e) 02) Com os dados fornecidos na figura abaixo (espelho côncavo), calcule a que distância do vértice (V) se encontra a imagem do objeto (O).

Tamanho: px
Começar a partir da página:

Download "e) 02) Com os dados fornecidos na figura abaixo (espelho côncavo), calcule a que distância do vértice (V) se encontra a imagem do objeto (O)."

Transcrição

1 PROVA DE FÍSICA 2º ANO - ª MENSAL - 3º TRIMESTRE TIPO A 0) Um objeto O é colocado em rente a um eselho côncavo de centro de curvatura em C. Assnale a oção que melhor determna a osção e o tamanho da magem I. a) b) c) d) e) 02) Com os dados ornecdos na gura abaxo (eselho côncavo), calcule a que dstânca do vértce (V) se encontra a magem do objeto (O). R 20cm 0cm 30cm? cm 03) Um objeto está stuado 5,0 cm à rente de um eselho convexo cuja dstânca ocal é de 20 cm. Determne o to de magem ormada e a dstânca entre ela e o eselho. 20cm 5cm? cm vrtual/dreta/menor

2 04) Um homem de altura está em é em rente a um eselho esérco côncavo, de dstânca ocal 30 cm, a uma dstânca x do vértce do eselho. Para que o eselho conjugue uma magem real do homem, de altura, qual deve ser o valor de x? 3 o o x x 90 30cm x 20 x? 3 x 20cm 05) A dstânca entre a magem e um objeto colocado em rente a um eselho côncavo é de 24 centímetros. Sabendo que a magem é dreta e cnco vezes maor, determne o rao de curvatura do eselho R? ( 5 ) cm 5 4 5( 4) cm côncavo R 0cm 06) Com relação às magens conjugadas a objetos reas or eselhos esércos, são etas as seguntes armações: I. São semre vrtuas nos eselhos convexos. II. São semre reas ara eselhos côncavos. III. São semre nvertdas quando o objeto é colocado sobre o oco do eselho côncavo. IV. São semre dretas e vrtuas ara um objeto stuado a uma dstânca menor que a ocal se o eselho or côncavo. V. Reduzem-se ao tamanho de um onto quando o objeto é colocado a uma dstânca do eselho bem maor que o rao de curvatura nos eselhos côncavos. Estão corretas: a) somente I e V. b) aenas II e IV. c) somente III e V. d) aenas II e III. e) somente I e IV. 07) Assnale verdadero (V) ou also (F) ara as armatvas abaxo. (V) Toda magem real é nvertda, assm como toda magem vrtual é dreta. (F) Quanto menor or o rao de curvatura de um eselho esérco, mas nítda será a sua magem. (V) Um objeto no nnto terá sua magem ormada no oco de um eselho côncavo. (F) O eselho convexo é utlzado ara aumentar o camo vsual, sem rejudcar a noção de rounddade. (V) Uma das condções de ntdez de Gauss é a de que o ângulo de abertura do eselho deve ser menor que 0º ( < 0º).

3 PROVA DE FÍSICA 2º ANO - ª MENSAL - 3º TRIMESTRE TIPO B 0) Sobre o comortamento dos raos rncas, analse as armatvas abaxo. I. O comortamento dos raos rncas são váldos tanto ara os eselhos côncavos como ara os convexos. II. Um rao de luz que o reletdo assando elo oco é orque ncdu aralelo ao exo rncal. III. Todo rao de luz que ncde assando elo oco é reletdo sobre s mesmo. IV. Um rao de luz que ncde sobre o exo rncal é reletdo sobre s mesmo. V. Para qualquer dreção que o rao de luz ncda, semre será reletdo assando elo centro de curvatura. Podemos dzer que são corretas: a) I e II. b) I e III. c) II, IV e V. d) I, II e IV. e) II e V. 02) Assnale verdadero (V) ou also (F) ara as seguntes armatvas. (F) Toda magem real é dreta, assm como toda magem vrtual é nvertda. (F) Os eselhos convexos só geram magens reas, nvertdas e menores. (V) Uma das condções de ntdez de Gauss é a de que o ângulo de abertura do eselho, deve ser menor que 0º (< 0º). (V) O eselho convexo é utlzado ara aumentar o camo vsual, mas gera um erro de rounddade. (V) Um objeto no nnto terá sua magem ormada no oco de um eselho côncavo. 03) Um objeto O é colocado em rente a um eselho côncavo de centro de curvatura em C. Assnale a oção que melhor determna a osção e o tamanho da magem I. a) b) c) d) 04) Com os dados ornecdos na gura abaxo (eselho côncavo), calcule a que dstânca do vértce (V) se encontra a magem do objeto (O). R 0cm 5cm 5cm? e) ,5cm

4 05) Um objeto está stuado 4,0 cm à rente de um eselho convexo cuja dstânca ocal é de 20 cm. Determne o to de magem ormada e a dstânca entre a magem e o eselho. 20cm 4cm? ,33... cm vrtual/dreta/menor 06) Um homem de altura está em é em rente a um eselho esérco côncavo, de dstânca ocal 30 cm, a uma dstânca x do vértce do eselho. Para que o eselho conjugue uma magem real do homem, de altura 4, qual deve ser o valor de x. o 4 30cm x? o x 30 x 20 x 50 x 50cm 07) A dstânca entre um objeto e sua magem reletda em um antearo é 2 cm. Sabendo que a magem é amlada 5 vezes em relação ao objeto, determne o rao de curvatura e o to de eselho utlzado. 2 5 R? cm ( 3) ,5cm R 5cm côncavo

5 PROVA DE FÍSICA 2º ANO - ª MENSAL - 3º TRIMESTRE TIPO C 0) Analse as armatvas abaxo e assnale V ara a(s) verdadera(s) e F ara a(s) alsa(s). (F) Os eselhos esércos ormam magens nítdas ara qualquer rao de luz que ncda em sua sueríce reletora. (F) Quanto maor o rao de curvatura de um eselho esérco, menor a ntdez do eselho. (F) Ao assocarmos o ângulo de abertura com o ângulo de curvatura, oderemos aumentar a ntdez do eselho lano. (F) Raos araxas são raos de luz róxmos entre s. (V) O ângulo de abertura é a medda entre os exos secundáros que vão do centro de curvatura até as extremdades do eselho esérco. 02) Observe as armações abaxo. I. Todo rao de luz que ncdr em um eselho esérco assando or seu centro de curvatura relete-se aralelamente ao exo rncal. II. Para que um rao de luz seja reletdo or um eselho esérco assando sobre o oco, é necessáro que esse rao ncda no eselho aralelamente ao exo rncal. III. Quando um rao de luz ncdr sobre o vértce de um eselho esérco, ele será reletdo sobre o exo de curvatura deste. IV. Ao assar sobre o oco de um eselho esérco, o rao de luz será reletdo aralelamente ao exo rncal do eselho. V. Se um rao de luz ncdr em um eselho esérco exatamente sobre o exo rncal, esse rao será reletdo voltando sobre s mesmo. Estão correta(s): a) I, II e III. b) II, IV e V. c) II, III e IV. d) III, IV e V. e) I, III e V. 03) Analse a construção geométrca das magens reletdas nos eselhos esércos e assnale aquela em que a magem e o objeto estão corretamente reresentados. a) b) c) d) e)

6 04) Um eselho côncavo ossu um rao de curvatura de 60 cm. Um objeto é colocado a uma dstânca de 80 cm do vértce do eselho. Com base nessas normações, determne a que dstânca do eselho se ormará a magem do objeto e norme suas característcas. R 60cm 30cm 80cm? cm real/nvertda/menor 05) Um eselho esérco convexo ossu um rao de curvatura gual a 30 cm. Sabendo que a magem ormada nesse eselho se encontra a 2 cm do seu vértce, determne em que osção se encontra o objeto ara conjugar essa magem. 0cm o 2? o 2 2 R 30cm 5cm 2cm? cm 06) Um eselho convexo ossu 0 cm de dstânca ocal. Sabendo que o objeto tem o dobro do tamanho da magem, determne a dstânca da magem até o eselho e ndque sua natureza cm cm vrtual/dreta/menor

7 07) Um objeto e sua magem, conjugada em um eselho esérco, estão dstantes entre s 30 cm. Observando que tanto a magem quanto o objeto se encontram na rente do eselho, que a magem ossu a quarta arte do tamanho do objeto e está nvertda, determne o to do eselho utlzado e sua dstânca ocal ? cm 40cm cm côncavo

8 PROVA DE FÍSICA 2º ANO - ª MENSAL - 3º TRIMESTRE TIPO D 0) Um objeto e sua magem, conjugada em um eselho esérco, estão dstantes entre s 20 cm. Sabendo que a magem é vrtual e dreta e ossu a qunta arte do tamanho do objeto, determne o to do eselho utlzado e sua dstânca ocal ? 5 5 R 40cm 20cm 60cm? ,33... cm 6,66... cm 5 6,66 6, ,66 4,6cm convexo 02) O rao de curvatura de um eselho côncavo é 40 cm. Se um objeto é colocado a uma dstânca de 60 cm do vértce do eselho, determne a que dstânca do eselho se ormará a magem do objeto e norme suas característcas. 5cm o 3? o cm cm real/nvertda/menor 03) A dstânca ocal de um eselho convexo é 5 cm. Sabendo que o objeto ossu o trlo do tamanho da magem, determne a dstânca da magem até o eselho e ndque sua natureza cm vrtual/dreta/menor

9 04) O rao de curvatura de um eselho esérco convexo é gual a 40 cm. Sabendo que a magem ormada nesse eselho se encontra a 5 cm do seu vértce, determne em que osção se encontra o objeto ara conjugar essa magem. R 40cm 20cm 5cm? cm 05) Analse as armatvas abaxo e assnale V ara a(s) verdadera(s) e F ara a(s) alsa(s). (F) Todo rao de luz que ncdr em um eselho esérco assando or seu centro de curvatura relete-se aralelamente ao exo rncal. (V) Para que um rao de luz seja reletdo or um eselho esérco assando sobre o oco, é necessáro que esse rao ncda no eselho aralelamente ao exo rncal. (F) Quando um rao de luz ncdr sobre o vértce de um eselho esérco, ele será reletdo sobre o exo de curvatura deste. (V) Ao assar sobre o oco de um eselho esérco, o rao de luz será reletdo aralelamente ao exo rncal do eselho. (V) Se um rao de luz ncdr em um eselho esérco exatamente sobre o exo rncal, esse rao será reletdo voltando sobre s mesmo. 06) Observe a construção geométrca das magens reletdas nos eselhos esércos e assnale aquela em que a magem e o objeto estão corretamente reresentados. a) b) c) d) e)

10 07)Analse as armações abaxo. I. Os eselhos esércos ormam magens nítdas ara qualquer rao de luz que ncda em sua sueríce reletora. II. Quanto maor o rao de curvatura de um eselho esérco, maor a ntdez do eselho. III. Ao assocarmos o ângulo de abertura com o rao de curvatura, oderemos aumentar a ntdez do eselho. IV. Raos araxas são raos de luz dstantes entre s. V. O ângulo de abertura é a medda entre os exos secundáros que vão do centro de curvatura até as extremdades do eselho esérco. Estão correta(s): a) I, II e III. b) II, III e V. c) II, III e IV. d) III, IV e V. e) I, III e V.

LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO. Lentes de bordos delgados: Lentes de bordos espessos:

LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO. Lentes de bordos delgados: Lentes de bordos espessos: LENTES ESFÉRICAS I) TIPOS DE LENTES III) COMPORTAMENTO ÓPTICO Lentes de bordos delgados: Lentes de bordos esessos: Sendo n = índce de reração do meo e n = índce de reração da lente Lentes Convergentes:

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

GABARITO. Física B 07) 56 08) A 09) E. Nas lentes divergentes as imagens serão sempre virtuais. 10) A

GABARITO. Física B 07) 56 08) A 09) E. Nas lentes divergentes as imagens serão sempre virtuais. 10) A Física B Extensivo V. 4 Exercícios 0) V V V V F 0. Verdadeiro. Lentes, disositivos que ormam imagem usando essencialmente as leis da reração. 0. Verdadeiro. Eselhos vértice, oco, centro de curvatura. Lentes:

Leia mais

PROVA DE FÍSICA 2º ANO - 4ª MENSAL - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 4ª MENSAL - 2º TRIMESTRE TIPO A PROVA DE FÍSICA 2º ANO - 4ª MENSAL - 2º TRIMESTRE TIPO A 0) No gráico abaixo, que representa uma máquina térmica ideal, temos uma seqüência de transormações gasosas que segue a ordem ABCDA. De acordo com

Leia mais

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 3ª MENSAL - 2º TRIMESTRE TIPO A 0) Comlete a rase marcando a oção correta. PROVA DE FÍSICA º ANO - 3ª MENSAL - º TRIMESTRE TIPO A Para rojetarmos sobre um antearo a imagem aumentada de um objeto real, disomos de três eselhos: um lano,

Leia mais

Física B Semiextensivo V. 1

Física B Semiextensivo V. 1 Física Semiextensivo V. Exercícios 0) D luz é uma onda eletromagnética, ois se roaga em todos os meios, inclusive no vácuo. 0) x V. t x 3. 0 8. 3.. 0 7 x 9,6. 0 5 m 03) C I. Falsa. É transarente. II. Falsa.

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

Capítulo. Lentes esféricas delgadas. Resoluções dos exercícios propostos

Capítulo. Lentes esféricas delgadas. Resoluções dos exercícios propostos Caítul 4 s undaments da ísca Exercícs rsts Undade E Caítul 4 Lentes esércas delgadas Lentes esércas delgadas esluções ds exercícs rsts P.33 trajet esquematzad basea-se n at de ar ser mens rerngente que

Leia mais

3) Da figura temos: 4) a altura total (h ) do vértice da cúpula até o piso é dada por: 5) Mas f > h e, portanto:

3) Da figura temos: 4) a altura total (h ) do vértice da cúpula até o piso é dada por: 5) Mas f > h e, portanto: Lista de Exercícios de Física II Eselhos Eséricos Pro: Tadeu Turma: Ano do Ensino Médio Data: 08/06/009 ) (ITA) Um objeto linear de altura h está assentado erendicularmente no eixo rincial de um eselho

Leia mais

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos

Leia mais

Física. Resolução das atividades complementares. F8 Reflexão da luz

Física. Resolução das atividades complementares. F8 Reflexão da luz Resluçã das atvdades cmplementares 3 ísca 8 Reflexã da luz p. 3 Quas sã as les da reflexã? prmera le dz que, numa reflexã, s fexes ncdente e refletd sã cplanares. segunda le dz que s ânguls de ncdênca

Leia mais

Física 3 aula 1 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS

Física 3 aula 1 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS ísca 3 aula COMENTÁRIOS ATIIDADES PARA SALA. A luz branca (luz d Sl) a atngr uma superfíce vermelha, s pgments deste crp absrvem tdas as cres e rá refletr a cr vermelha. Se ele fr lumnad pr uma fnte de

Leia mais

Os fundamentos da física Volume 2 1. Resumo do capítulo. Conceitos fundamentais

Os fundamentos da física Volume 2 1. Resumo do capítulo. Conceitos fundamentais Os fundamentos da físca Volume Capítulo Concetos fundamentas A energa cnétca das moléculas de um corpo (agtação térmca) corresponde à energa térmca. Calor é a energa térmca em trânsto entre corpos a dferentes

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

N r força de reação normal P r força peso F r

N r força de reação normal P r força peso F r UNIVRSIDAD DRAL D SANTA CATARINA COMISSÃO PRMANNT DO VSTIBULAR CONCURSO VSTIBULAR-USC/2011 GABARITO DA QUSTÃO DISCURSIVA 1 a) (1,00 ponto) (obs Desenho não está em escala) N r força de reação normal P

Leia mais

Conjugando Imagens em Espelhos Esféricos

Conjugando Imagens em Espelhos Esféricos onjugando magens em Espelhos Esféricos Daniel Schulz Licenciado em ísica pelo UNLASALLE Mestrando em ísica pela URGS www.if.ufrgs.br/~dschulz Prof. olégio Espírito Santo/anoas-RS Espelhos esféricos são

Leia mais

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - ACUMULATIVA - 2º TRIMESTRE TIPO A PROA DE FÍSICA º ANO - ACUMULATIA - º TRIMESTRE TIPO A 0) Considere as seguintes roosições referentes a um gás erfeito. I. Na transformação isotérmica, o roduto. é roorcional à temeratura do gás. II. Na

Leia mais

MODELO DE SUSPENSÃO MacPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS

MODELO DE SUSPENSÃO MacPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS MODELO DE SUSPENSÃO MacPHESON UTILIZANDO TANSFOMADOES CINEMÁTICOS Jorge A. M. Gós e-mal: jamg@eq.me.eb.br Clódo A. P. Sarzeto e-mal: de4sarzet@eq.me.eb.br Insttuto Mltar de Engenhara, Deartamento de Engenhara

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Material Extra de Física

Material Extra de Física Material Extra de Física ÓPTIA 01 (UFG GO) Em abril de 2010, o telescópio espacial Hubble completou 20 anos em órbita O avanço na obtenção de imagens permitiu descobertas de novas galáxias e inormações

Leia mais

VOCÊ SABIA QUE? A nicotina é uma droga letal.

VOCÊ SABIA QUE? A nicotina é uma droga letal. VOÊ SABIA E? A ncotna é uma roga letal. Ótca Prncíos a Ótca Geométrca ) Prncío a roagação retlínea a luz: nos meos homogêneos e transarentes a luz se roaga em lnha reta. Natureza e Velocae a Luz A luz

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

FUNDAMENTOS DA PROGRAMAÇÃO SEMAFÓRICA

FUNDAMENTOS DA PROGRAMAÇÃO SEMAFÓRICA Lus Vlanova * FUNDMENOS D PROGRMÇÃO SEMFÓRIC resentação Este artgo detalha os rmeros assos da teora de cálculo da rogramação semafórca de um semáforo solado, deduzndo as equações báscas do temo de cclo

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

ELEMENTOS DE ÓPTICA. c v n

ELEMENTOS DE ÓPTICA. c v n ELEMENTOS DE ÓPTICA ÓPTICA GEOMÉTICA Dimesões dos comoetes óticos muito sueriores ao comrimeto de oda da luz. Um eixe lumioso como um cojuto de raios erediculares à rete de oda. ÍNDICES DE EFACÇÃO, LEI

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Universidade Federal de Uberlândia

Universidade Federal de Uberlândia PRIMEIRA QUESTÃO Total de pontos: 0 A) (6 pontos) Utilizando as equações horárias do moimento de projétil entre os pontos B e C: 0 = h gt t = x = t 4m = s = 4m/ s p m i = p ( m m ) m m = m h g = 5m 0m/

Leia mais

5945851-1 Psicologia Conexionista Antonio Roque Aula 6. A Adaline

5945851-1 Psicologia Conexionista Antonio Roque Aula 6. A Adaline 594585- Pscologa Conexonsta Antono Roque Aula 6 A Adalne Poucos meses aós a ublcação do teorema da convergênca do Percetron or Rosenblatt, os engenheros da Unversdade de Stanford Bernard Wdrow (99 ) e

Leia mais

Departamento de Engenharia Geográfica, Geofísica e Energia Faculdade de Ciências da Universidade de Lisboa TERMODINÂMICA APLICADA.

Departamento de Engenharia Geográfica, Geofísica e Energia Faculdade de Ciências da Universidade de Lisboa TERMODINÂMICA APLICADA. ERMODINÂMICA APLICADA Deartamento de Engenhara Geográfca, Geofísca e Energa Faculdade de Cêncas da Unversdade de Lsboa ERMODINÂMICA APLICADA Programa. Concetos báscos da ermodnâmca. 2. Prncío Zero da termodnâmca.

Leia mais

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi.

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi. 1) O exo macço de 1,5 de dâmetro é usado para transmtr os torques aplcados às engrenagens. Determnar a tensão de csalhamento desenvolvda nos trechos AC e CB do exo. Para o trecho AC temos: T 1500.pés 1500

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Geometria Plana. Exercı cios Objetivos. (a) 2. (b) 1. (c) 2. Dado: 11 3, 32

Geometria Plana. Exercı cios Objetivos. (a) 2. (b) 1. (c) 2. Dado: 11 3, 32 Exercı cios Objetivos 1. (009/1) Paulo e Marta esta o brincando de jogar dardos. O alvo e um disco circular de centro O. Paulo joga um dardo, que atinge o alvo num onto, que vamos denotar or P; em seguida,

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS

EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS 1. (Uel 2011) Considere a figura a seguir. Com base no esquema da figura, assinale a alternativa que representa corretamente o gráfico da imagem do objeto AB, colocado

Leia mais

Figura 1: Nomenclatura e configuração geométrica do problema em estudo.

Figura 1: Nomenclatura e configuração geométrica do problema em estudo. XIV CONGRESSO NACIONAL DE ESTUDANTES DE ENGENHARIA MECÂNICA Unversdade Federal de Uberlânda Faculdade de Engenhara Mecânca SIMULAÇÃO NUMÉRICA EM UM CANAL BIDIMENSIONAL COM PROTUBERÂNCIAS PARIETAIS Débora

Leia mais

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA

TAUTOLOGIA. A coluna C3 é formada por valores lógicos verdadeiros (V), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA TAUTOLOGIA C1 C2 C3 v A coluna C3 é formada or valores lógicos verdadeiros (), Logo, é uma TAUTOLOGIA. CONTRADIÇÃO CONTINGÊNCIA C1 C2 C3 C1 C2 C3 A coluna C3 é formada or valores lógicos falsos (), Logo,

Leia mais

φ = 2,0 3,0 10 2 1 φ = 6,0 10 2 Wb 2 Uma espira quadrada de 20 cm de lado está totalmente imersa

φ = 2,0 3,0 10 2 1 φ = 6,0 10 2 Wb 2 Uma espira quadrada de 20 cm de lado está totalmente imersa 238 PTE III ELETOMGETIMO Tópco 4 1 E.. Uma espra retangular de 1 cm de largura por 3 cm de comprmento é colocada, totalmente mersa, em um campo de ndução magnétca unforme e constante, de módulo gual a

Leia mais

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97 SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realzado em Janero de 96 e revsto em Janero de 97 O resente texto retende, ncalmente, dar a conhecer quas as característcas rncas das váras acções de controlo,

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL UNIVERIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIA INTEGRADA DO PONTAL Físca Expermental IV Lentes Cmpstas Objetv Determnar as stâncas cas e lentes e um sstema e lentes cmpstas. Intruçã utas vezes

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Cap 3 Concorrência Perfeita e Análise de Bem Estar

Cap 3 Concorrência Perfeita e Análise de Bem Estar Nota: Este materal fo desenvolvdo elo rof. Roland Veras Saldanha Jr, e reresenta uma rmera versão de materal a ser transformado em lvro ddátco. Reservam-se os dretos autoras sobre o mesmo, mas comentáros

Leia mais

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 GOIÂNIA, / / 2015 PROFESSOR: Fabrízio Gentil Bueno DISCIPLINA: FÍSICA SÉRIE: 2 o ALUNO(a): NOTA: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 01 - (UDESC) João e Maria estão a 3m de

Leia mais

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2 LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara

Leia mais

Óptica. Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm).

Óptica. Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm). Óptica Estudo da luz, como sendo a onda eletromagnética pertencentes à faixa do espectro visível (comprimento de 400 nm até 700 nm). Fenômenos ópticos Professor: Éder (Boto) Sobre a Luz O que emite Luz?

Leia mais

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO UMA PROPOTA DE EIO DE TÓPICO DE ELETROMAGETIMO VIA ITRUÇÃO PELO COLEGA E EIO OB MEDIDA PARA O EIO MÉDIO TETE COCEITUAI Autores: Vagner Olvera Elane Angela Vet Ives olano Araujo TETE COCEITUAI (CAPÍTULO

Leia mais

Espelhos Esféricos. Definições e Elementos:

Espelhos Esféricos. Definições e Elementos: Definições e Elementos: Calota Esférica. Espelho Esférico é uma calota esférica na qual uma das faces é refletora. Espelho Côncavo Superfície refletora interna. Espelho Convexo Superfície refletora externa.

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

50 Calcule a resistência equivalente entre os pontos A e B das seguintes associações:

50 Calcule a resistência equivalente entre os pontos A e B das seguintes associações: p. 4 50 alcule a resstênca equvalente entre os pontos e das seguntes assocações: a) c) 3 5 5 5 0 b) d) 6 3 3 9 0 6 7 a) 5 5 5,5 6,5 0 b) 6 5 9 3 3 0 0 3 6 5 c) 5 3 5 3 3 d) 3 3 6 6 3 7 7 3 6 7 0 5 (FG-SP)

Leia mais

Laboratório de Circuitos Elétricos I

Laboratório de Circuitos Elétricos I aboratóro de Crcutos Elétrcos JUO C. BANDEEO THAGO H. AKNAGA Graduandos do curso de engenhara elétrca da Unersdade Federal de Santa Catarna Colaborador: DOUGAS M. AAUJO Graduando do curso de engenhara

Leia mais

Portfelio Sharpe Três lideres

Portfelio Sharpe Três lideres Portfelo Share Três lderes Consderemos uma teora de ortfólo de alcatvos ara a cração de nstrumentos comlexos. este artgo, vamos mostrar como odemos crar uma cartera de comérco, mlementada utlzando tecnologas

Leia mais

Receptores elétricos. antes de estudar o capítulo PARTE I

Receptores elétricos. antes de estudar o capítulo PARTE I PARTE I Undade B capítulo 10 Receptores elétrcos seções: 101 Receptor Força contraeletromotrz 102 Crcutos gerador-receptor e gerador-receptor-resstor antes de estudar o capítulo Veja nesta tabela os temas

Leia mais

ELEMENTOS DE TOPOGRAFIA

ELEMENTOS DE TOPOGRAFIA ELEMENTOS DE TOPOGRAFIA 1. Introdução. Grandezas utlzadas 3. Correcções ambentas e nstrumentas 4. Técncas de posconamento 5. Equpamento topográfco MÉTODOS ESPACIAIS MÉTODOS FOTOGRAMÉTRICOS MÉTODOS TOPOGRÁFICOS

Leia mais

Prof. A.F.Guimarães Questões de termologia 7

Prof. A.F.Guimarães Questões de termologia 7 Questão (FUES SP) Uma equena bolha de ar, artndo da rounddade de, m abaxo da sueríce de um lago, tem seu volume aumentado em % ao chegar à sueríce. Suonha que a temeratura do lago seja constante e unorme,

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

www.halten.com.br 21-3095-6006

www.halten.com.br 21-3095-6006 NÍVEL: BÁSCO www.halten.com.br 21-3095-6006 ASSUNTO:CUROSDADES SOBRE RAOS E PROTEÇÃO O QUE É O RAO? O RAO É UM FENÔMENO DA NATUREZA, ALEATÓRO E MPREVSÍVEL. É COMO SE FOSSE UM CURTO CRCUÍTO ENTRE A NUVEM

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

CAPÍTULO 3 - RETIFICAÇÃO

CAPÍTULO 3 - RETIFICAÇÃO CAPÍTULO 3 - RETFCAÇÃO A maioria dos circuitos eletrônicos recisa de uma tensão cc ara oder trabalhar adequadamente Como a tensão da linha é alternada, a rimeira coisa a ser feita em qualquer equiamento

Leia mais

C são matrizes que satisfazem

C são matrizes que satisfazem Eercícos de Álgebra Lnear Prof: José ndré UNIPLI - 9 () Construa as guntes matrzes: a) tal que por a b) tal que < > a a a. () Consdere a rede de telecomuncações com nós e coneões reprentada abao: a) Escreva

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

SISTEMA DE AMORTIZAÇÃO E O SISTEMA OU MÉTODO DE GAUSS.

SISTEMA DE AMORTIZAÇÃO E O SISTEMA OU MÉTODO DE GAUSS. SISTEMA DE AMORTIZAÇÃO E O SISTEMA OU MÉTODO DE GAUSS. Antono erera da Slva Lcencado em Cêncas Econômcas erto Judcal O Sr. aulo Luz Durgan, Admnstrador do ste A RIORI, dsponblzou o artgo:- SFH, Sstema

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação

Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação Unversdade Federal do Ro de Janero Escola oltécnca Departamento de Eletrônca e de Computação CALIBRAÇÃO E RELANEJMENTO DE TAREFAS ARA UM ROBÔ INDUSTRIAL EM AMBIENTES HOSTIS Autor: Orentador: Coorentador:

Leia mais

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA

Estimativa da fração da vegetação a partir de dados AVHRR/NOAA Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal

Leia mais

Uma análise aplicada de decisão com opção de venda utilizando cadeias de Markov

Uma análise aplicada de decisão com opção de venda utilizando cadeias de Markov UMA ANÁLISE APLICADA DE DECISÃO COM OPÇÃO DE VENDA UTILIZANDO CADEIAS DE MARKOV JOSÉ CÉSAR CRUZ JÚNIOR; RICARDO MENDONÇA FONSECA; LUIZ FERNANDO OHARA KAMOGAWA; ESALQ/USP PIRACICABA - SP - BRASIL cesarcruzjr@hotmail.com

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Revisão e Dicas de Projeto Conceitual Modelo ER

Revisão e Dicas de Projeto Conceitual Modelo ER Revisão e Dicas de Projeto Conceitual Modelo ER Modelo definido or Peter Chen em 1976 modelo sofreu diversas extensões e notações ao longo do temo Padrão ara modelagem conceitual de BD modelo simles oucos

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Geradores elétricos. Antes de estudar o capítulo PARTE I

Geradores elétricos. Antes de estudar o capítulo PARTE I PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de

Leia mais

Análise do jogo de barganha no setor de contratação de uma empresa de transporte

Análise do jogo de barganha no setor de contratação de uma empresa de transporte XXV Encontro Nac. de Eng. de Produção Porto Alegre, RS, Brasl, 9 out a 0 de nov de 005 Análse do jogo de barganha no setor de contratação de uma emresa de transorte Paulo Fernando do Rêgo Barros Júnor

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:

Leia mais

Magnetismo e. eletromagnetismo. Introdução ao magnetismo. Ímãs

Magnetismo e. eletromagnetismo. Introdução ao magnetismo. Ímãs Magnetsmo e eletromagnetsmo Este tópco apresenta o aspecto hstórco e os conhecmentos atuas dos ímãs e do campo gravtaconal terrestre. Introdução ao magnetsmo é mas pronuncado: são os polos do ímã (convenconalmente

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Tópico 2. Resolução: a) R eq. = 3 + 7 R eq = 10 Ω 1 = 1 R eq 12 + 1 36 + 1 36 R = 0,9 Ω 1 = 40. a) A e B? b) C e D? c) R eq.

Tópico 2. Resolução: a) R eq. = 3 + 7 R eq = 10 Ω 1 = 1 R eq 12 + 1 36 + 1 36 R = 0,9 Ω 1 = 40. a) A e B? b) C e D? c) R eq. Tópco ssocação de resstores e meddas elétrcas 113 Tópco esolução: a) eq 3 + 7 eq 10 Ω 1 Nas lustrações a segur, como estão assocadas as lâmpadas: a) e? b) e? b) 1 1 eq 36 + 1 1 + 1 1 40 36 0,9 Ω eq c)

Leia mais

Tópicos de óptica geométrica:

Tópicos de óptica geométrica: Tópicos de óptica geométrica: espelhos eséricos O tópico vai nos apresentar o estudo dos dioptros curvos reletores. Serão também apresentados os elementos e raios notáveis para espelhos eséricos, nas aces

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988 ABNT-Assocação Braslera de Normas Técncas Sede: Ro de Janero Av. Treze de Mao, 13-28º andar CEP 20003 - Caxa Postal 1680 Ro de Janero - RJ Tel.: PABX (021) 210-3122 Telex: (021) 34333 ABNT - BR Endereço

Leia mais