Introdução a Combinatória- Aplicações, parte II

Tamanho: px
Começar a partir da página:

Download "Introdução a Combinatória- Aplicações, parte II"

Transcrição

1 Introdução a Combnatóra- Aplcações, AULA Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o prncpal: compreenderemos algumas propredades mportantes sobre coecentes bnomas. Forneceremos algumas provas bjetvas combnatóras acerca de alguns problemas. Estas provas são muto mportantes pos conseguem fornecer argumentos apenas usando o "bom senso", sem necesstar de construções mas arrojadas. Por este motvo estas tas provas combnatóras conseguem fornecer argumentos para certas demonstrações que uma prova formal, no sentdo da análse, por exemplo, não consegura. 7.2 Arranjos com repetção Na aula 5, vmos que o número de arranjos smples de n elementos tomados k a k é dado por: A k n = n(n 1)(n 2)...(n k + 1). Este número conta todas as possíves maneras de se retrar, de um conjunto de elementos dstntos k elementos, levando-se em conta a ordem dos elementos. O que é equvalente ao número de maneras

2 Introdução a Combnatóra-Aplcações, de se enlerar k pessoas em n lugares possíves. Caso repetções sejam permtdas, o prncípo multplcatvo nos dz que o número total de maneras de se retrar, levando-se em conta a ordem, k dos n objetos, dstntos ou não, é gual a AR k n = n k, uma vez que o prmero elemento pode ser retrado de n maneras, o segundo também de n maneras, e assm sucessvamente, até que o k-ésmo seja escolhdo. Exemplo 7.1. Quantos números de telefone celular com 8 dígtos é possível se ter, sabendo que o prmero dígto dever ser 8 ou 9? Consderando os 10 dígtos possíves em 7 lugares AR10 7 = 107 telefones dferentes xando 1 número, 8 ou 9. Logo, pelo prncípo multplcatvo, temos o total de 2AR10 7 = , telefones possíves. Exemplo 7.2. Qual o total de placas de carro que podem ser fetas constando de 7 símbolos, sendo os 3 prmeros consttuídos por letras e os 4 últmos por dígtos? Consderando-se o alfabetos com 26 letras, podemos escolher as 3 letras de AR26 3 = 263 maneras dferentes e os dígtos de AR10 4 = 10 4 formas dferentes. Logo, pelo prncípo multplcatvo, temos o total de AR26 3 AR4 10 = , placas possíves que poderão ser fetas. 70

3 CESAD 7.3 Permutações Crculares AULA 7 Nosso objetvo, agora, é contar o número de maneras de se ordenar n objetos dstntos em torno de um círculo. Por exemplo, consdere 3 objetos a, b, c, e coloquemos estes objetos em torno de um círculo. Armamos serem estas as úncas maneras decolocarmos estes 3 objetos em torno de um círculo. Isto porque cosderamos dêntcas duas dstrbuções quando uma pode ser obtda a partr da outra por uma smples rotação. Para melhor esclarecer esta denção, consderemos todas as permutações smples de a, b e c e coloquemos, em torno de um círculo, cada uma delas. Este procedmento está lustrado na gura abaxo. É fácl observar que, as 3 prmeras guras, bem como as 3 últmas podem ser obtdas a partr de outra pro uma smples rotação. No entanto nenhuma das 3 prmeras pode ser obtda, por rotação, a partr de nenhuma das 3 últmas. Logo, exstem apenas 2 permutações crculares de 3 objetos. Como exstem 3! permutações de 3 objetos e duas permutações crculares, temos que 2 = 3!/3. 71

4 Introdução a Combnatóra-Aplcações, É fácl notar que se soubermos quantas permutações smples dstntas geram permutações crculares equvalentes, teremos resolvdo o problema. É fácl ver que este número é n, pos se não consderássemos equvalentes as guras que podem concdr por rotação, teríamos o total de n!. Logo, P C n = n! n = (n 1)!, onde P C n denota o número de permutações crculares de n objetos. Exemplo 7.3. De quantas maneras 19 cranças podem dar as mãos para brncar de roda? Neste caso, basta consderarmos as permutações crculares de 19, 72

5 CESAD sto é, as 19 cranças podem brncar P C 19 = (19 1)! = 18! maneras. AULA Coecentes Bnomas Chamamos de bnômo qualquer expressão da forma a + b, sto é, a soma de dos símbolos dstntos. Estaremos nteressados no cálculo dos coecentes das expansões de potêncas de a+b. Vamos consderar, ncalmente, o produto (a+b)(c+d)(e+f) = ace+acf +ade+adf +bce+bcf +bde+bdf, que consste de oto termos, onde cada termo consste em 3 letras, cada uma seleconada de um dos bnômos. Pelo prncípo multplcatvo, é claro que o número total de termos é 2 3 = 8. Para o produto (a + b)(c + d)(e + f)(g + h), temos 2 4 = 16 termos, cada um consstndo de um produto de 4 letras, cada uma delas pertencendo a um dos 4 bnômos consderados. Por exemplo, acdf e adeh são alguns dos 16 termos deste últmo produto. No caso de n bnômos, temos 2 n termos. Consderemos, agora, o produto (a + b)(a + b)(a + b)(a + b)(a + b)(a + b) Como temos 64 maneras de seleconarmos 6 letras, uma de cada bnômo, e como todos os bnômos são guas a (a+b), teremos termos repetdos. Por exemplo, se tomarmos a letra a nos 4 prmeros e a letra b nos dos últmos, termos a 4 b 2, que rá aparecer toda vez que a letra a for escolhda em exatamente 4 dos bnômos e a letra b nos 2 restantes. Como sto pode ser feto de ( 6 4) maneras dferentes, concluímos que o coecente de a 4 b 2 é ( 6 4). Como todo termo consste do produto de 6 letras, o termo geral é da forma 73

6 Introdução a Combnatóra-Aplcações, a b j, onde + j = 6, ou seja, cada termo é da forma a b 6. Como um termo destes aparece ( 6 ) vezes a expansão acma é dada por: (a + b) 6 = 6 ( ) 6 a b 6. No caso geral (a + b) n, cada termo será da forma a b n. Note que o termo a b n rá aparecer para cada escolha da letra a em dos n fatores. Como tal escolha pode ser feta de ( n ) formas dferentes, temos que (a + b) n = n a b n. Nesta expansão, temos um termo dstnto para cada varando de 0 a n. Logo, são n + 1 termos dstntos dentre o total de 2 n. Na expansão de (a + b) n, (a + b) n = n a b n, denotamos o -ésmo termo por T +1, e, portanto, T +1 = ( n ) a b n. Exemplo 7.4. Calcule o quarto termo da expansão de (1 + x) 8. Temos aqu, a = 1, b = x, n = 8 e + 1 = 4. Logo = 3 e T 4 = T 3+1 = ( 8 3) 1 3 x 8 3 = 56x 5. Exemplo 7.5. Calcule o sexto termo da expansão de (x 5y) 10. Neste caso, a = x, b = 5y, n = 10 e + 1 = 6. Logo = 5 e T 6 = ( 10 5 ) x 5 ( 5y) 5 = x 5 y 5. Exemplo 7.6. Mostre que: 74

7 n = Como (a + b) n = + 0 n a b n, CESAD = 2 n. n se tomarmos a = b = 1, o lado esquerdo será 2 n, enquanto o lado dreto será a soma pedda no exercíco. AULA 7 Exemplo 7.7. Use argumentos combnatóros para mostrar que o número de subconjuntos de um conjunto de n elementos é 2 n. n = = 2 n. n Seja um ntero, n, o número de subconjuntos com k elementos de um conjunto contendo n elementos é ( n k), varando k de 0 a n temos a soma ( n ) ( 0 + n ) ( n ) n, que é o número de subconjuntos de um conjunto contendo n elementos. Mas sabemos, pelo exercíco anteror que esta soma vale 2 n, o que conclu a demonstração. 7.5 Conclusão Nestas duas últmas aulas vmos mportantes aplcações como por exemplo como calcular o número de soluções nteras de equações lneares. O mas mportante aqu não é memorzar fórmulas de como resolver problemas, mas, utlzar o bom senso para resolver problemas de contagem. Algumas provas com argumentos combnatóros foram fornecdas, e o nosso objetvo aqu é que sto estmule você a buscar outras maneras de resolver problemas de con- 75

8 Introdução a Combnatóra-Aplcações, tagem, utlzando estes métodos desenvolvdos aqu. Concerteza, os problemas que você aluno terá de resolver, talvez não sejam dêntcos a estes, mas esperamos que você perceba estruturas smlares a estas aqu apresentadas, e as utlze de forma cudadosa am de encontrar respostas pertnentes às questões apresentadas pelos seus alunos. RESUMO Arranjos com repetção O número de arranjos no caso em que repetções sejam permtdas, é gual o número total de maneras de se retrar, levando-se em conta a ordem, k dos n objetos, dstntos ou não, que vale AR k n = n k, onde ARn k denota o número de arranjos com repetção de n tomados k a k. Permutações crculares O número de permutações crculares de n elementos é gual ao número de manera de n pessoas se sentarem em uma mesa crcular, e este número vale: P C n = n! n = (n 1)!, onde P C n denota o número de permutações crculares de n objetos. Permutações crculares 76

9 CESAD A expansão de (a + b) n, é dada por n (a + b) n = a b n. AULA 7 PRÓXIMA AULA Na próxma aula, mudaremos o foco e estudaremos alguns elementos de probabldade e ndependênca de eventos. ATIVIDADES ATIV Utlzando o a fórmula bnomal mostre que ( n ) = ( n n ). Dca: analse a expansão de (a + b) n e (b + a) n. ATIV Encontre o número de maneras de r pessoas sentarem em um grupo de n pessoas em uma mesa crcular. ATIV a)encontre o número de soluções não negatvas da equação a + b + c + d + e = 22 b)faça o mesmo, porém com a restrção: a e b tem que ser postvos ATIV Encontre o número de soluções nteras para a desgualdade a + b + c + d < 11. ATIV Encontre o de termo geral na expansão multnomal de (a + b + c) 22 ATIV Use argumentos combnatoras para provar que (mn) (m!) n é um ntero postvo. ATIV Demonstrar a segunte dentdade: ( k ( k) + k+1 ) ( k + k+2 ) ( k +... k+n ) ( k = k+n+1 ) k+1. 77

10 Introdução a Combnatóra-Aplcações, LEITURA COMPLEMENTAR LIMA, Elon L., Matemátca para o Ensno Médo, Vol.2, IMPA, Projeto Eucldes, 1.ed., Ro de Janero, Santos, J.P.O., Mello, M. P., Murar, I. T. C., Introdução à Análse Combnatóra, 4 ed., Edtora Moderna, Ro de Janero, Morgado, A.C.O., Carvalho, J.B.P., Fernandez, P., Análse Combnatóra, Edtora Impa,

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor.

Exercícios. Utilizando um novo critério, essa banca avaliadora resolveu descartar a maior e a menor notas atribuídas ao professor. Estatístca Exercícos 1. (Enem 013) Fo realzado um levantamento nos 00 hotés de uma cdade, no qual foram anotados os valores, em reas, das dáras para um quarto padrão de casal e a quantdade de hotés para

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e Teora da Decsão Logístca e Gestão de Stocks Estratégas de Localzação Lcencatura em Engenhara Cvl Lcencatura em Engenhara do Terrtóro 1 Estratéga de Localzação Agenda 1. Classfcação dos problemas

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Se considerarmos, por exemplo, uma função f real de variável real,

Se considerarmos, por exemplo, uma função f real de variável real, 107 5 Gráfcos 5.1 Introdução Dada uma função real de varável real 16 f, o gráfco desta função é o conjunto de pontos ( x, y), onde x pertence ao domíno da função e f ( x) y =, ou seja, {( x y) x D y f

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS

EXEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS EEMPLOS DO CURSO DE ESTATÍSTICA ENGENHARIA DE MATERIAIS Exemplo: Peso de 25 bolos ndustras Forma bruta: Dsposção ordenada 266 267 266 26 22 255 266 26 272 22 260 272 25 262 23 25 266 270 274 22 2 270 20

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Lei das Malhas (KVL) Lei dos Nós (KCL)

Lei das Malhas (KVL) Lei dos Nós (KCL) Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Métodos numéricos para o cálculo de sistemas de equações não lineares

Métodos numéricos para o cálculo de sistemas de equações não lineares Métodos numércos para o cálculo de sstemas de equações não lneares Introdução Um sstema de equações não lneares é um sstema consttuído por combnação de unções alébrcas e unções transcendentes tas como

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

Sumarização dos dados

Sumarização dos dados Inferênca e Decsão I Soluções da Colectânea de Exercícos 22/3 LMAC Capítulo 2 Sumarzação dos dados Nota: neste capítulo é apresentada a resolução apenas de alguns exercícos e a título ndcatvo. Exercíco

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR - Mecânca Computaconal para Mecatrônca CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problema de derencação numérca aparentemente é semelante ao de ntegração numérca ou seja obtendo-se um polnômo nterpolador

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado HMTETIS, MPSIÇÃ DE HMTETIS E PREM 6 D IM 008 arlos Yuzo Shne Nível vançado ntes de começar a dscussão, vamos enuncar o problema 6 da IM 008, que é a motvação prncpal desse artgo. Problema 6, IM 008. Seja

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

FONTES DISCRETAS DE INFORMAÇÃO

FONTES DISCRETAS DE INFORMAÇÃO FONTES DISCRETAS DE INFORMAÇÃO Podeos caracterzar fontes dscretas de nforação por u conjunto fnto x x, K, denonados de alfabeto da fonte. A probabldade de M síbolos, {,, x M } da fonte etr cada síbolo

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

Critérios de divisibilidade em bases numéricas genéricas

Critérios de divisibilidade em bases numéricas genéricas Crtéros de dvsbldade em bases numércas genércas Clezo A. Braga 1 Jhon Marcelo Zn 1 Colegado do Curso de Matemátca - Centro de Cêncas Exatas e Tecnológcas da Unversdade Estadual do Oeste do Paraná Caxa

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais