DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:"

Transcrição

1 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa f A de um acotecimeto A coverge um certo setido para a probabilidade teórica P(A). TEOREMA: A LEI DOS GRANDES NÚMEROS ( fórmula de Beroulli) Seja ε uma experiêcia e seja A um acotecimeto associado a ε. Cosidere-se repetições idepedetes de ε e seja A o úmero de vezes em que A ocorre as repetições. Façamos f A A e seja p P(A) (que se admite ser a mesma para todas as repetições). Etão, para todo o úmero positivo ξ, teremos: P ( f p ξ ) ou, de um modo equivalete: A ξ P ( f p < ξ ) A ξ

2 Demostração: Seja A o úmero de vezes que A ocorra. Etão, A é uma v.a. com distribuição biomial e portato: ( ) p e V( A ) ( p) E A Atededo a que f A E( f A ) p e ( f ) A, vem: ( p) V A Aplicado agora a iequação de Chebyshev à v.a. f A obtémse: 49 P f A p < k k e fazedo: ξ k k ξ resulta: P ( f p < ξ ) A ξ NOTAS: Do teorema aterior resulta que: { P( fa p < ξ )}, ξ 0 lim >

3 50 e é este setido que f A coverge para P(A) ( diz-se que f A coverge para P(A) em probabilidade). Isto sigifica que a probabilidade do acotecimeto: A p < ξ se pode torar arbitrariamete próxima da uidade para um valor de suficietemete elevado. A lei dos grades úmeros assume uma forma alterativa quado se levata a seguite questão: Quatas repetições de ε deverão ser realizadas, de modo que se obteha uma probabilidade de pelo meos δ, para que a frequêcia relativa f A difira de pp(a) a meos de ξ? ( f p < ξ ) δ P A ξ δ ξ δ Note-se porém que ao tomar ada se ξ δ garate quato a f A p. Apeas se tora provável que f A p veha a assumir um valor muito pequeo. Ex:...

4 5 Um outro aspecto a salietar é que de um modo geral ão cohecemos o valor de p P(A), pelo que ão podemos utilizar a expressão: ξ δ Nesse caso, podemos majorar a expressão o umerador, que toma o seu valor máximo quado p/, podedo etão afirmar-se o seguite: ( f p < ξ ) δ P A sempre que 4 ξ δ Relativamete à lei dos grades úmeros, há outra formulação a que se dá habitualmete o ome de lei fraca dos grades úmeros, e que tem o seguite euciado: Seja,,... uma sucessão de v.a. idepedetes com valor médio µ e variâcia σ, isto é: E ( ) µ e Var( i ) σ i i Defia-se uma ova v.a. : ( ) etão: E ( ) µ, Var( ) σ, e P( µ ξ ) 0 lim

5 Demostração: Os resultados apresetados obtêm-se facilmete aplicado as propriedades do valor esperado e variâcia e recorredo à desigualdade de Chebyshev: 5 fazedo: e portato: isto é: P σ µ C ξ C σ vem P C C σ ( µ ξ ) ξ σ ξ ( lim P ( µ ξ ) 0 coverge para µ em probabilidade ) TEOREMA DO LIMITE CENTRAL Seja,,..., uma sucessão de variáveis aleatórias idepedetes e com a mesma distribuição (que se admite ter variâcia fiita) : E ( i ) µ e Var( i ) σ i Façamos Etão a v.a. defiida como:

6 53 µ σ tem aproximadamete distribuição N(0,), quado é suficietemete elevado. Isto é, se F for defiida como a fução de distribuição da v.a., teremos lim F ( z ) Φ( z ). Uma questão importate que se levata é saber quado é que é suficietemete elevado para que a distribuição Normal seja de facto uma boa aproximação da distribuição da variável soma. Temos etão duas situações diferetes: a) Ser possível obter a distribuição da variável soma por via teórica. Neste caso a resposta à questão levatada obtém-se por comparação directa etre as distribuições em causa. b) Não ser possível especificar a distribuição da variável soma (situação habitual). Neste caso a resposta pode ser dada por via experimetal, recorredo à geração de amostras aleatórias pelo método de Mote Carlo. Em termos gerais pode dizer-se que para um dado, o rigor da aproximação depede da forma da distribuição origial, sedo tato pior quato mais assimétrica for essa distribuição. Como regra prática, é frequete cosiderar-se que a aproximação Normal é adequada quado: 0 - se a distribuição origial for simétrica 50 - se a distribuição origial for muito assimétrica

7 O teorema do limite cetral aparece por vezes com um euciado meos restritivo do que aquele que foi ateriormete apresetado. Em particular, são relaxadas as codições que impõem que as variáveis,,..., sejam idepedetes e igualmete distribuídas. De facto estas codições são suficietes para que se verifique a aproximação Normal, mas ão são ecessárias. Assim: 54 i) As variáveis,,..., podem ter distribuições distitas, desde que a cotribuição da variâcia de cada uma delas para a variâcia da variável soma seja pequea. ii) As variáveis,,..., podem ão ser idepedetes, desde que as correlações etre elas sejam fracas. NOTAS: O facto das variáveis i poderem ter qualquer tipo de distribuição e a respectiva soma poder ser aproximada por uma v.a. com distribuição Normal, costitui a pricipal razão da importâcia desta distribuição em Teoria das Probabilidades. ( i ) i e Var( i ) σi i,,... E µ i µ i σ i i ~ N( 0, )

8 55 Vimos ateriormete que a soma de um úmero fiito de v.a. idepedetes e ormalmete distribuídas tem também distribuição Normal. O teorema do limite cetral salieta que as parcelas ão ecessitam de ser ormalmete distribuídas para que a sua soma seja aproximada por uma distribuição Normal. APLICAÇÕES DO TEOREMA DO LIMITE CENTRAL Algus dos resultados apresetados quado se fez o estudo das v.a. serão agora facilmete justificados como uma cosequêcia da aplicação do teorema do limite cetral. Assim: a) Aproximação da distribuição biomial pela ormal Seja i ( i ) uma v.a. de Beroulli, isto é, uma v.a. que assume o valor quado o resultado da experiêcia de Beroulli é um sucesso e o valor 0 caso cotrário. Como vimos já, para esta v.a. a fução de probabilidade é dada por: ( ) p e ( 0 ) q p p i p i, i Cosideremos agora uma v.a. ~ N(,p). Esta v.a. pode ser cosiderada como: i i Uma vez que as v.a. i são idepedetes e igualmete distribuídas (com variâcia fiita), da aplicação do TLC

9 resulta que, a distribuição da v.a. se aproxima duma distribuição Normal para valores de suficietemete elevados. NOTA: Esta defiição de e as propriedades do valor esperado e da variâcia, permitem-os obter facilmete E() e Var(). Efectivamete, como vimos: 56 etão: E( i ) p ; Var( i ) E ( ) p ; Var( ) b) Aproximação da distribuição hipergeométrica pela ormal A justificação é aáloga à aterior, tedo porém que ser relaxada a codição de idepedêcia das v.a. i. Etão a aproximação pela distribuição Normal só será válida quado a depedêcia etre as variáveis for fraca, isto é, quado a dimesão da população for muito superior à dimesão da amostra. c) Aproximação da distribuição Quado se estudou a v.a. como: χ χ pela distribuição ormal χ vimos que ela era defiida i em que cada uma das v.a. i tiha distribuição N(0,). Etão, resulta directamete do TLC que para valores elevados de, a distribuição χ se aproxima da Normal. i

10 57 DISTRIBUIÇÃO DA SOMA DE UM NÚMERO FINITO DE VARIÁVEIS ALEATÓRIAS (***ão sujeito a avaliação) Cosideremos S , ode os i são variáveis aleatórias idepedetes (ão ecessariamete ormais) e que ão seja suficietemete elevado para permitir a aplicação do teorema do limite cetral. Como obter a distribuição de S? TEOREMA: Sejam e duas v.a. idepedetes, cotíuas, com fuções desidade de probabilidade f ( x ) e h ( y ), respectivamete. Defia-se + e seja g ( z ) a fdp da v.a.. Etão: g + ( z ) f ( w ) h ( z w ) dw Demostração: Atededo a que e idepedetes, temos que: são v.a. f ( x, y) f ( x ) h ( y ) Efectuado agora a trasformação z x + y e w x, vem: x w y z w J 0 0 J e portato, a fdp cojuta de e W é dada por: k W f ( w ) h ( z w )

11 58 como g ( z ) é a fdp margial de k W obtemos fialmete: NOTAS: g + ( z ) f ( w ) h ( z w ) dw O itegral acima idicado deomia-se itegral de covolução etre f e h, usado-se frequetemete a seguite otação: f h + f ( w ) h ( z w ) dw A distribuição de + é igual à distribuição de + e portato: f h h f ou seja: + + ( x ) h ( z x ) dx h ( y ) f ( z y ) dy f O teorema euciado pode ser utilizado sucessivamete, embora com uma dificuldade crescete, para se obter a fdp da soma de um úmero fiito qualquer de v.a. cotíuas idepedetes. O teorema euciado ateriormete referia-se a v.al. cotíuas, porém ele pode também euciar-se para variáveis discretas, do seguite modo:

12 TEOREMA: Sejam e v.al. idepedetes, cada uma das quais possa assumir apeas valores iteiros ão-egativos. Cosiderem-se as fuções de probabilidade das v.a. e, p ( x ) P( x ) e q ( y ) P( y ) para x 0,,,... e y 0,,,... Defia-se + e seja s ( z ) P( z ). Etão: s (demostração:...) z ( z ) p ( x ) q ( z x ) x 0 59 FUNÇÃO GERADORA DE MOMENTOS ( cometários adicioais) A fução geradora de mometos possui um cojuto de propriedades importates, para além da que foi referida ateriormete. Dada o iteresse dessas propriedades o setido de facilitar a caracterização de uma v.a. defiida à custa de outra(s), serão etão euciados a seguir algus resultados relevates. TEOREMA: Seja uma v.a. com fução geradora de mometos G ( t ). Defiida uma ova v.a. α + β, etão a fução geradora de mometos de é dada por: Demostração: G G β t ( t ) e G ( α t ) t y t ( ) ( ) ( ( α x + β) β t t α x t E e E e ) e E ( e ) e β t G ( α t )

13 TEOREMA: Sejam e duas v.a. com fgm respectivamete G ( t ) e G ( t ). Se G ( t ) G ( t ) t, etão e têm a mesma distribuição de probabilidade. 60 TEOREMA: Sejam e duas v.a. idepedetes. Defia-se +. Desigado por G ( t ), G ( t ) e G ( t ) as fuções geradoras de mometos respectivamete de, e, etão: Demostração: G G ( t ) G ( t ) G ( t ) t z t ( ) ( ) ( ( x + y ) t x t y t E e E e ) E ( e e ) t x t y E( e ) E( e ) G ( t ) G ( t ) NOTA: Este teorema pode ser geeralizado à soma de variáveis aleatórias idepedetes.

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1

MAE Introdução à Probabilidade e Estatística II Resolução Lista 1 MAE 229 - Itrodução à Probabilidade e Estatística II Resolução Lista 1 Professor: Pedro Moretti Exercício 1 (a) Fazer histograma usado os seguites dados: Distribuição de probabilidade da variável X: X

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec

Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Duração: 90 miutos Grupo I Probabilidades e Estatística LEIC-A, LEIC-T, LEGM, MA, MEMec Justifique coveietemete todas as respostas! 2 o semestre 2015/2016 30/04/2016 9:00 1 o Teste A 10 valores 1. Uma

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem

Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins.

Licenciatura em Economia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA. Luís Filipe Martins. 1 Ecoometria e Métodos de Modelização I Liceciatura em Ecoomia REVISÃO DE ALGUNS CONCEITOS EM ESTATÍSTICA Luís Filipe Martis luis.martis@iscte.pt http://home.iscte.pt/~lfsm Departameto de Métodos Quatitativos,

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar potual por itervalos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos potual e itervalar Lic. Eg. Biomédica e Bioegeharia-2009/2010 potual por itervalos A Teoria das Probabilidades cosiste

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

CAPÍTULO III SUCESSÕES DE TERMOS REAIS

CAPÍTULO III SUCESSÕES DE TERMOS REAIS CAPÍTULO III SUCESSÕES DE TERMOS REAIS. Geeralidades Chama-se sucessão de termos reais a qualquer aplicação de N em R. O real u que correspode ao atural é o primeiro termo da sucessão o real u que correspode

Leia mais

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança

Teorema do Limite Central, distribuição amostral, estimação por ponto e intervalo de confiança Teorema do Limite Cetral, distribuição amostral, estimação por poto e itervalo de cofiaça Prof. Marcos Pó Métodos Quatitativos para Ciêcias Sociais Distribuição amostral Duas amostrages iguais oriudas

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Revisando... Distribuição Amostral da Média

Revisando... Distribuição Amostral da Média Estatística Aplicada II DISTRIBUIÇÃO AMOSTRAL MÉDIA AULA 08/08/16 Prof a Lilia M. Lima Cuha Agosto de 016 Revisado... Distribuição Amostral da Média Seja X uma v. a. de uma população com média µ e variâcia

Leia mais

1. Experiência Aleatória. Espaço de resultados. Acontecimentos.

1. Experiência Aleatória. Espaço de resultados. Acontecimentos. Eperiêcia Aleatória Espaço de Resultados Acotecimetos Noção de robabilidade Frequêcia Relativa Arrajos ermutações Combiações Aiomas de robabilidade 5 artição do Espaço Teorema da robabilidade Total robabilidade

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Aexo PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Uiversidade de Évora, Departameto de Egeharia Rural.. Itrodução Nehum processo hidrológico é puramete determiístico, isto é, ão é possível determiar

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas

Métodos Estatísticos Aplicados à Economia I (GET00117) Variáveis Aleatórias Discretas Uiversidade Federal Flumiese Istituto de Matemática e Estatística Métodos Estatísticos Aplicados à Ecoomia I (GET00117) Variáveis Aleatórias Discretas Aa Maria Lima de Farias Departameto de Estatística

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N Capítulo 3 Séries Numéricas 3. Geeralização da operação adição A operação adição ou soma é iicialmete defiida como a aplicação que a cada par de úmeros reais faz correspoder um úmero real, de acordo com

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

Cálculo IV: Métodos da Física-Matemática

Cálculo IV: Métodos da Física-Matemática Uiversidade Federal do Rio de Jaeiro - UFRJ Istituto de Matemática - IM Departameto de Matemática Cálculo IV: Métodos da Física-Matemática Professor Adá J. Corcho Ferádez Rio de Jaeiro-RJ, 22 de ovembro

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

SEQUÊNCIAS IMPORTANTES PARA O LIMITE

SEQUÊNCIAS IMPORTANTES PARA O LIMITE começado a eteder CÁLCULO Volume Um - SEQUÊNCIAS IMPORTANTES PARA O LIMITE Uma sequêcia ifiita de úmeros () é covergete a um úmero o quado () se tora (ou é sempre) igual a o, ou se tora cada vez mais próima

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Objetivos. Testes não-paramétricos

Objetivos. Testes não-paramétricos Objetivos Prof. Lorí Viali, Dr. http://www. ufrgs.br/~viali/ viali@mat.ufrgs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO LIMITES. Itrodução: Usamos a palavra ite o osso cotidiao para idicar, geericamete, um poto que pode ser evetualmete

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Aula 06 Transformadas z

Aula 06 Transformadas z Aula 06 Trasformadas Trasformadas Na aálise de sistemas cotíuos por vees é mais vatajoso o uso da frequêcia complexa s. No caso de sistemas discretos, uma ferrameta bastate comum usada para passar um sial

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva

Testes de Hipóteses. Júlio Osório. Os dois campos da Análise Estatística. Métodos Estatísticos. Inferência Estatística. Estatística Descritiva Testes de Hipóteses Júlio Osório Os dois campos da Aálise Estatística Métodos Estatísticos Estatística Descritiva Iferêcia Estatística Estimativa Testes de Hipóteses 1 Exemplo Ilustrativo Mediram-se os

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos

Objetivos. Os testes de hipóteses ser: Paramétricos e Não Paramétricos. Testes não-paramétricos. Testes paramétricos Objetivos Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacioametos ou modelos (testes ão paramétricos).

Leia mais

Transporte Iônico e o Potencial de Membrana

Transporte Iônico e o Potencial de Membrana Trasporte Iôico e o Potecial de Membraa Até o mometo, cosideramos apeas o trasporte de solutos eutros (sem carga elétrica) através da membraa celular. A partir de agora, vamos passar a estudar o trasporte

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais