FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE"

Transcrição

1 FACULDADE DE ECONOMIA DO PORTO Liceciatura em Ecoomia E C O N O M E T R I A I (LEC0) Exame Fial 0 de Jaeiro de 00 RESOLUÇÃO: I PARTE I GRUPO a) Dispoível uma amostra de observações de Y para períodos cosecutivos, a previsão de Y para o período imediato, segudo o previsor Y ~, é a média etre a observação mais recete (Y ) e a média de todas as ateriores. Por cosequêcia, a previsão de Y é uma média poderada dos valores passados da variável, em que o último valor cohecido recebe um peso de 0% e em que os 0% restates são distribuídos uiformemete por todos os outros valores observados. Segudo o previsor de míimos quadrados, ter-se-ia Ŷ, em que desiga o estimador OLS do parâmetro. Sabe-se que, em modelos lieares apeas com termo idepedete, esse estimador é dado por Y t Y, t em que, como é habitual, se desigou por Y a média dos valores observados de Y. Etão, o previsor de míimos quadrados coduziria a Ŷ Y, fórmula de que se deduz que, ao ivés do que acotece com o previsor Y ~, todas as observações ateriores de Y etrariam com o mesmo peso a determiação da previsão de Y, ão havedo, portato, lugar à atribuição de um peso especial à observação mais recete. Decorre do que precede que o previsor proposto e o de míimos quadrados coduziriam a previsões idêticas para Y se a amostra de valores de Y tivesse apeas

2 duas observações caso em que a média da última observação e da média de todas as outras é, simplesmete, a média amostral, ou, mais geralmete, qualquer que seja a dimesão da amostra, se o mais recete valor observado de Y fosse igual à média de todos os outros valores observados. b) Para o previsor Y ~, tem-se Y ~ Y ( ) Y t t ( u ) ( u ( ) t t ) u u t. ( ) t Uma vez que, de acordo com o euciado, as perturbações u, u,..., u seguem as hipóteses clássicas, é E(u t ) 0, qualquer que seja t. Etão, para o valor esperado do previsor, vem. Quer-se prever Y ~ ) E E( u ( ) t u t ( ) E(u ) [ E(u ) E(u )... E(u )]. e, portato, E( Y ~ ) Y. Cotudo, Y u E( Y ~ Y ) 0, já que E( Y ~ ) E(Y ), se for também E(u ) 0. Nesse setido, Y ~ é um previsor cêtrico de Y. c) Recorde-se da alíea aterior que Y ~ u u t. ( ) t De acordo com as hipóteses clássicas do modelo de regressão liear, é costate a variâcia de u t e são ulas as covariâcias

3 Cov(u t, u t-j ) 0 para quaisquer t e j, desde que j 0. Desigado por aquela variâcia,. é Var( Y ~ ) Var u ( ) t u t Var u u t ( ) t Var(u ) [ Var(u ) Var(u )... Var(u ) ( ) Cov(u, u ) Cov(u, u )... Cov(u -, u - )] [Cov(u, u ) Cov(u, u )... Cov(u, u - )] ( ) [( ) ] ( ) (por serem iguais a 0 todos os termos da expressão aterior que evolvem covariâcias) ( ). De maeira aáloga, deduzir-se-ia, para o previsor de míimos quadrados, Var( ( Ŷ ) ). Costata-se, portato, que, ao cotrário da variâcia do previsor de míimos quadrados, que tede para 0 à medida que a dimesão da amostra aumeta idefiidamete, a variâcia do previsor alterativo, coquato decresça com o aumeto de, uca é iferior a. Os gahos de eficiêcia com o previsor de míimos quadrados são tato maiores quato maior for a dimesão da amostra. II GRUPO a) Supodo o modelo sob as hipóteses usuais, seria l TBC t l PT t l RD t u t E(l TBC 0 ) l PT 0 l RD 0.

4 Acréscimos idêticos de % em PT e em RD coduziriam a E(l TBC ) l (,0 PT 0 ) l (,0 RD 0 ). Para que fosse E(l TBC 0 ) E(l TBC ), seria ecessário que ou, mais simplesmete, 0. l(,0) l(,0) 0 Para o teste de cotra a alterativa H 0 : 0 H : 0, usar-se-á o resultado de que, sob H 0, é c' 0 c' ( X'X) c ~ t (-k), em que se desigou por c o vector [0 ]. Com os cálculos auxiliares explaados abaixo, obtém-se t obs. 0, ,78 0,70 [ 7,7, (,97) ] 0,78. Os valores críticos da estatística de teste, para um ível de sigificâcia de 0,0 e 9 graus de liberdade, são t crít. ±,. Uma vez que t obs. < t crít., a decisão é a de ão rejeição da hipótese ula. A evidêcia estatística dispoível ão permite rejeitar a hipótese de que acréscimos relativos idêticos do redimeto e do preço do tabaco, ocorredo simultaeamete, ão teham efeito sobre o cosumo de tabaco. Ao ível de sigificâcia usado, a afirmação do euciado merece cocordâcia. Cálculos auxiliares: Uma vez que há etre eles um de sial egativo, os valores etre parêteses sob as estimativas dos coeficietes de regressão têm por força de referir-se aos rácios t obtidos de j, a em que a jj desiga o j.º elemeto a diagoal pricipal de (X X) -. Da equação jj

5 ,00,88,8, retira-se 0, b) Empregado a relação SQR k, (com SQR a deotar a soma de quadrados dos resíduos), é possível calcular: para o período : SQR 0, ( ) 0,00878; para o período : SQR 0,0 ( ) 0,000; para o período 98-00: SQR 0,07 (8 ) 0,0098. No teste da hipótese de igualdade dos vectores de coeficietes [ ] das regressões relativas ao período e ao período , segudo a metodologia de Chow, tem-se: H 0 : H : ,, F obs. 0,0098 (0, ,000) 0, ,000,0 e F crít.,9 para um ível de sigificâcia de %, graus de liberdade o umerador e o deomiador. A hipótese ula é rejeitada: a campaha ati-tabagista iiciada em 998 A estimativa da variâcia das perturbações poderia obter-se, de modo aálogo, a partir das equações 0,78 0,70,0 ou, 0. 7,7, Salvo por erros de arredodameto, o resultado seria idêtico ao dado acima.

6 parece ter modificado sigificativamete a estrutura de comportameto do cosumo de tabaco, relativamete ao período aterior. Desta vez, a afirmação cometada ão merece cocordâcia. c) Sabe-se que, para o período , em que a variável dummy D assume o valor 0 e a regressão sugerida se recoduz a l TBC l PT l RD u, a estimar com dados relativos a esse período, as estimativas obtidas para os coeficietes ão poderiam deixar de ser coicidetes com as forecidas a alíea b):,8, 0,0, 0,8. Para o período em que D, a regressão proposta seria l TBC ( ) ( ) l PT ( ) l RD u. De acordo com o primeiro ajustameto apresetado o euciado, esperava-se,00, 0,78, 0,70; por difereça, vem,80, 0,, 0,9. Quato ao coeficiete de determiação, é imediato que será maior ou igual a 0,; a iclusão de variáveis explicativas adicioais o segudo dos ajustametos referidos em b) terá esse efeito. Para determiar com maior precisão o valor de R o ajustameto do modelo proposto, pode recorrer-se ao facto de que o teste de Chow efectuado acima e o teste da melhoria do ajustameto pela itrodução de variáveis explicativas adicioais (hipótese ula 0) coduzem a resultados idêticos. Por cosequêcia, desigado por R o coeficiete de determiação que se pretede calcular, terá de ser R 0, R 8,0. A solução da equação é R 0,.

7 II PARTE III GRUPO a),0 é a estimativa do úmero de horas semaais de soo de um recémascido de sexo femiio que, obviamete, ão trabalha, em possui qualquer escolaridade. Comparado dois idivíduos do mesmo sexo e idade e com igual ível de escolaridade, se um tem mais uma hora semaal de trabalho que o outro, estima-se que durma, em média, meos 0, horas (meos de 0 miutos) por semaa. Comparado, por outro lado, dois idivíduos do mesmo sexo e idade e com igual carga horária semaal de trabalho, se um tem mais um ao de escolaridade do que o outro, estima-se que o primeiro durma, em média, meos 0,9 horas por semaa. Tudo o resto (idade, tempo de trabalho, habilitações escolares) igual, estima-se que os homes durmam, em média, mais, horas semaais (quase hora e meia mais) do que as mulheres. Fialmete, verificado que Y 0, 0,00 I, I estima-se que dois idivíduos de igual sexo, com igual escolaridade e igual tempo de trabalho, mas de idade diferete por um ao, divirjam por ( 0, 0,00 I) horas o tempo semaal de soo. Assim, estima-se, por exemplo, que etre dois idivíduos com aos de idade e com 0, tudo o mais igual, o mais velho durma, em média, meos 0,0 horas por semaa do que o outro; mas se a comparação se referir a um idivíduo com aos de idade e a outro com 0, o mais velho dormirá, em media, mais 0,0 horas do que o outro. b) Desigado por e, respectivamete, os coeficietes das variáveis I e I o modelo subjacete ao ajustameto (B), pretede-se testar a hipótese cotra a alterativa H 0 : 0 H : Sob H 0, t obs. vâr( ) vâr( 0 ) 80 côv(, ) 0, , 90(0,00) 0 (0,00000) 80( 0,000),080. É t crít. (700), /0,0 ],9;,98[, já que t (0), /0,0,98 e t ( ), /0,0,9 (porque ão é forecido a tabela o valor para 700 graus de liberdade). Uma vez que t crít. < t obs. < t crít.,

8 ão se rejeita H 0, para 0,0. Coclui-se que ão existe evidêcia estatística suficiete, a um ível de sigificâcia de %, para rejeitar a hipótese de ser aos aos de idade que se atige o míimo do úmero de horas de soo por semaa. c) As hipóteses em teste são H 0 : 0 vs. H : > 0, em que, por, se quer desigar o coeficiete da variável H o modelo implícito em (B). Sob H 0, t obs. 0 vâr( ), 0,. 0,70 É t crít.(700), 0,0 ],;,8[, já que t (0), 0,0,8 e t ( ), 0,0, (ão é forecido a tabela o valor para 700 graus de liberdade). Como t obs. > t crít., para 0,0, rejeita-se H 0. Coclui-se que existe evidêcia estatística suficiete, para um ível de sigificâcia de %, para afirmar que, de facto, os homes dormem, em média, mais do que as mulheres. d) Trata-se de um teste de melhoria da qualidade do ajustameto etre as regressões (B) e (A), pela itrodução das variáveis explicativas I e I. As hipóteses em teste são: H 0 : 0 H : 0 0. R (B) R Sob H 0, F r F (r, k( B) ). Dado R k (B) (B) (A) σ ( A), 9, etão e' e σ ( k ),9 (70 ) 0,9. (A) (A) (A) Como R (A) e'e 70 y i (A) i 70 y i, e dado 877, 7, etão R A) i 0,9 0,9. 877,7 ( Para a estatística amostral, vem

9 F obs 0, 0,9 0,, Sabe-se que F crít. (,700), 0,0 ];,0[, já que F (,0), 0,0,0 e F (,00), 0,0,00 (ão é forecido a tabela o valor para (,700) graus de liberdade). Como F obs > F crít, para 0,0, ão se rejeita H 0. Coclui-se que ão existe evidêcia estatística suficiete, a um ível de sigificâcia de %, para afirmar que a capacidade explicativa do modelo subjacete a (B) seja sigificativamete maior que a do modelo subjacete a (A).

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Hipótese Estatística. Tipos de Hipóteses

Hipótese Estatística. Tipos de Hipóteses Hipótese Estatística Hipótese, em estatística, é uma suposição formulada a respeito dos parâmetros de uma distribuição de probabilidade de uma ou mais populações. Podemos formular a hipótese que a produtividade

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

Econometria. Econometria. Algumas considerações. Algumas considerações MQO. Derivando as Propriedades

Econometria. Econometria. Algumas considerações. Algumas considerações MQO. Derivando as Propriedades Ecoometria. Propriedades fiitas dos estimadores MQO. Estimação da Variâcia do estimador de MQO 3. Revisão de Iferêcia (testes em ecoometria) Ecoometria. Propriedades fiitas dos estimadores MQO Algumas

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Caderno de Exercício 3

Caderno de Exercício 3 1 Cadero de Exercício 3 Esaios de Hipóteses e Regressão Liear 1. Exercícios Aulas 1. Exercício 10.11 do livro Statistics for Ecoomics ad Busiess 2. Exercício 10.27 do livro Statistics for Ecoomics ad Busiess

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Estatística para Economia e Gestão Licenciatura em Economia e Licenciatura em Gestão

Estatística para Economia e Gestão Licenciatura em Economia e Licenciatura em Gestão Estatística para Ecoomia e Gestão Liceciatura em Ecoomia e Liceciatura em Gestão NOVA School of Busiess ad Ecoomics Prof. Luís Catela Nues Eame Fial ª Época 8 de Juho de 011 Duração: horas Material autorizado:

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva Testes de Hipóteses Júlio Osório Os dois campos da Aálise Estatística Métodos Estatísticos Estatística Descritiva Iferêcia Estatística Estimativa Testes de Hipóteses 1 Exemplo Ilustrativo Mediram-se os

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Testes de Hipóteses sobre uma Proporção Populacional

Testes de Hipóteses sobre uma Proporção Populacional Estatística II Atoio Roque Aula Testes de Hipóteses sobre uma Proporção Populacioal Seja o seguite problema: Estamos iteressados em saber que proporção de motoristas da população usa cito de seguraça regularmete.

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Duração: 90 miutos Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! o semestre 015/016 09/06/016 11:00 o teste B Grupo I 10 valores 1. Seja (X 1,

Leia mais

Número-índice: Conceito, amostragem e construção de estimadores

Número-índice: Conceito, amostragem e construção de estimadores Número-ídice: Coceito, amostragem e costrução de estimadores Objetivo Geral da aula Defiir o que são os úmeros-ídices, efatizado a sua importâcia para aálise ecoômica. Cosidere os dados apresetados a Tabela

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

Lista de exercícios propostos n. o 05: Testes de hipóteses

Lista de exercícios propostos n. o 05: Testes de hipóteses Lista de exercícios propostos. o 5: Testes de hipóteses Exercício 1. Uma pizzaria recebe diariamete ecomedas por telefoe, que se têm comportado segudo uma lei ormal. A empresa está dimesioada para uma

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem:

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem: xame fial de statística ª Época 3 de Juho de 4 Faculdade de coomia José Atóio iheiro Uiversidade Nova de Lisboa aria Helea Almeida Duração: h3m Note bem:. Resolva grupos diferetes em folhas diferetes.

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

2. Revisões e definições de matrizes

2. Revisões e definições de matrizes Apotametos de Processameto Adaptativo de Siais 2. Revisões e defiições de matrizes Breve revisão de propriedades de matrizes 1. Valores próprios e vectores próprios A cada matriz quadrada A, de dimesões

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA Embora com pouco tempo, devido à preparação da 3ª edição do livro Estatística ESAF, preocupado com os cadidatos que farão a prova para Fiscal-RS em 19/08/06 resolvi, mesmo em cima da hora, fazer um resumo

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

Inferência Estatística

Inferência Estatística Iferêcia Estatística opulação Amostra Itroduç Itrodução à Iferêcia Estatística Como tirar coclusões tomar decisões a partir de iformação parcial / icompleta (amostra) projectado /geeralizado resultados

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Distribuição Amostral da Média: Exemplos

Distribuição Amostral da Média: Exemplos Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Administração

FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Administração FUNDAÇÃO GETULIO VARGAS Programa de Certificação de Qualidade Curso de Graduação em Admiistração PROVA DE ESTATÍSTICA II º Semestre / 00 - P - TIPO DADOS DO ALUNO: Nome: Assiatura INSTRUÇÕES: Você receberá

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES

CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo MÉTODO ETATÍTICO DE PREVIÃO 8 6 4 98 96 94 9 9 5 5 Regressão Liear Berardo Almada-Lobo Regressão A regressão é uma das técicas estatísticas mais potetes e de utilização mais frequete. É um método matemático

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 e 16 Itrodução à probabilidade evetos

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Cenários de arrecadação do Imposto de Renda Retido na Fonte dos Rendimentos do Trabalho e Outros Rendimentos com Correção Inflacionária

Cenários de arrecadação do Imposto de Renda Retido na Fonte dos Rendimentos do Trabalho e Outros Rendimentos com Correção Inflacionária PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RS FACULDADE DE ADMINISTRAÇÃO, CONTABILIDADE E ECONOMIA SINDICATO DAS EMPRESAS DE SERVIÇOS CONTÁBEIS DO RS Covêio FACE/PUCRS e SESCON-RS Relatório 12 Ceários de arrecadação

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

O QUE HÁ DE ERRADO COM O MERCADO ACIONÁRIO BRASILEIRO? - COMPARAÇÃO ENTRE OS RETORNOS MÉDIOS DO IBOVESPA E DO CDI NO PERÍODO DE 1986 A 2004

O QUE HÁ DE ERRADO COM O MERCADO ACIONÁRIO BRASILEIRO? - COMPARAÇÃO ENTRE OS RETORNOS MÉDIOS DO IBOVESPA E DO CDI NO PERÍODO DE 1986 A 2004 V I I S E M E A D P E S Q U I S A Q U A N T I T A T I V A F I N A N Ç A S O QUE HÁ DE ERRADO COM O MERCADO ACIONÁRIO BRASILEIRO? - COMPARAÇÃO ENTRE OS RETORNOS MÉDIOS DO IBOVESPA E DO CDI NO PERÍODO DE

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Economia Florestal. A floresta como um capital

Economia Florestal. A floresta como um capital Ecoomia Florestal A floresta como um capital O que é um capital? Defiição Capital é um fudo ou valor (pode ser moetário, bes, maquiaria, etc.) que pode gerar redimetos futuros durate um certo tempo, capazes

Leia mais

Aula 14 Parte 1 RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES

Aula 14 Parte 1 RACIOCÍNIO LÓGICO QUANTITATIVO PARA AFRFB PROFESSOR: GUILHERME NEVES Aula 14 Parte 1 Amostragem e Estimadores... Itervalo de cofiaça para a média... 9 Itervalo de cofiaça para proporções.... 39 Relação das questões cometadas... 51 Gabaritos... 57 Prof. Guilherme Neves www.potodoscocursos.com.br

Leia mais

OMBRO-CABEÇA-OMBRO : TESTANDO A LUCRATIVIDADE DO PADRÃO GRÁFICO DE ANÁLISE TÉCNICA NO MERCADO DE AÇÕES BRASILEIRO

OMBRO-CABEÇA-OMBRO : TESTANDO A LUCRATIVIDADE DO PADRÃO GRÁFICO DE ANÁLISE TÉCNICA NO MERCADO DE AÇÕES BRASILEIRO Caro parecerista, Agradecemos as sugestões e críticas ao osso artigo, as quais procuramos observar a revisão do artigo. A seguir você ecotrará um relatório descrevedo todos os ajustes realizados, a ordem

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Capítulo II Propagação de erros (cont.)

Capítulo II Propagação de erros (cont.) Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo II Propagação de erros (cot.) Propagação de icertezas idepedetes e arbitrárias Fuções de uma variável Determiação da propagação

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Ciêcias Exatas Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol

PROVA 1 27/10/ Os dados apresentados na seqüência mostram os resultados de colesterol PROVA 1 7/10/009 Nome: GABARITO 1. Os dados apresetados a seqüêcia mostram os resultados de colesterol mg /100ml em dois grupos de aimais. O grupo A é formado por 10 total ( ) aimais submetidos a um cotrole

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Relatório. Mulheres e Homens em 2015

Relatório. Mulheres e Homens em 2015 Relatório Sobre as Remuerações Pagas a e em 2015 (a que se refere o.º 2 da RCM.º 18/2014, de 7 de março) 1 Ídice Itrodução.. 3 1. Objetivo do Relatório. 4 2. Difereças Salariais Aálise Quatitativa. 4 3.

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

ENGC33: Sinais e Sistemas II. 28 de novembro de 2016

ENGC33: Sinais e Sistemas II. 28 de novembro de 2016 Somatório de covolução ENGC33: Siais e Sistemas II Departameto de Egeharia Elétrica - DEE Uiversidade Federal da Bahia - UFBA 8 de ovembro de 6 Prof. Tito Luís Maia Satos / 57 Sumário Itrodução Revisão

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20

Sucessão de números reais. Representação gráfica. Sucessões definidas por recorrência. Introdução 8. Avaliação 18 Atividades de síntese 20 Ídice Sucessão de úmeros reais. Represetação gráfica. Sucessões defiidas por recorrêcia Itrodução 8 Teoria. Itrodução ao estudo das sucessões 0 Teoria. Defiição de sucessão de úmeros reais Teoria 3. Defiição

Leia mais