3.1. Conceitos de força e massa

Tamanho: px
Começar a partir da página:

Download "3.1. Conceitos de força e massa"

Transcrição

1 CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo seu ponto de aplcação, ntensdade, drecção e sentdo. undade SI: N Processo de medção: dnamómetro As forças ocorrem sempre aos pares; se um corpo A exerce uma força sobre outro corpo B, também B exerce uma força sobre A. Uma força pode causar aceleração no corpo. Pode anda deformar o corpo. Segundo Newton a únca propredade dos corpos que nteressa é a sua massa, sendo possível descrever as les da natureza consderando a matéra como consttuída por pontos geométrcos dotados de massa,.e. a matéra consttuída por pontos materas. A massa de um corpo surge como medda da sua resstênca à varação da sua velocdade. É uma grandeza físca escalar. undade SI: kg Processo de medção: balança de pratos Adtvdade da massa: massa sstema: m TOTAL n = Â m Massa coefcente, característco de cada partícula ou sstema de partículas, que determna a ntensdade da sua nteracção gravtaconal com outras partículas bem como o seu comportamento quando sujeta a outras forças. A massa é uma propredade ndvdual de um corpo, enquanto que a força depende da vznhança do corpo. Estátca 2003/04 Pág. 27

2 3.2. Prmera Le de Newton: Le da nérca A mecânca clássca fo o prmero ramo da físca a desenvolver-se, tendo como orgem os trabalhos de Galleu sobre a queda dos graves. Ao relaconar a aceleração em queda lvre e a aceleração num plano nclnado, em função da nclnação do plano, fo naturalmente conduzdo ao estudo do caso de nclnação nula, e ao enuncado da Le da nérca, na sua forma mas prmtva: Um corpo que não é actuado por nenhuma força, tem movmento rectlíneo e unforme. Na verdade a Le da nérca tem um sgnfcado mas profundo, tendo sdo mas tarde enuncada por Newton. É hoje também conhecda por Prmera Le de Newton: Um corpo permanece em repouso ou em movmento rectlíneo e unforme se a força resultante que actua sobre ele for nula. Um corpo tende naturalmente a manter a sua velocdade, mesmo quando esta é nula, sendo apenas perturbado sob a acção de forças. Há nérca às alterações do estado de movmento; nérca como resstênca à varação. Todos os corpos permanecem em repouso ou em movmento rectlíneo e unforme se a força resultante que actua sobre eles for nula. R = F = Â De facto, se a força resultante sobre um corpo for nula, a aceleração do corpo é zero ( ma = 0 f a = 0 ); então o corpo está em repouso ou em movmento rectlíneo e unforme. 0 R = 0 a = 0 Estátca 2003/04 Pág. 28

3 À prmera vsta a 1ª Le de Newton parece contrarar as nossas experêncas de senso comum. Aceta-se faclmente que um corpo em repouso permaneça em repouso. Mas, que um corpo em movmento rectlíneo e unforme tenda a manter a sua velocdade constante Não é o que sentmos quando empurramos um corpo,.e. exercemos uma força sobre ele, e o vemos parar ao fm de alguns nstantes! Esta experênca do da-a-da não contradz, de todo, a 1ª Le de Newton, pos efectvamente o que acontece neste caso é que ocorrem 2 momentos dstntos: a) enquanto empurramos o corpo a velocdade constante R = F exercda + F atrto = 0 (mov. to 0 a = v = cte) b) quando largamos o corpo R = F atrto 0 (mov. 0 a Agora a F exercda = 0 ; corpo desacelera até parar) Se elmnarmos a força de atrto a 1ª Le de Newton poderá então ser verfcada expermentalmente: mesa de ar. A únca força de atrto envolvda é a resstênca do ar, que é pratcamente mperceptível na gama de velocdades que utlzamos. Podemos assm admtr que a experênca é efectuada a velocdade constante. Dagrama de corpo-lvre: dagrama utlzado para representar, de forma esquemátca, as forças que actuam num determnado corpo, e que permte determnar a sua resultante. O corpo é representado por uma partícula. Admtmos que as suas dmensões não afectam a resolução do problema. Todas as forças que actuam num determnado corpo são consderadas como actuando num únco ponto. Mas tarde veremos as stuações em que esta smplfcação não é válda. Exemplo: Estátca 2003/04 Pág. 29

4 Como o corpo está em equlíbro estátco, pela 1ª Le de Newton 0 a = e R = 0 Assm, utlzando o sstema de coordenadas representado no dagrama de corpo lvre, R + P = 0 e sendo R = Rj ˆ, P = P( -ˆj), temos Rj P( j) ˆ+ - ˆ = 0 R = P. A propredade que permte somar as forças como vectores, denomnase Prncípo da Sobreposção. Referencas de nérca Um referencal onde a 1ª Le de Newton é válda dz-se referencal de nérca. É um referencal em relação ao qual 0 a =, para todo e qualquer corpo sujeto a uma força resultante nula. Qualquer referencal acelerado ( 0 a ) relatvamente a um referencal nercal denomna-se referencal não nercal. O sstema de coordenadas ou de referênca que usualmente se utlza para um corpo sobre ou junto à superfíce da Terra é um referencal cuja orgem está fxa relatvamente a um N ponto da superfíce da Terra, e cujos exos concdem com a horzontal e a vertcal. A tal z y sstema de referênca denomnamos x referencal soldáro com a superfíce da Terra. Estátca 2003/04 Pág. 30

5 Contudo, os referencas de nérca consttuem uma abstracção teórca. A Terra roda sobre o seu exo uma vez por da, e percorre uma órbta em torno do Sol num ano. Devdo à rotação da Terra este referencal soldáro com a Terra no equador tem uma aceleração de 0,034 m.s -2 em drecção ao centro da Terra e devdo ao movmento orbtal o centro da Terra tem uma aceleração de 0,006 m.s -2 em drecção ao Sol. Como estas acelerações são pequenas, os seus efetos são geralmente nsgnfcantes quando consderamos problemas na Terra. Assm, a menos que se dga o contráro, admtmos que o referencal soldáro com a Terra pode ser tratado como referencal de nérca Segunda Le de Newton: Le fundamental da dnâmca Embora Galleu soubesse que os corpos caem para a Terra com aceleração constante devdo à atracção que esta exerce sobre eles, Galleu nunca explctou a relação entre força e aceleração. Fo Newton que, ntroduzndo o conceto de massa, enuncou a conhecda 2ª le de Newton ou le fundamental da Dnâmca. Para cada corpo há proporconaldade entre a força à qual o corpo está submetdo e a aceleração que resulta da aplcação de tal força. Esta le traduz-se matematcamente por F = m a, onde m é a denomnada massa nerte e caracterza o corpo do ponto de vsta mecânco. É ndependente da forma do corpo, da sua consttução, da sua velocdade, é apenas dependente da quantdade de matéra que o consttu. A força resultante que actua sobre um corpo é proporconal à sua aceleração, sendo a massa do corpo o factor de proporconaldade entre a força resultante e a aceleração. R = ma m R f = a Estátca 2003/04 Pág. 31

6 Para uma determnada força resultante, um corpo com maor massa terá uma menor aceleração. Se F 1 = F2 e m 1 > m2 então a1 < a2 (.e. a 1 < a2 ) e dz-se que o corpo 1 possu maor nérca ao movmento, possu maor massa nercal. A massa é uma propredade do corpo que lhe permte resstr a qualquer varação na sua velocdade. A 2ª le de Newton dá-nos uma defnção para o conceto de força: a força resultante num corpo causa uma aceleração que lhe é proporconal e com a mesma drecção e sentdo. Undade SI: 1 N = (1 Kg)(1 m.s -2 ) = 1 Kg.m.s -2 Undade cgs: 1 dne = 1 g.cm.s -2 Tem-se anda 1 kgf = 9,8 N a = 1ms -2 F = 1N 3.4. Tercera Le de Newton A uma determnada acção corresponde sempre uma reacção, gual e de sentdo oposto, consttundo ambas um par acção-reacção. As 1ª e 2ª les de Newton tecem consderações acerca de um só corpo, enquanto que a 3ª le se refere a dos corpos. Se o corpo B exerce uma força sobre o corpo A, então o corpo A exerce uma força gual e de sentdo oposto sobre o corpo B. Não exstem forças úncas, as forças agrupam-se sempre em pares. F BA A F AB B F AB - força exercda por A em B F BA - força exercda por B em A F BA = - F AB Estátca 2003/04 Pág. 32

7 Nestas condções, quando dos corpos exercem uma força um sobre o outro, dz-se que exste uma nteracção entre eles. A 3ª le de Newton dá-nos a relação entre as duas forças que resultam da nteracção. As duas forças F AB e F BA desgnam-se por par acção-reacção. A atrbução das desgnações acção e reacção é arbtrára. Estátca 2003/04 Pág. 33 A acção e a reacção estão sempre aplcadas em corpos dferentes. A 2ª le de Newton dz-nos que R = F = 0 das forças aplcadas no  mesmo corpo, portanto, N + P= 0 f N =-P. Apesar de N =-P, estas não consttuem um par acção-reacção. Pela 3ª le de Newton, neste caso exstem dos pares acção-reacção: A =-N e P P =- Defnção de massa Combnando a 2ª e a 3ª les de Newton obtem-se uma defnção para massa de um corpo. Supondo que os corpos A e B exercem força um sobre o outro, e que consttuem um sstema solado tem-se  F ext = 0. A força resultante sobre o corpo A é F BA e a força resultante sobre o corpo B é F AB. Da aplcação da 2ª le de Newton a cada corpo resulta FBA = maaa e FAB = mbab Inserndo este resultado na 3ª le de Newton, =, F BA = - F AB, tem-se maaa mbab ou seja em termos dos módulos das acelerações m AaA = mbab Agora, se uma das massas for o qulograma standard, podemos determnar a massa do outro corpo; então, se m B = 1kg ab a ma = mb = 1kg a a A B A

8 3.5. Le da Gravtação Unversal. Para um corpo sobre ou próxmo da superfíce da Terra, duas grandezas estretamente relaconadas são a força gravtaconal exercda no corpo pela Terra e o peso do corpo. A força de nteracção gravtaconal entre dos corpos é de natureza atractva e é drectamente proporconal ao produto das massas de ambos os corpos e nversamente proporconal ao quadrado da dstânca entre eles. mm F F G r Êr Ë r ˆ A B BA BA =- AB =- 2 Á r AB m B versor no sentdo repulsvo par acção-reacção r BA m A F BA r F AB G constante de Gravtação Unversal G = N.m 2.Kg -2 Undade SI: N.m 2.Kg -2 Verfcação expermental: realzada por Cavendsh ( ) com recurso à balança de torção. Peso e a força gravtaconal exercda pela Terra Para um corpo sobre ou próxmo da superfíce da Terra, duas grandezas estretamente relaconadas são a força gravtaconal exercda no corpo pela Terra e o peso do corpo. Estátca 2003/04 Pág. 34

9 A força gravtaconal exercda no corpo pela Terra Quando um corpo se encontra em queda lvre, a únca força sgnfcatva que actua sobre o corpo é a força gravtaconal exercda pela Terra. Por exemplo, as forças de resstênca do ar são neglgíves, para a maora dos corpos, dependendo das característcas do corpo (e.g. pena e pedra). Mas em queda lvre, R = F = Fg e aplcando a 2ª le de Newton F = ma Fg = mg onde g é a aceleração de um corpo medda relatvamente a um referencal nercal. A experênca mostra que num determnado local, qualquer objecto em queda lvre tem a mesma aceleração; g é ndependente da massa do corpo. O peso do corpo Por defnção o peso P de um corpo de massa m é P = mg' onde g' é a aceleração de um corpo em queda lvre, medda relatvamente ao referencal da pessoa que efectua a medção. Isto sgnfca que o peso de um corpo é proporconal à sua massa e depende do sstema de referênca no qual se efectua a medção. Em partcular, quando o peso de um corpo é meddo num sstema de referênca nercal, então P = Fg pos g num referencal nercal concde com g. Como referdo anterormente, admtmos como aproxmação que um referencal soldáro com a superfíce da Terra é um referencal de nérca, a menos que dto em contráro. Assm, P Fg quando a medção do peso é efectuada num referencal soldáro com a Terra. Como exemplo consdere o peso de uma pessoa com m = 55kg meddo num referencal soldáro com a Terra. Como ˆ -2 g =- g j =- 9,8ms ˆ - j P=- 55kg 9,8ms 2 ˆ j =- 539N ˆ j ( ) onde ĵ se drge vertcalmente para cma. temos ( )( ) ( ) Estátca 2003/04 Pág. 35

10 Comparação entre massa e peso Já vmos que a massa de um corpo é uma propredade ntrínseca a cada corpo,.e. podemos caracterzar um corpo pela sua massa. Por outro lado, o peso de um corpo envolve a força gravtaconal da Terra, portanto é errado consderar o peso de um corpo como sendo uma propredade ntrínseca do corpo. Em geral confunde-se os concetos de massa e peso, caracterzando em lnguagem vulgar o corpo pelo seu peso. Esta confusão é possível pos: a) o sstema de referênca utlzado é admtdo como soldáro com a Terra (sstema nercal); b) o peso do corpo é proporconal à sua massa; c) num determnalo local g é o mesmo para todos os corpos, pelo que a massa do corpo determna o peso nesse local (varação sobre a superfíce da Terra). Interacções fundamentas na natureza Na natureza todas as nteracções entre corpos podem exprmr-se à custa de quatro nteracções: gravtaconal electromagnétca (nuclear fraca) nuclear (forte) Estátca 2003/04 Pág. 36

11 3.6. Aplcações das les de Newton: algumas forças relevantes Forças de contacto: força normal e força de atrto Conhecendo o estado de repouso ou de movmento de um corpo podemos determnar as forças exercdas sobre ele. Em partcular podemos determnar as característcas das forças de contacto entre superfíces lsas de dos corpos rígdos. O método envolve a decomposção de uma força de contacto em duas forças, uma paralela à superfíce de contacto, e a outra perpendcular, e então cada uma delas é consderada como uma força dstnta. A força paralela à superfíce é denomnada força de atrto, e a força perpendcular denomna-se força normal Força normal Retomemos a stuação do corpo de massa m em repouso sobre uma superfíce horzontal. As úncas forças exercdas no corpo são o seu peso e a força de contacto exercda pela superfíce. A força exercda pela superfíce suporta o corpo, mantendo-o em repouso. Como 0 a =, a 2ª le de Newton permte-nos escrever que R = F = ma = 0, portanto, F + P = 0 F = P F mg N N N = A força de contacto é gual e oposta ao peso do bloco - é a força ou reacção normal. Suponhamos agora que se coloca outro bloco de massa m sobre o corpo orgnal. O peso é agora duplo e, para suportar este bloco composto, a força normal também duplca: F = P F = mg N N 2 A força normal ajusta-se de modo a mpedr o bloco de acelerar perpendcularmente à superfíce. Estátca 2003/04 Pág. 37

12 Força de atrto cnétco Vejamos agora o caso de um bloco de massa m puxado a velocdade constante ao longo de uma superfíce horzontal. Três forças actuam sobre o bloco: F a a força aplcada sobre o bloco; P = mg - o peso do bloco; F C - a força de contacto exercda pela superfíce. Neste caso a força de contacto é representada por duas forças: F K - força de atrto cnétco (paralela à superfíce e oposta à velocdade); F N - força normal (perpendcular à superfíce). Novamente, como 0 a =, a 2ª le de Newton permte-nos escrever que R= F = ma = 0, portanto, Â = 0 F = 0 F = Fa = mg Para analsar a relação entre a força normal e a força de atrto cnétco, repetmos o procedmento anteror: colocamos outro bloco de massa m sobre o corpo em movmento e determnamos as forças no bloco composto de massa 2m. A força normal exercda pela superfíce é agora dupla F N = 2mg e verfca-se que a força aplcada necessára para que o bloco deslze com a mesma velocdade também duplca, assm como a força de atrto cnétco, pos F K = Fa. Experêncas deste tpo mostram que F K = µ K FN, onde a constante de proporconaldade µ K é uma grandeza sem dmensões denomnada coefcente de atrto cnétco. F µ F Note que a equação K = K N relacona apenas os módulos das forças, pos estas têm drecções perpendculares entre s. Fx F y K N Estátca 2003/04 Pág. 38

13 Expermentalmente verfca-se anda que: a força de atrto cnétco depende da natureza e condção das duas superfíces de contacto. Usualmente 0,1 < < 1,5 ; a força de atrto cnétco é pratcamente ndependente da velocdade; a força de atrto cnétco é pratcamente ndependente da área da superfíce de contacto Força de atrto estátco Entre dos corpos sem movmento relatvo também pode exstr uma força de atrto; é a força de atrto estátco, F s. Na fgura, a força aplcada ao bloco va aumentando progressvamente, mas o bloco permanece em repouso. Como 0 a = em todos os casos, a força aplcada e a força de atrto estátco exercda pela superfíce são guas e opostas. A força de atrto estátco máxma, F s,máx ocorre quando o bloco está na mnênca de se deslocar. Expermentalmente mostra-se que F S, max = µ S FN, onde a constante de proporconaldade µ S é o coefcente de atrto estátco. Analogamente a µ K, o coefcente µ S depende da natureza e condção das duas superfíces de contacto, e é pratcamente ndependente da área da superfíce de contacto. m K Estátca 2003/04 Pág. 39

14 Outras forças relevantes Tensão e tracção Corpo suspenso por um fo Duas forças actuam sobre o corpo: P = mg - o peso do corpo; T a força de tensão força que o fo exerce sobre o corpo. Corpo puxado, sem/com atrto Forças que actuam sobre o corpo: P = mg ; F N - força de reacção exercda pela superfíce (normal à superfíce); F t a força de tracção; F K, F S - força de atrto (quando consderado) Força elástca Corpo suspenso por uma mola elástca Sobre o corpo actuam: P = mg ; F a força elástca E o m o + m P F E F 2 Para pequenas deformações: F = KD K constante elástca da mola E P Impulsão Corpo de volume V, em repouso, mergulhado num fludo de massa volúmca ρ. (Le de Arqumedes) Duas forças actuam sobre o corpo: P = mg ; I mpulsão resultante das forças que o fludo exerce sobre o corpo. I I P = rgv Estátca 2003/04 Pág. 40

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES CAPITULO 0 LEIS EXPEIMENTAIS E CICUITOS SIMPLES Prof SILVIO LOBO ODIGUES INTODUÇÃO PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL Destnase o segundo capítulo ao estudo das les de Krchnoff e suas aplcações

Leia mais

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão IF-UFRJ Elementos de Eletrônca Analógca Prof. Antôno Carlos Fontes dos Santos FIW362 Mestrado Profssonal em Ensno de Físca Aula 1: Dvsores de tensão e Resstênca nterna de uma fonte de tensão Este materal

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

Departamento de Engenharia Civil e Arquitectura MECÂNICA I

Departamento de Engenharia Civil e Arquitectura MECÂNICA I Departamento de Engenhara Cvl e rqutectura Secção de Mecânca Estrutural e Estruturas Mestrado em Engenhara Cvl MECÂNIC I pontamentos sobre equlíbro de estruturas Eduardo Perera Luís Guerrero 2009/2010

Leia mais

Conteúdo 4 - Impulsos elétricos e fenômenos biológicos

Conteúdo 4 - Impulsos elétricos e fenômenos biológicos Conteúdo 4 - Impulsos elétrcos e fenômenos bológcos 4.1 Introdução Os seres vvos, em sua grande maora, são compostos majortaramente por água. A água é uma materal que na presença de certos sas se comporta

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo.

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo. Motores síncronos Prncípo de funconamento ão motores com velocdade de rotação fxa velocdade de sncronsmo. O seu prncípo de funconamento está esquematzado na fgura 1.1 um motor com 2 pólos. Uma corrente

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS

REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS Cênca & Ensno, vol. 2, n. 2, junho de 2008 ARTIGOS REFLEXÕES SOBRE O CONCEITO DE CENTRO DE GRAVIDADE NOS LIVROS DIDÁTICOS André K. T. Asss e Fábo. M. d. M. Ravanell O Centro de Gravdade O centro de gravdade

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

4.1. Equilíbrio estático de um ponto material

4.1. Equilíbrio estático de um ponto material CAPÍTULO 4 Estátca As Três Les ou Prncípos undamentas da Mecânca Newtonana dscutdos no capítulo anteror sustentam todo o estudo da Estátca dos pontos materas, corpos rígdos e conjuntos de corpos rígdos.

Leia mais

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM FÍSICA COENTE ELÉTICA, ESISTÊNCIA, DDP, ª E ª LEIS DE OHM. CAGA ELÉTICA (Q) Observa-se, expermentalmente, na natureza da matéra, a exstênca de uma força com propredades semelhantes à força gravtaconal,

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988

Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A. NBR 6123. Forças devidas ao vento em edificações JUN 1988 ABNT-Assocação Braslera de Normas Técncas Sede: Ro de Janero Av. Treze de Mao, 13-28º andar CEP 20003 - Caxa Postal 1680 Ro de Janero - RJ Tel.: PABX (021) 210-3122 Telex: (021) 34333 ABNT - BR Endereço

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA Concórda, desenvolvendo conhecmento com sabedora Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael

Leia mais

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO UNIVERSIDADE FEDERAL DE SANA CAARINA CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RANSFERÊNCIA DE CALOR NA ENVOLVENE DA EDIFICAÇÃO ELABORADO POR: Martn

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA

ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA ENFRENTANDO OBSTÁCULOS EPISTEMOLÓGICOS COM O GEOGEBRA André Luz Souza Slva IFRJ Andrelsslva@globo.com Vlmar Gomes da Fonseca IFRJ vlmar.onseca@rj.edu.br Wallace Vallory Nunes IFRJ wallace.nunes@rj.edu.br

Leia mais

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori ecânca Geral II otas de UL 3 - Teora Prof. Dr. Cláudo S. Sartor QUILÍBRIO D PRTÍCUL. QUILÍBRIO D CORPOS RÍGIDOS. DIGR D CORPO LIVR. QUILÍBRIO D CORPOS RÍGIDOS 3 DISÕS. QUILÍBRIO D CORPOS RÍGIDOS SUBTIDOS

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

1 Topologias Básicas de Conversores CC-CC não-isolados

1 Topologias Básicas de Conversores CC-CC não-isolados 1 opologas Báscas de Conversores CC-CC não-solados 1.1 Prncípos báscos As análses que se seguem consderam que os conversores não apresentam perdas de potênca (rendmento 100%). Os nterruptores (transstores

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO XIII GRUPO DE ESTUDO DE TRANSFORMADORES, REATORES, MATERIAIS E TECNOLOGIAS

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES

IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE

Leia mais

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas

Análise de Projectos ESAPL / IPVC. Taxas Equivalentes Rendas Análse de Projectos ESAPL / IPVC Taxas Equvalentes Rendas Taxas Equvalentes Duas taxas e, referentes a períodos dferentes, dzem-se equvalentes se, aplcadas a um mesmo captal, produzrem durante o mesmo

Leia mais

t sendo x o espaço percorrido em t segundos e v i a velocidade inicial. A - Uma partícula move-se ao longo da parábola 1 x , para x>0

t sendo x o espaço percorrido em t segundos e v i a velocidade inicial. A - Uma partícula move-se ao longo da parábola 1 x , para x>0 A- Um dado movmento no plano tem a segunte equação de movmento: r(t)=cos(t) u x +sn(t) u y em undades do Sstema Internaconal. a) Determnar a velocdade da partícula no nstante t=π segundos. b) Determnar

Leia mais

ELEMENTOS DE CIRCUITOS

ELEMENTOS DE CIRCUITOS MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

Física I. Aula 5 Energia Potencial e Conservação de energia

Física I. Aula 5 Energia Potencial e Conservação de energia ísca I º Semestre de 3 Insttuto de ísca- Unversdade de São Paulo Aula 5 Energa Potencal e Conservação de energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br one: 39.74 Energa Potencal O trabalho está

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO UMA PROPOTA DE EIO DE TÓPICO DE ELETROMAGETIMO VIA ITRUÇÃO PELO COLEGA E EIO OB MEDIDA PARA O EIO MÉDIO TETE COCEITUAI Autores: Vagner Olvera Elane Angela Vet Ives olano Araujo TETE COCEITUAI (CAPÍTULO

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2 LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara

Leia mais

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas COMPLEMENTOS DE MECÂNICA Recuperação e oentes com fculaes motoras Mecânca Desempenho e atletas Construção e prótese e outros spostvos CORPOS EM EQUILÍBRIO A prmera conção e equlíbro e um corpo correspone

Leia mais

Equações de Movimento

Equações de Movimento Euações de Movmento Vbrações e Ruído (0375) 06 Departamento de Cêncas Aeroespacas Tópcos Abordagem Newtonana. Prncípo de d Alembert. Abordagem energétca. Prncípo dos trabalhos vrtuas. Euações de Lagrange.

Leia mais

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números

Leia mais

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES Medção da Aceleração da Gravdade co u Pêndulo Sples MEDIÇÃO DA ACEERAÇÃO DA GRAVIDADE COM UM PÊNDUO SIMPES O Relatóro deste trabalho consste no preenchento dos espaços neste texto Fundaento Teórco O pêndulo

Leia mais

Controlo Metrológico de Contadores de Gás

Controlo Metrológico de Contadores de Gás Controlo Metrológco de Contadores de Gás José Mendonça Das (jad@fct.unl.pt), Zulema Lopes Perera (zlp@fct.unl.pt) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA

SISTEMAS DE ABASTECIMENTO E DISTRIBUIÇÃO DE ÁGUA Redes de Dstrbução de Água Rede de dstrbução de água: um sstema de tubagens e elementos acessóros nstalados na va públca, em terrenos da entdade dstrbudora ou em outros sob concessão especal, cua utlzação

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Adaptação por fluência: uma aplicação real pelo processo dos deslocamentos

Adaptação por fluência: uma aplicação real pelo processo dos deslocamentos Insttuto Braslero do Concreto. daptação por fluênca: uma aplcação real pelo processo dos deslocamentos Ierê Martns da Slva (1); Ru Nohro Oyamada (); ndrea kem Yamasak (3); dth Slvana maury de Soua Tanaka

Leia mais