p 1,93% c) 41,15% 9

10 Capítulo 10 - Dstrbução Normal Relembrando: Varável é o conjunto de resultados possíves de um fenômeno. A varável pode ser qualtatva, quando seus valores são expressos por atrbutos (ex: sexo, cor), ou pode ser quanttatva, quando seus valores são expressos em números. A varável quanttatva pode ser contínua, quando assume qualquer valor entre dos lmtes (ex: peso, altura, medções), ou pode ser dscreta, quando só pode assumr valores pertencentes a um conjunto enumerável (ex: número de flhos, contagens em geral). Entre as dstrbuções teórcas de varável contínua, a mas empregada é a dstrbução normal. O aspecto gráfco da curva normal é o segunte s s Ponto de nflexão x Onde x é a méda e s é o desvo padrão. Quando nos refermos a uma dstrbução normal, cta-se a méda e o seu desvo padrão. N (x,s) A equação da curva é a segunte: Y s 1 e π 1 X x s Quando temos em mão uma varável aleatóra com dstrbução normal, nosso prncpal nteresse é obter a probabldade de essa varável aleatóra assumr um valor em um determnado ntervalo. Essa probabldade é representada pela área sob a curva dentro desse ntervalo. A área total sob a curva é 1. O cálculo desse valor é dfícl, sendo então esse já tabelado. Exemplo: 1) Seja um teste de ntelgênca aplcado a um grupo de 50 adolescentes do 3 o ano colegal. Obtevese uma dstrbução normal com méda 50 e desvo padrão 6. Pergunta-se qual a proporção de alunos com notas superores a 60? Transformando a nota 60 em desvos reduzdos tem-se: z 1,67 6 Consultando a tabela verfca-se: 10

11 0,455 P(x>60) Probabldade da nota ser superor a 60 é 0,5-0,455 0,0475 ou 4,75 % ) Com os dados do problema anteror, averguar o número de alunos com notas entre 35 e 45. Calculando os desvos reduzdos tem-se: z 1 z , ,5 6 Consultando a tabela verfca-se: P(35<x<45) Probabldade (área) entre 0 e,5 0,4938 Probabldade (área) entre 0 e 0,83 0,967 Então Probabldade (área) entre,5 e 0,83 0,4938-0,967 0,1971 O número de alunos é 0,1971 x 50 9, pessoas 3) Com os dados do problema anteror, qual é a nota abaxo da qual estão 75% dos alunos? Consultando a tabela, a área é de 0,5 + 0,5 0,75 O valor de z correspondente a área de 0,486 é 0,67 O valor de z correspondente a área de 0,518 é 0,68 Pode-se adotar um valor médo z 0,675 11

12 0,5 0,5 x 50 0,675 x ,675 54, X 4) Achar a probabldade de um valor escolhdo ao acaso seja superor a 50 em uma dstrbução normal de méda 35 e desvo padrão 8. Resp: 0,0304 ou 3,04 % 5) Seja a dstrbução normal de méda 6,74 e desvo padrão de,3. Qual a probabldade de encontrar um valor nferor a 3,4? Resp: 0,0735 ou 7,35 % 1

13 6) Um teste padronzado de escolardade tem dstrbução normal com méda 100 e desvo padrão 5. Determne a probabldade de um ndvíduo submetdo ao teste ter nota: a) maor que 10 b) entre 75 e 15 c) entre 115 e 15 d) qual é a nota abaxo da qual estão 70% dos alunos Resp: a) p 1,19 % b) p 68,6% c) p 11,55% d) 113 7) Os saláros dos funconáros de uma escola têm dstrbução normal com méda de R$ 1500,00, e desvo padrão de R$ 00,00. Qual a proporção de funconáros que ganham: a) entre R$ 1400 e R$ 1600? b) acma de R$ 1500? c) acma de R$ 1400? d) abaxo de R$ 1400? e) acma de R$ 1650? Resp: a) p 38,3 % b) p 50% c) p 69,15% d) p 30,85% e) p,66% 13

14 Capítulo 11 - Correlação 11.1 Conceto A correlação expressa a relação entre duas ou mas varáves. Se duas ou mas varáves varam concumtantemente, dz-se que estão correlaconadas. Exemplo: A estatura de uma pessoa e o seu peso. Para uma estatura maor corresponde, em geral, a um peso maor. Dzemos, por sso, que entre as varáves peso e estatura exste correlação. 11. Correlação Postva, Negatva e Curvlínea a) Correlação postva: valores elevados de uma varável corresponde a valores elevados da outra. Exemplo peso e altura b) Correlação negatva: valores elevados de uma varável corresponde a valores baxos da outra e vce-versa. Exemplo: reprovações e nível de escolardade. c) Correlação curvlínea: começa negatva e termna postva ou vce-versa. Exemplo: tamanho da famíla e stuação sóco econômca. 1.3 Representação Gráfca As correlações varam com respeto a sua força. Podemos vsualzar essa força num dagrama de dspersão que é um gráfco capaz de mostrar a manera pela qual os valores de duas varáves, X e Y, dstrbuem-se ao longo da faxa dos possíves resultados. Exemplo: Renda x Anos de estudo Anos de estudo renda A força da correlação entre X e Y aumenta a medda que os pontos se agrupam em torno de uma lnha reta magnára. 1.4 Coefcente de Correlação (C) Expressa numercamente a força e o sentdo da correlação. Os coefcentes osclam entre -1 e 1 C -1 -> correlação negatva perfeta -1 < C < - 0,6 -> correlação negatva forte -0,6 < C < - 0,3 -> correlação negatva moderada -0,3 < C < 0,0 -> correlação negatva fraca 0,0 < C < 0,3 -> correlação postva fraca 14

15 0,3 < C < 0,6 -> correlação postva moderada 0,6 < C < 1 -> correlação postva forte C 1 -> correlação postva perfeta 1.5 Relação entre duas varáves quanttatvas. Se retrarmos de uma população, uma amostra casual de tamanho N, teremos para cada elemento da amostra um par de observações: um valor de X e um valor de Y. Esses pares determnam N pontos no plano que podem ser representados grafcamente num sstema de exos cartesanos. Y Y 3 Y Y 1 X 1 X X 3 X Ao gráfco acma dá-se o nome de dagrama de dspersão, esses nos fornece uma déa ntutva da eventual relação entre as duas varáves. Pode-se medr essa correlação através do Coefcente de Correlação Lnear de Pearson (r) r [n [ n ( x y )] ( x ) ( y ) x [ ] ( x ) ] [n y ( y ) ] onde 1 r 1 Exemplo: Vamos comparar a correlação das notas de matemátca com as de estatístca de uma amostra aleatóra de 10 alunos de uma classe: N o Notas X. Y X Y Matemátca (X ) Estatístca (Y ) Total

16 Logo: r [n [ n ( x y )] ( x ) ( y ) x [ ] ( x ) ] [n y ( y ) [ ] [ 65 65] [ ] [ ,189 0,911 ] ] [ ] [ ] Correlação Forte Exercíco 1: Relação entre nível educaconal do respondente e do respectvo pa, meddos em anos de freqüênca à escola. Crança Anos de Escola X. Y X Y Pas (X ) Flhos (Y ) A 1 1 B 10 8 C 6 6 D E 8 10 F 9 8 G 1 11 Total Resp: r 0,755 correlação postva forte 16

17 Capítulo 13. Regressão. No dagrama de dspersão do capítulo anteror, a reta é defnda por uma equação do 1 o grau de formato: ŷ a x + b, onde ŷ é um valor estmado de y Pode-se então determnar os valores de a e b da equação através de: [ n ( x y )] ( x ) ( y ) b y a x [ ] ( x ) a n x onde n é o número de elementos da amostra; x é a méda dos valores x > y é a méda dos valores y > x y Exemplo: Para o exemplo 1 anteror x n y n N o Notas Matemátca (X ) Estatístca (Y ) X. Y X Y Total a [ n ( x y )] ( x ) ( y ) n 65 x y 6,5 10 b 6,5 0,863 6,5 0,889 x [ ] ( x ) a 0,86 e b 0,89, então ŷ 0,86X + 0,89 [ ] [ 65 65] ,

18 Exercíco: Determne a equação da reta do exercíco 1 do capítulo anteror Crança Anos de Escola Pas (X ) Flhos (Y ) A 1 1 B 10 8 C 6 6 D E 8 10 F 9 8 G 1 11 Total X. Y X Y Resp: y 0,5 x + 4, 18

19 Dstrbução Bnomal 19

20 Dstrbução Normal 0

21 Correlação 1

22 ÁREA SUBTENDIDA PELA CURVA NORMAL REDUZIDA DE 0 A Z 0 z z ,0000 0,0040 0,0080 0,010 0,0160 0,0199 0,039 0,079 0,0319 0,0359 0,1 0,0398 0,0438 0,0478 0,0517 0,0557 0,0596 0,0636 0,0675 0,0714 0,0753 0, 0,0793 0,083 0,0871 0,0910 0,0948 0,0987 0,106 0,1064 0,1103 0,1141 0,3 0,1179 0,117 0,155 0,193 0,1331 0,1368 0,1406 0,1443 0,1480 0,1517 0,4 0,1554 0,1591 0,168 0,1664 0,1700 0,1736 0,177 0,1808 0,1844 0,1879 0,5 0,1915 0,1950 0,1985 0,019 0,054 0,088 0,13 0,157 0,190 0,4 0,6 0,57 0,91 0,34 0,357 0,389 0,4 0,454 0,486 0,517 0,549 0,7 0,580 0,611 0,64 0,673 0,704 0,734 0,764 0,794 0,83 0,85 0,8 0,881 0,910 0,939 0,967 0,995 0,303 0,3051 0,3078 0,3106 0,3133 0,9 0,3159 0,3186 0,31 0,338 0,364 0,389 0,3315 0,3340 0,3365 0, ,3413 0,3438 0,3461 0,3485 0,3508 0,3531 0,3554 0,3577 0,3599 0,361 1,1 0,3643 0,3665 0,3686 0,3708 0,379 0,3749 0,3770 0,3790 0,3810 0,3830 1, 0,3849 0,3869 0,3888 0,3907 0,395 0,3944 0,396 0,3980 0,3997 0,4015 1,3 0,403 0,4049 0,4066 0,408 0,4099 0,4115 0,4131 0,4147 0,416 0,4177 1,4 0,419 0,407 0,4 0,436 0,451 0,46 5 0,479 0,49 0,4306 0,4319 1,5 0,433 0,4345 0,4357 0,4370 0,438 0,4394 0,4406 0,4418 0,449 0,4441 1,6 0,445 0,4463 0,4474 0,4484 0,4495 0,4505 0,4515 0,455 0,4535 0,4545 1,7 0,4554 0,4564 0,4573 0,458 0,4591 0,4599 0,4608 0,4616 0,465 0,4633 1,8 0,4641 0,4649 0,4656 0,4664 0,4671 0,4678 0,4686 0,4693 0,4699 0,4706 1,9 0,4713 0,4719 0,476 0,473 0, ,4744 0,4750 0,4756 0,4761 0,4767 0,477 0,4778 0,4783 0,4788 0,4793 0,4798 0,4803 0,4808 0,481 0,4817,1 0,481 0,486 0,4830 0,4834 0,4838 0,484 0,4846 0,4850 0,4854 0,4857, 0,4861 0,4864 0,4868 0,4871 0,4875 0,4878 0,4881 0,4884 0,4887 0,4890,3 0,4893 0,4896 0,4898 0,4901 0,4904 0,4906 0,4909 0,4911 0,4913 0,4916,4 0,4918 0,490 0,49 0,495 0,497 0,499 0,4931 0,493 0,4934 0,4936,5 0,4938 0,4940 0,4941 0,4943 0,4945 0,4946 0,4948 0,4949 0,4951 0,495,6 0,4953 0,4955 0,4956 0,4957 0,4959 0,4960 0,4961 0,496 0,4963 0,4964,7 0,4965 0,4966 0,4967 0,4968 0,4969 0,4970 0,4971 0,497 0,4973 0,4974,8 0,4974 0,4975 0,4976 0,4977 0,4977 0,4978 0,4979 0,4979 0,4980 0,4981,9 0,4981 0,498 0,498 0,4983 0,4984 0,4984 0,4985 0,4985 0,4986 0, ,4987 0,4987 0,4987 0,4988 0,4988 0,4989 0,4989 0,4989 0,4990 0,4990 3,1 0,4990 0,4991 0,4991 0,4991 0,499 0,499 0,499 0,499 0,4993 0,4993 3, 0,4993 0,4993 0,4994 0,4994 0,4994 0,4994 0,4994 0,4995 0,4995 0,4995 3,3 0,4995 0,4995 0,4995 0,4996 0,4996 0,4996 0,4996 0,4996 0,4996 0,4997 3,4 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997 0,4998 3,5 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998 3,6 0,4998 0,4998 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 3,7 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 3,8 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999 3,9 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 3

23 BIBLIOGRAFIA: COSTA NETO, P. L. de O. Probabldades. São Paulo: Edtora Edgard Blucher Ltda, COSTA NETO, P. L. de O. Estatístca. São Paulo: Edtora Edgard Blucher Ltda, 17 o ed CRESPO, A. A. Estatístca Fácl. São Paulo: Edtora Sarava, 17 o ed DOWNING, D., CLARK, J. Estatístca Aplcada. São Paulo: Edtora Sarava, 000. KAZMIER, L. J. Estatístca Aplcada à Economa e Admnstração. São Paulo: Edtora Makron books Ltda., 198. LAPPONI, J. C. Estatístca Usando Excel. São Paulo: Edtora Lappon, 000. LEVIN, J. Estatístca Aplcada a Cêncas Humanas, a edção. São Paulo: Edtora Harper & Row do Brasl Ltda, NICK, E., KELLNER, S. R. O. Fundamentos de Estatístca para as Cêncas do Comportamento. Ro de Janero: Edtora Renes, SIEGEL, S. Estatístca Não Paramétrca. São Paulo: Edtora McGraw-Hll do Brasl Ltda, STEVENSON, W. J. Estatístca Aplcada à Admnstração. São Paulo: Edtora Harper & Row do Brasl Ltda, TRIOLA, M. F. Introdução à Estatístca. Ro de Janero: Lvros Técncos e Centífcos Edtora S.A., 7 a ed

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Apostila de Estatística Básica. Curso de Psicologia. Probabilidades, Distribuição Normal, Teste de Hipóteses, Distribuição Qui-Quadrado e Correlação.

Apostila de Estatística Básica. Curso de Psicologia. Probabilidades, Distribuição Normal, Teste de Hipóteses, Distribuição Qui-Quadrado e Correlação. Apostila de Estatística Básica Curso de Psicologia o Semestre - Volume II Probabilidades, Distribuição Normal, Teste de Hipóteses, Distribuição Qui-Quadrado e Correlação. Prof. Dr. Celso Eduardo Tuna 1

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos 2 Matemátca Fnancera e Instrumentos de Gestão Sumáro 1. Concetos báscos de estatístca descrtva 1.1. 2ª Aula 1.2. 1.2.1. Frequênca relatva 1.2.2. Frequênca relatva acumulada 3 4 A cênca descobre relações

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

ÍNDICE NOTA INTRODUTÓRIA

ÍNDICE NOTA INTRODUTÓRIA OGC00 05-0-06 ÍDICE. Introdução. Âmbto e defnções 3. Avalação da ncerteza de medção de estmatvas das grandezas de entrada 4. Cálculo da ncerteza-padrão da estmatva da grandeza 5 de saída 5. Incerteza de

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Modelos estatísticos para previsão de partidas de futebol

Modelos estatísticos para previsão de partidas de futebol Modelos estatístcos para prevsão de partdas de futebol Dan Gamerman Insttuto de Matemátca, UFRJ dan@m.ufrj.br X Semana da Matemátca e II Semana da Estatístca da UFOP Ouro Preto, MG 03/11/2010 Algumas perguntas

Leia mais

Situação Ocupacional dos Jovens das Comunidades de Baixa Renda da Cidade do Rio de Janeiro *

Situação Ocupacional dos Jovens das Comunidades de Baixa Renda da Cidade do Rio de Janeiro * Stuação Ocupaconal dos Jovens das Comundades de Baxa Renda da Cdade do Ro de Janero * Alessandra da Rocha Santos Cínta C. M. Damasceno Dense Brtz do Nascmento Slva ' Mara Beatrz A. M. da Cunha Palavras-chave:

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

Desemprego de Jovens no Brasil *

Desemprego de Jovens no Brasil * Desemprego de Jovens no Brasl * Prsclla Matas Flor Palavras-chave: desemprego; jovens; prmero emprego; Brasl. Resumo Este trabalho tem como objetvo analsar a estrutura do desemprego dos jovens no Brasl,

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo.

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo. Motores síncronos Prncípo de funconamento ão motores com velocdade de rotação fxa velocdade de sncronsmo. O seu prncípo de funconamento está esquematzado na fgura 1.1 um motor com 2 pólos. Uma corrente

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL Danlo Augusto Hereda VIEIRA 1 Celso Correa de SOUZA 2 José Francsco dos REIS NETO 3 Resumo. As

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

Rastreando Algoritmos

Rastreando Algoritmos Rastreando lgortmos José ugusto aranauskas epartamento de Físca e Matemátca FFCLRP-USP Sala loco P Fone () - Uma vez desenvolvdo um algortmo, como saber se ele faz o que se supõe que faça? esta aula veremos

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

MAPEAMENTO DA VARIABILIDADE ESPACIAL

MAPEAMENTO DA VARIABILIDADE ESPACIAL IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM FÍSICA COENTE ELÉTICA, ESISTÊNCIA, DDP, ª E ª LEIS DE OHM. CAGA ELÉTICA (Q) Observa-se, expermentalmente, na natureza da matéra, a exstênca de uma força com propredades semelhantes à força gravtaconal,

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais