Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real."

Transcrição

1 Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que os termos da série são elemetos de espaços vetoriais, reais ou complexos. Aborda-se, por igual, o caso dos produtos ifiitos de termos reais, em geral ausetes daqueles programas, procurado mostrar o que existe de comum em todos estes temas. Na geeralidade dos cursos de liceciatura das áreas cietífica e técica, o âmbito das disciplias de Aálise Matemática, são estudadas as séries de termos reais, bem como as séries de potêcias, casos particulares das séries fucioais. O estudo das séries uméricas de termos ão reais, seja, por exemplo, o das séries de termos complexos, ou o das séries de termos vetoriais, está, de um modo muito geral, completamete ausete, o mesmo acotecedo com o estudo geral das séries de termos fucioais, sejam reais ou complexos. Mas o que deixou de ser abordado a grade geeralidade desses cursos foi o estudo dos produtos ifiitos, mesmo que só o caso umérico real. Acotece, porém, que é fortíssima a uidade doutriária subjacete a todos estes temas, de um modo muito geral assete as propriedades das séries de termos reais positivos. Como se sabe, o valor - ou soma - de uma série de termos reais positivos ão é o resultado da aplicação iterada da operação de adição de termos em R, porque a adição é uma operação que icide sobre um úmero fiito de parcelas, ao passo que a série evolve essa operação, mas sobre uma ifiidade umerável de parcelas. Este facto determia que à geeralidade das séries se ão possa atribuir um valor real. Nus casos, porque a série é divergete, outros, porque é simplesmete covergete. As operações cosetidas a adição de úmeros reais só estão presetes ao ível das desigadas séries absolutamete covergetes. Ora, o estudo de uma série de termos reais positivos há dois temas que são cetrais: por um lado, estudar a sua atureza, ou seja, saber se a série é divergete ou covergete, e, este caso, se é simplesmete covergete ou absolutamete covergete; por outro lado, e este último caso, determiar o seu valor. Ora, também para a geeralidade das séries deste último tipo ão é possível determiar o seu valor exato, embora se dispoha de critérios diversos para estimar um seu valor aproximado, e com um erro tão pequeo quato se queira. Esses critérios, em mui larga medida, ecotram-se ligados às propriedades usadas para determiar a atureza da série, sedo fáceis de aplicar. Cotudo, há o erro assim estimado, proveiete de se tomar para estimativa do valor da série a soma de um úmero fiito dos seus termos, e o que resulta dos cálculos realizados, ao ível estritamete umérico. Se a série for de termos reais egativos, basta estudar a série dos módulos dos seus termos - série modular -, sedo a mesma a atureza das duas séries.

2 No caso de uma série alterada, ao ível do sial dos seus termos, o Critério de Leibitz é o meio adequado ao seu estudo, embora só garata, o caso de covergêcia, que a mesma é simples, havedo que proceder ao estudo da correspodete série modular para se poder saber se essa covergêcia é também absoluta. Fialmete, o caso de uma série de termos reais - positivos, ulos e egativos -, há que estudar a respetiva série modular, ou recorrer a critérios comparativos, ou mesmo outros. Um tema há, porém, que raramete é hoje ilustrado, mormete usado exemplos, aquado do estudo das séries de termos reais, e que é o facto de uma série simplesmete covergete, por permutação adequada dos seus termos, poder ser coduzida a uma outra divergete, ou a uma que apresete um valor pré-fixado. Veja-se, etão, o caso da série harmóica alterada: ( = que pode mostrar-se, usado o Critério de Leibitz, ser covergete, embora seja simplesmete covergete. Admita-se que se pretede operar uma permutação dos termos desta série, por forma que o seu valor seja 0,6. Bastará, etão, cosiderar a ova série, obtida por permutação coveiete dos termos da dada: cuja sucessão de somas parciais é: , 0, 5, 0, 8( 3, 0, 58( 3, 0, 78( 3, 0, 49( 6, 0, 653, 0, 535, 0, 646,... que coverge alteradamete para o valor pré-fixado da série, 0,6. Mas admita-se agora que que se pretede operar uma permutação dos termos daquela série, de modo a que o seu valor seja, já ão 0,6, mas sim,. Bastaria, etão, operar sobre a série em causa a seguite ova permutação dos seus termos: e cuja sucessão de somas parciais coverge, de modo alterado, para,, como se pretedia. O que se fez, uma vez fixado o valor pretedido para a série, foi tomar para primeiro termo da mesma a soma do úmero míimo de termos positivos da dada, de molde a ultrapassar o valor requerido. Para segudo termo da ova série cosiderou-se a soma do úmero míimo de termos egativos da série iicial, de molde a que, somados com o primeiro termo, o resultado desça abaixo do valor pré-fixado. Como terceiro termo da ova série cosiderou-se a soma do úmero míimo de termos positivos da série iicial, de molde a que, somados com os dois primeiros termos, o resultado volte a ultrapassar o valor pré-fixado da série. E assim por diate.

3 Tal como referido atrás, há um tema que deixou de ser tratado as disciplias de Aálise Matemática dos atuais cursos de liceciatura, e que é o dos produtos ifiitos. Acotece que a sua doutria asseta, precisamete, o estudo da teoria das séries, pelo que a sua abordagem se tora muito simples. Assim como se desigou série de termos reais a etidade: u = sedo ( u uma sucessão de termos em R, produto ifiito de fatores reais é toda a etidade que possa reduzir-se à forma: u = u... u... = e ode ( u é uma sucessão de termos em R. E, tal como se dá com as séries, também a u se dá o ome de termo geral do produto ifiito. Este produto pode, com vatagem, escrever-se a forma: ( v = desde que se faça: ( u = u = v e ode v se desiga por fator geral do produto ifiito. À sucessão de termo geral: ( ( ( p = v v v dá-se o ome de sucessão de produtos parciais do produto ifiito dado, que será covergete se aquela o for, ou seja, se: lim p = p R sedo divergete o caso cotrário. No caso de covergêcia, o resultado do produto ifiito toma, como se passa com as séries, o ome de valor do produto ifiito. E o produto ifiito covergete: ( v diz-se absolutamete covergete se o for também o produto ifiito: = = [ v ]

4 e simplesmete covergete se este último for divergete. E assim como: lim u = 0 é uma codição ecessária de covergêcia de uma série: u = também: lim ( v = é uma codição ecessária de covergêcia do produto ifiito: ( v = o que permite cocluir que este será divergete se: lim ( v ou ão existir em R. A aplicação de logaritmos ao produto ifiito mostrará a razão de ser da vatagem de se substituir, o produto, u por v. Fialmete, a importatíssima relação etre as duas etidades matemáticas: v, ( v = = quado v 0, e que é o facto de ser a mesma a sua atureza: ou ambas covergetes, ou ambas divergetes. É o caso do produto ifiito: = = = que é divergete, dado que divergete é a série: que é a cohecida série harmóica. Iverso é o caso do produto ifiito: =

5 = = = que é covergete, uma vez que o é igualmete a série: = e ode, em qualquer dos casos, v 0. Por esta razão, o último produto ifiito é mesmo absolutamete covergete. Salta, pois, à vista a ligação profuda etre a doutria das séries de termos reais positivos e a dos produtos ifiitos de termos idêticos. E o mesmo se estede aos restates casos, com mui ligeiras difereças. Um outro tema, que ormalmete ão é abordado os cursos técicos de liceciatura, com algumas exceções, é o das séries de termos complexos. No fudo, trata-se de séries do tipo: z = ode ( z é uma sucessão de termos em C. É o caso, por exemplo, da série: e que também pode escrever-se a forma: i = ( i i i i ( ode cada termo da série é um elemeto de C. A doutria aplicável é em tudo idêtica à das séries de termos reais, sedo de salietar a sempre referete codição ecessária de covergêcia, a cuja luz, sedo a série covergete, se tem: lim z = 0 pelo que, sedo: lim z 0 a série é divergete. É o caso, por exemplo, da série: para a qual se tem: i =

6 pelo que a série cosiderada é divergete. Mas ote-se, cotudo, que a série aterior: é também divergete, embora se teha: lim z = lim i. i = 0 = 0 i = ( lim z i = lim. ( = 0 Cotiuam válidas as defiições de covergêcia simples e absoluta, sedo a série: z = absolutamete covergete se, sedo covergete, o for por igual a sua série modular: z = e simplesmete covergete se esta última for divergete. Importate é otar que, sedo: a série de termos em C: ( será covergete se o forem as séries: z = a ib a ib = a i b = = = a = e b = e divergete se uma destas, pelo meos, for divergete. Assim, a série de termos em C: = 8 i ( é covergete, visto que também o são as séries:

7 = 8 e = ( e sedo o seu valor: = Em cotrapartida, a série já referida: é divergete, dado que o é igualmete a série: que é a cohecida série harmóica. 8 i = i. ( 7 i = ( = O leitor estudioso e iteressado facilmete coseguirá adaptar às séries de termos em C a geeralidade da doutria cohecida das séries de termos reais. Por fim, o caso das séries de termos em R m, m N, sedo a respetiva extesão ao caso das séries em C m em tudo idêtica à operada a passagem do caso das séries de termos em R para as de termos em C. Ora, dá-se o ome de série de termos em R m, à etidade matemática do tipo: ( u m, u,..., u = ode ( j u, ( j perigo de cofusão, poderá escrever-se: =,..., m, são sucessões de termos reais. Simplificado, por ausêcia de u = ou u =. E uma tal série será covergete se o for a respetiva sucessão de somas parciais, ou seja, se for covergete a sucessão de termo geral: m m ( ( s = u,..., u u,..., u. Se assim for, ter-se-á: m ( lim s = u,..., u o que equivale a ter: m [ s ( u u ] = ( 0 0 lim,...,,...,

8 ou, o que é o mesmo, se se tiver: m ( lim s u,.., u = 0. E também aqui cotiuam válidos os coceitos de divergêcia, covergêcia, covergêcia simples e covergêcia absoluta. E também a codição ecessária de covergêcia de uma série, a cuja luz, se a série: for covergete, terá de ter-se: pelo que, sedo: ( u m, u,..., u = m ( ( lim u,..., u = 0,..., 0 R m m ( ( lim u,..., u 0,..., 0 R m a série cosiderada será divergete. Assim, a série de termos em R 3 : é divergete, uma vez que se tem: Ao cotrário, a série de termos em R 3 :,, e = 3 lim,, e (,, (,,. = =,, 8 ( é covergete, porque o são igualmete as séries:, 8, ( = = = como se sabe do estudo das séries de termos em R, sedo o valor daquela série o vetor de R 3 : =,, 8 ( = π 6, 7,.

9 Assim, uma série de termos em R m, m N : ( u m, u,..., u = será covergete se o forem as séries de termos reais: = j u com j =,..., m, e será divergete se uma, ao meos, dessas séries o for. Tora-se agora simples eteder o modo de tratar uma série do tipo: m ( z,..., z = de termos em C m, m N, visto que a respetiva covergêcia está depedete da covergêcia cojuta das séries de termos em C: = j z com j divergete. =,..., m, sedo a série divergete se uma das m últimas séries, ao meos, for Mostrou-se, pois, a profuda uidade doutriária existete o domíio das séries de termos vetoriais, sejam de compoetes reais ou complexas, bem como dos produtos ifiitos de fatores reais. É, o fudo, e com grade geeralidade, um só problema.

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Os testes da Comparação, Raiz e Razão e Convergência absoluta

Os testes da Comparação, Raiz e Razão e Convergência absoluta Os testes da Comparação, Raiz e Razão e Covergêcia absoluta Prof. Flávia Simões AULA 4 Os testes de Comparação Comparar uma série dada com uma que já sabemos se coverge ou diverge. Usamos geralmete as

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Análise Matemática 2 D. Filipe Oliveira, 2011

Análise Matemática 2 D. Filipe Oliveira, 2011 Aálise Matemática 2 D Itrodução às Séries Numéricas Filipe Oliveira, 20 Coteúdo Itrodução às séries uméricas 3. Prelúdio: O paradoxo de Aquiles e da tartaruga................... 3.2 Sucessão das somas

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Ficha de Problemas n o 10: Séries (soluções)

Ficha de Problemas n o 10: Séries (soluções) Ficha de Problemas o 0: Séries (soluções) Séries Numéricas (Soluções). a) diverge, o termo geral ão tede para 0; b) série geométrica de razão e π, coverge uma vez que e π

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Istituto Uiversitário de Lisboa Departameto de Matemática Exercícios de Sucessões e Séries Exercícios: sucessões. Estude quato à mootoia cada uma das seguites sucessões. (a) (g) + (b) + + + 4 (c) + (h)

Leia mais

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N Capítulo 3 Séries Numéricas 3. Geeralização da operação adição A operação adição ou soma é iicialmete defiida como a aplicação que a cada par de úmeros reais faz correspoder um úmero real, de acordo com

Leia mais

(x a) f (n) (a) (x t) n dt. (x t) f (n) (t)

(x a) f (n) (a) (x t) n dt. (x t) f (n) (t) . Aula Resto e Teorema de Taylor revisitado. Seja f : D R uma fução e p,a (x) o seu poliómio de Taylor de grau. O resto de ordem foi defiido ateriormete como sedo a fução: R,a (x) := f(x) p,a (x). O resultado

Leia mais

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas.

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas. 5. SÉRIES NUMÉRICAS Neste capítulo, vamos esteder o coceito de adição, válido para um úmero fiito de parcelas, à uma soma ifiita de parcelas. 5.: Defiição e exemplos: Série geométrica e série de Dirichlet

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017

Lista de Exercícios de Cálculo 2 Módulo 1 - Primeira Lista - 01/2017 Lista de Exercícios de Cálculo 2 Módulo - Primeira Lista - 0/207. Determie { ( se a seqüêcia coverge ou diverge; se covergir, ache o limite. 5 ) } { } { } { arcta(), 000 (b) (c) ( ) l() } { 000 2 } { 4

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II Apoio às alas MAT II 8-05-06 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE 05/06 Mael Martis Carla Martiho Aa Jorge Defiições Chama-se

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II Apoio às alas MAT II 8-5-6 INSTITTO SPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATRA EM GESTÃO MATEMÁTICA II APOIO ÀS ALAS DE 5/6 Mael Martis Carla Martiho Aa Jorge Defiições Defie-se scessão

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

SEQUÊNCIAS IMPORTANTES PARA O LIMITE

SEQUÊNCIAS IMPORTANTES PARA O LIMITE começado a eteder CÁLCULO Volume Um - SEQUÊNCIAS IMPORTANTES PARA O LIMITE Uma sequêcia ifiita de úmeros () é covergete a um úmero o quado () se tora (ou é sempre) igual a o, ou se tora cada vez mais próima

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE FACULDADE DE ECONOMIA DO PORTO Liceciatura em Ecoomia E C O N O M E T R I A I (LEC0) Exame Fial 0 de Jaeiro de 00 RESOLUÇÃO: I PARTE I GRUPO a) Dispoível uma amostra de observações de Y para períodos cosecutivos,

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA SEQÜENCIAS E SÉRIES NUMÉRICAS Cláudio Martis Medes Primeiro Semestre de 2006 Sumário Seqüêcias e Séries Numéricas 2. Seqüêcias Numéricas............................... 2.2 Séries Numéricas..................................

Leia mais

Cálculo III - SMA 333. Notas de Aula

Cálculo III - SMA 333. Notas de Aula Cálculo III - SMA 333 Notas de Aula Sumário 1 Itrodução 2 2 Seqüêcias Numéricas 6 2.1 Defiição, Exemplos e Operações........................ 6 2.2 Seqüêcias Limitadas e Ilimitadas........................

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

Definição 1: Sequência é uma lista infinita de números reais ordenados.

Definição 1: Sequência é uma lista infinita de números reais ordenados. Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM123 - Cálculo Diferencial e Integral II Lista 3 - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM123 - Cálculo Diferencial e Integral II Lista 3 - Tiago de Oliveira Uiversidade Federal de Ouro Preto Departameto de Matemática MTM - Cálculo Diferecial e Itegral II Lista - Tiago de Oliveira. Ecotre uma fórmula para a -ésima soma parcial de cada série e use-a para ecotrar

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice 4 4 Defiição e exemplos 4 Subespaços4 4 Cojutos

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 3. Sucessões; série geométrica

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 3. Sucessões; série geométrica Faculdade de Ecoomia Uiversidade Nova de Lisboa Primavera 2004/2005 Cálculo I Cadero de Exercícios 3 Sucessões; série geométrica Nota: Os problemas ão resolvidos as aulas costituem trabalho complemetar

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

CAPÍTULO III SUCESSÕES DE TERMOS REAIS

CAPÍTULO III SUCESSÕES DE TERMOS REAIS CAPÍTULO III SUCESSÕES DE TERMOS REAIS. Geeralidades Chama-se sucessão de termos reais a qualquer aplicação de N em R. O real u que correspode ao atural é o primeiro termo da sucessão o real u que correspode

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES Guilherme de Martii Uiversidade Tecológica Federal do Paraá - Câmpus Toledo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

CAPÍTULO IV SÉRIES DE TERMOS REAIS

CAPÍTULO IV SÉRIES DE TERMOS REAIS CAPÍTULO IV SÉRIES DE TERMOS REAIS. Itrodução A oeração de adição de úmeros reais é uma oeração biária suostamete bem cohecida do leitor: a cada ar de úmeros reais (a b) a oeração de adição associa a resectiva

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

12 Séries. O esquema usado a seguir permite um melhor entendimento da forma de se obter a solução do problema.

12 Séries. O esquema usado a seguir permite um melhor entendimento da forma de se obter a solução do problema. 2 Séries 2. Sequêcia O matemático italiao Leoardo de Pisa (80 250), também chamado Fiboacci, escreveu em 202 o Livro Liber Abaci (O Livro do Ábaco), o qual propôs o seguite problema: Caso ão ocorram mortes,

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

Matemática. Binômio de Newton. Professor Dudan.

Matemática. Binômio de Newton. Professor Dudan. Matemática Biômio de Newto Professor Duda www.acasadococurseiro.com.br Matemática BINÔMIO DE NEWTON Defiição O biômio de Newto é uma expressão que permite calcular o desevolvimeto de (a + b), sedo a +

Leia mais

Critérios de D Alembert e de Cauchy

Critérios de D Alembert e de Cauchy ROSÁRIO LAUREANO Critérios de D Alembert e de Cauchy [ Elaborado por Rosário Laureao] [ 03/4] Tópicos de teoria Propositio (CritériodaRazão)Dadaumasérieumérica u tal queu >0,paratodo N, i. seexistek

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

4 Teoria da Probabilidade

4 Teoria da Probabilidade 48 4 Teoria da Probabilidade Apresetam-se este capítulo coceitos de probabilidade e de estimação de fuções desidade de probabilidade ecessários ao desevolvimeto e compreesão do modelo proposto (capítulo

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Problemas Sobre Correlacionamento

Problemas Sobre Correlacionamento Capítulo 2 Problemas Sobre Correlacioameto Se caiu, levate e ade como se uca tivesse caído, cosiderado que, a cada vez que você se esforça e se levata de uma queda, suas peras se fortalecem. 2.1. Problemas

Leia mais

Limite, Continuidade e

Limite, Continuidade e Módulo Limite, Cotiuidade e Derivação Este módulo é dedicado, essecialmete, ao estudo das oções de limite, cotiuidade e derivabilidade para fuções reais de uma variável real e de propriedades básicas a

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Potencial elétrico para distribuições de cargas puntiformes: sobre a convergência de séries infinitas

Potencial elétrico para distribuições de cargas puntiformes: sobre a convergência de séries infinitas Revista Brasileira de Esio de Física, v. 32,. 3, 3309 200) www.sbfisica.org.br Potecial elétrico para distribuições de cargas putiformes: sobre a covergêcia de séries ifiitas Electric potetial of poit

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

Economia Florestal. A floresta como um capital

Economia Florestal. A floresta como um capital Ecoomia Florestal A floresta como um capital O que é um capital? Defiição Capital é um fudo ou valor (pode ser moetário, bes, maquiaria, etc.) que pode gerar redimetos futuros durate um certo tempo, capazes

Leia mais

Quantificando os Fenômenos Biológicos

Quantificando os Fenômenos Biológicos 1 ECOSSISTEMA Os ecossistemas estão costituídos por comuidades. A comuidade é uma uidade ecológica de visualização meos clara a atureza que outros coceitos como o de idivíduo ou mesmo o de população, que

Leia mais