Introdução a Combinatória- Aplicações, parte II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução a Combinatória- Aplicações, parte II"

Transcrição

1 Introdução a Combnatóra- Aplcações, AULA Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o prncpal: compreenderemos algumas propredades mportantes sobre coecentes bnomas. Forneceremos algumas provas bjetvas combnatóras acerca de alguns problemas. Estas provas são muto mportantes pos conseguem fornecer argumentos apenas usando o "bom senso", sem necesstar de construções mas arrojadas. Por este motvo estas tas provas combnatóras conseguem fornecer argumentos para certas demonstrações que uma prova formal, no sentdo da análse, por exemplo, não consegura. 7.2 Arranjos com repetção Na aula 5, vmos que o número de arranjos smples de n elementos tomados k a k é dado por: A k n = n(n 1)(n 2)...(n k + 1). Este número conta todas as possíves maneras de se retrar, de um conjunto de elementos dstntos k elementos, levando-se em conta a ordem dos elementos. O que é equvalente ao número de maneras

2 Introdução a Combnatóra-Aplcações, de se enlerar k pessoas em n lugares possíves. Caso repetções sejam permtdas, o prncípo multplcatvo nos dz que o número total de maneras de se retrar, levando-se em conta a ordem, k dos n objetos, dstntos ou não, é gual a AR k n = n k, uma vez que o prmero elemento pode ser retrado de n maneras, o segundo também de n maneras, e assm sucessvamente, até que o k-ésmo seja escolhdo. Exemplo 7.1. Quantos números de telefone celular com 8 dígtos é possível se ter, sabendo que o prmero dígto dever ser 8 ou 9? Consderando os 10 dígtos possíves em 7 lugares AR10 7 = 107 telefones dferentes xando 1 número, 8 ou 9. Logo, pelo prncípo multplcatvo, temos o total de 2AR10 7 = , telefones possíves. Exemplo 7.2. Qual o total de placas de carro que podem ser fetas constando de 7 símbolos, sendo os 3 prmeros consttuídos por letras e os 4 últmos por dígtos? Consderando-se o alfabetos com 26 letras, podemos escolher as 3 letras de AR26 3 = 263 maneras dferentes e os dígtos de AR10 4 = 10 4 formas dferentes. Logo, pelo prncípo multplcatvo, temos o total de AR26 3 AR4 10 = , placas possíves que poderão ser fetas. 70

3 CESAD 7.3 Permutações Crculares AULA 7 Nosso objetvo, agora, é contar o número de maneras de se ordenar n objetos dstntos em torno de um círculo. Por exemplo, consdere 3 objetos a, b, c, e coloquemos estes objetos em torno de um círculo. Armamos serem estas as úncas maneras decolocarmos estes 3 objetos em torno de um círculo. Isto porque cosderamos dêntcas duas dstrbuções quando uma pode ser obtda a partr da outra por uma smples rotação. Para melhor esclarecer esta denção, consderemos todas as permutações smples de a, b e c e coloquemos, em torno de um círculo, cada uma delas. Este procedmento está lustrado na gura abaxo. É fácl observar que, as 3 prmeras guras, bem como as 3 últmas podem ser obtdas a partr de outra pro uma smples rotação. No entanto nenhuma das 3 prmeras pode ser obtda, por rotação, a partr de nenhuma das 3 últmas. Logo, exstem apenas 2 permutações crculares de 3 objetos. Como exstem 3! permutações de 3 objetos e duas permutações crculares, temos que 2 = 3!/3. 71

4 Introdução a Combnatóra-Aplcações, É fácl notar que se soubermos quantas permutações smples dstntas geram permutações crculares equvalentes, teremos resolvdo o problema. É fácl ver que este número é n, pos se não consderássemos equvalentes as guras que podem concdr por rotação, teríamos o total de n!. Logo, P C n = n! n = (n 1)!, onde P C n denota o número de permutações crculares de n objetos. Exemplo 7.3. De quantas maneras 19 cranças podem dar as mãos para brncar de roda? Neste caso, basta consderarmos as permutações crculares de 19, 72

5 CESAD sto é, as 19 cranças podem brncar P C 19 = (19 1)! = 18! maneras. AULA Coecentes Bnomas Chamamos de bnômo qualquer expressão da forma a + b, sto é, a soma de dos símbolos dstntos. Estaremos nteressados no cálculo dos coecentes das expansões de potêncas de a+b. Vamos consderar, ncalmente, o produto (a+b)(c+d)(e+f) = ace+acf +ade+adf +bce+bcf +bde+bdf, que consste de oto termos, onde cada termo consste em 3 letras, cada uma seleconada de um dos bnômos. Pelo prncípo multplcatvo, é claro que o número total de termos é 2 3 = 8. Para o produto (a + b)(c + d)(e + f)(g + h), temos 2 4 = 16 termos, cada um consstndo de um produto de 4 letras, cada uma delas pertencendo a um dos 4 bnômos consderados. Por exemplo, acdf e adeh são alguns dos 16 termos deste últmo produto. No caso de n bnômos, temos 2 n termos. Consderemos, agora, o produto (a + b)(a + b)(a + b)(a + b)(a + b)(a + b) Como temos 64 maneras de seleconarmos 6 letras, uma de cada bnômo, e como todos os bnômos são guas a (a+b), teremos termos repetdos. Por exemplo, se tomarmos a letra a nos 4 prmeros e a letra b nos dos últmos, termos a 4 b 2, que rá aparecer toda vez que a letra a for escolhda em exatamente 4 dos bnômos e a letra b nos 2 restantes. Como sto pode ser feto de ( 6 4) maneras dferentes, concluímos que o coecente de a 4 b 2 é ( 6 4). Como todo termo consste do produto de 6 letras, o termo geral é da forma 73

6 Introdução a Combnatóra-Aplcações, a b j, onde + j = 6, ou seja, cada termo é da forma a b 6. Como um termo destes aparece ( 6 ) vezes a expansão acma é dada por: (a + b) 6 = 6 ( ) 6 a b 6. No caso geral (a + b) n, cada termo será da forma a b n. Note que o termo a b n rá aparecer para cada escolha da letra a em dos n fatores. Como tal escolha pode ser feta de ( n ) formas dferentes, temos que (a + b) n = n a b n. Nesta expansão, temos um termo dstnto para cada varando de 0 a n. Logo, são n + 1 termos dstntos dentre o total de 2 n. Na expansão de (a + b) n, (a + b) n = n a b n, denotamos o -ésmo termo por T +1, e, portanto, T +1 = ( n ) a b n. Exemplo 7.4. Calcule o quarto termo da expansão de (1 + x) 8. Temos aqu, a = 1, b = x, n = 8 e + 1 = 4. Logo = 3 e T 4 = T 3+1 = ( 8 3) 1 3 x 8 3 = 56x 5. Exemplo 7.5. Calcule o sexto termo da expansão de (x 5y) 10. Neste caso, a = x, b = 5y, n = 10 e + 1 = 6. Logo = 5 e T 6 = ( 10 5 ) x 5 ( 5y) 5 = x 5 y 5. Exemplo 7.6. Mostre que: 74

7 n = Como (a + b) n = + 0 n a b n, CESAD = 2 n. n se tomarmos a = b = 1, o lado esquerdo será 2 n, enquanto o lado dreto será a soma pedda no exercíco. AULA 7 Exemplo 7.7. Use argumentos combnatóros para mostrar que o número de subconjuntos de um conjunto de n elementos é 2 n. n = = 2 n. n Seja um ntero, n, o número de subconjuntos com k elementos de um conjunto contendo n elementos é ( n k), varando k de 0 a n temos a soma ( n ) ( 0 + n ) ( n ) n, que é o número de subconjuntos de um conjunto contendo n elementos. Mas sabemos, pelo exercíco anteror que esta soma vale 2 n, o que conclu a demonstração. 7.5 Conclusão Nestas duas últmas aulas vmos mportantes aplcações como por exemplo como calcular o número de soluções nteras de equações lneares. O mas mportante aqu não é memorzar fórmulas de como resolver problemas, mas, utlzar o bom senso para resolver problemas de contagem. Algumas provas com argumentos combnatóros foram fornecdas, e o nosso objetvo aqu é que sto estmule você a buscar outras maneras de resolver problemas de con- 75

8 Introdução a Combnatóra-Aplcações, tagem, utlzando estes métodos desenvolvdos aqu. Concerteza, os problemas que você aluno terá de resolver, talvez não sejam dêntcos a estes, mas esperamos que você perceba estruturas smlares a estas aqu apresentadas, e as utlze de forma cudadosa am de encontrar respostas pertnentes às questões apresentadas pelos seus alunos. RESUMO Arranjos com repetção O número de arranjos no caso em que repetções sejam permtdas, é gual o número total de maneras de se retrar, levando-se em conta a ordem, k dos n objetos, dstntos ou não, que vale AR k n = n k, onde ARn k denota o número de arranjos com repetção de n tomados k a k. Permutações crculares O número de permutações crculares de n elementos é gual ao número de manera de n pessoas se sentarem em uma mesa crcular, e este número vale: P C n = n! n = (n 1)!, onde P C n denota o número de permutações crculares de n objetos. Permutações crculares 76

9 CESAD A expansão de (a + b) n, é dada por n (a + b) n = a b n. AULA 7 PRÓXIMA AULA Na próxma aula, mudaremos o foco e estudaremos alguns elementos de probabldade e ndependênca de eventos. ATIVIDADES ATIV Utlzando o a fórmula bnomal mostre que ( n ) = ( n n ). Dca: analse a expansão de (a + b) n e (b + a) n. ATIV Encontre o número de maneras de r pessoas sentarem em um grupo de n pessoas em uma mesa crcular. ATIV a)encontre o número de soluções não negatvas da equação a + b + c + d + e = 22 b)faça o mesmo, porém com a restrção: a e b tem que ser postvos ATIV Encontre o número de soluções nteras para a desgualdade a + b + c + d < 11. ATIV Encontre o de termo geral na expansão multnomal de (a + b + c) 22 ATIV Use argumentos combnatoras para provar que (mn) (m!) n é um ntero postvo. ATIV Demonstrar a segunte dentdade: ( k ( k) + k+1 ) ( k + k+2 ) ( k +... k+n ) ( k = k+n+1 ) k+1. 77

10 Introdução a Combnatóra-Aplcações, LEITURA COMPLEMENTAR LIMA, Elon L., Matemátca para o Ensno Médo, Vol.2, IMPA, Projeto Eucldes, 1.ed., Ro de Janero, Santos, J.P.O., Mello, M. P., Murar, I. T. C., Introdução à Análse Combnatóra, 4 ed., Edtora Moderna, Ro de Janero, Morgado, A.C.O., Carvalho, J.B.P., Fernandez, P., Análse Combnatóra, Edtora Impa,

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Critérios de divisibilidade em bases numéricas genéricas

Critérios de divisibilidade em bases numéricas genéricas Crtéros de dvsbldade em bases numércas genércas Clezo A. Braga 1 Jhon Marcelo Zn 1 Colegado do Curso de Matemátca - Centro de Cêncas Exatas e Tecnológcas da Unversdade Estadual do Oeste do Paraná Caxa

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)

PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC) PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo.

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo. .4 Árvores Geradoras Em mutas aplcações estamos nteressados em subgrafos especas de um determnado grafo. Defnção Árvore Geradora - uma árvore T é chamada de árvore geradora de um grafo G se T é um subgrafo

Leia mais

FONTES DISCRETAS DE INFORMAÇÃO

FONTES DISCRETAS DE INFORMAÇÃO FONTES DISCRETAS DE INFORMAÇÃO Podeos caracterzar fontes dscretas de nforação por u conjunto fnto x x, K, denonados de alfabeto da fonte. A probabldade de M síbolos, {,, x M } da fonte etr cada síbolo

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

ESTUDO DA TRANSFORMAÇÃO αβ0

ESTUDO DA TRANSFORMAÇÃO αβ0 CAPÍTUO ETUDO DA TAFOAÇÃO αβ. ITODUÇÃO O prmero passo a ser dado na obtenção de modelos mas adequados para a análse da máquna de ndução é o estudo da transformação αβ. Consste numa transformação lnear

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6

Nº de pedidos: (n = 26) 5 ; 7 ; 8 ; 7 ; 6 ; 7 ; 8 ; 10 ; 6 ; 8 ; 7 ; 8 ; 7 ; 7 ; 8 ; 5 ; 6 ; 8 ; 7 ; 6 ; 7 ; 5 ; 6 ; 8 ; 7 ; 6 EXEMPLOS ADICIONAIS DA ENGENHARIA ELÉTRICA 1)Suponha que a probabldade de que um engenhero elétrco utlze estatístca em seu exercíco profssonal seja 0,20 Se durante a vda profssonal, um engenhero tver cnco

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

6 Modelo de imunização estocástica

6 Modelo de imunização estocástica 95 6 Modelo de munzação estocástca Sabemos que, em geral, quanto mas complexa for a classe de varações que deseamos munzar, mas restrtvas se tornam as condções de munzação. ontraro a sso, quanto menor

Leia mais

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Poliedros AULA Introdução Denições

Poliedros AULA Introdução Denições AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices Unversdade Federal Flumnense Insttuto de Matemátca e Estatístca Métodos Estatístcos Aplcados à Economa I (GET7) Números Índces Ana Mara Lma de Faras Departamento de Estatístca Agosto 25 Sumáro Índces Smples.

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Caderno de Fórmulas. Títulos do Agronegócio - Cetip21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR

Caderno de Fórmulas. Títulos do Agronegócio - Cetip21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR Caderno de Fórmulas Títulos do Agronegóco - Cetp21 CDCA, CPR, CRA, CRH, CRP, CRPH, LCA, NCR Últma Atualzação: 15/08/2016 Caderno de Fórmulas CDCA CPR CRA - CRH CRP CRPH LCA NCR E ste Caderno de Fórmulas

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

CAPÍTULO IV TEORIA DE JOGOS

CAPÍTULO IV TEORIA DE JOGOS CAPÍTULO IV TEORIA DE JOGOS 66 Teora de Jogos Caracterzação:. Cenáro determnístco.. v. Um conjunto de agentes de decsão (jogadores) Um conjunto de estratégas (acções) puras Uma função utldade para cada

Leia mais

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5 Esta aula: Teorema de Thévenn, Teorema de Norton. Suponha que desejamos determnar a tensão (ou a corrente) em um únco bpolo de um crcuto, consttuído por qualquer número de fontes e de outros resstores.

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão IF-UFRJ Elementos de Eletrônca Analógca Prof. Antôno Carlos Fontes dos Santos FIW362 Mestrado Profssonal em Ensno de Físca Aula 1: Dvsores de tensão e Resstênca nterna de uma fonte de tensão Este materal

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada 1.5 Expansão Térmca de Sóldos e íqudos Nossa dscussão sobre o termómetro de líqudo emprega uma das mudanças mas bem conhecdas que ocorrem na maora das substâncas: quando a temperatura aumenta, o volume

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II

CARGAS MÓVEIS. Faculdade de Engenharia São Paulo FESP Engenharia Civil CE2 Estabilidade das Construções II Faculdade de Engenhara São Paulo FESP Engenhara Cvl CE2 Establdade das Construções II CARGAS MÓVEIS Autor: Prof. Dr. Alfonso Pappalardo Jr. Coord. Geral: Prof. Dr. Antono R. Martns São Paulo 20 SUMÁRIO

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G.

PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS. N. R. Candido, V.B. G. PROCEDIMENTO PARA ESCOLHA DA LOCALIZAÇÃO DE UM CENTRO REGIONAL DE DISTRIBUIÇÃO E RECOLHA DE EQUIPAMENTOS N. R. Canddo, V.B. G. Campos RESUMO Apresenta-se neste trabalho um procedmento de auxílo à decsão

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Caderno de Fórmulas. Notas Comerciais Cetip21

Caderno de Fórmulas. Notas Comerciais Cetip21 Notas Comercas Cetp21 Últma Atualzação: 22/12/2015 E ste Caderno tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos de valorzação de Notas Comercas. É acatado regstro

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 6 Resistores

Prof. A.F.Guimarães Questões Eletricidade 6 Resistores Questão 1 (UNIMP) Um fusível é um nterruptor elétrco de proteção que quema, deslgando o crcuto, quando a corrente ultrapassa certo valor. rede elétrca de 110 V de uma casa é protegda por fusível de 15.

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

O Algoritmo Polinomial de Shor para Fatoração em um Computador Quântico

O Algoritmo Polinomial de Shor para Fatoração em um Computador Quântico Unversdade Federal de Pernambuco Departamento de Matemátca Dssertação de Mestrado: O Algortmo Polnomal de Shor para Fatoração em um Computador uântco por Máro Sansuke Maranhão Watanabe Manoel Lemos Orentador

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

2. BACIA HIDROGRÁFICA

2. BACIA HIDROGRÁFICA . BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades

Leia mais

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que

I. Introdução. inatividade. 1 Dividiremos a categoria dos jovens em dois segmentos: os jovens que estão em busca do primeiro emprego, e os jovens que DESEMPREGO DE JOVENS NO BRASIL I. Introdução O desemprego é vsto por mutos como um grave problema socal que vem afetando tanto economas desenvolvdas como em desenvolvmento. Podemos dzer que os índces de

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais