Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Tamanho: px
Começar a partir da página:

Download "Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?"

Transcrição

1 Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por exemplo, idicamos quado os modelos Biomial, Poisso, Expoecial, Normal, Uiforme, etc... eram adequados. Todos estes modelos referem-se a distribuições de probabilidade que evolvem parâmetros, que até agora foram supostos cohecidos. Para que as probabilidades associadas a evetos sejam calculadas é ecessário cohecer o valor destes parâmetros. No estudo das probabilidades, o osso objetivo é calcular a probabilidade de evetos préespecificados. De agora em diate teremos um ovo objetivo. A partir de uma amostra de uma distribuição de probabilidade especificada pretedemos apreder alguma coisa sobre os parâmetros da distribuição, isto é, estaremos iteressados em estimar os parâmetros da distribuição de probabilidade. Esta é a grade difereça etre Probabilidade e Estatística. No estudo de Probabilidade estamos iteressados em defiir modelos que possam ser aplicados a situações reais. Estes modelos evolvem distribuições de probabilidade totalmete cohecidas, isto é, ão apeas a forma da desidade, mas também os seus parâmetros são cohecidos. No estudo da Estatística supõe-se que o modelo probabilístico é cohecido, isto é, sabe-se qual a distribuição de probabilidade que modela a situação real, mas os parâmetros desta distribuição são descohecidos, e devem ser estimados a partir dos dados. O osso objetivo em Estatística é descobrir alguma coisa sobre os parâmetros descohecidos de uma distribuição de probabilidade. Os mecaismos mais usuais para "iferir" alguma coisa sobre estes parâmetros são: ) Estimação potual - o objetivo é "chutar" os valores do parâmetro descohecido. ) Estimação por itervalos - o objetivo é ecotrar um itervalo que coteha o parâmetro de iteresse com uma probabilidade especificada. 3) Testes de hipóteses - o objetivo é criar cojecturas sobre os valores possíveis do parâmetro e verificar se estas cojecturas são muito ou pouco prováveis (isto é, testar as hipóteses). M. Barros Cosultoria Ltda.

2 Todos estes procedimetos são baseados a oção de amostra aleatória. Defiição (amostra, ou amostra aleatória) Uma amostra aleatória é um cojuto de variáveis aleatórias idepedetes e ideticamete distribuídas (iid). Notação : a.a. = amostra aleatória O que se faz a prática? Para gahar iformação sobre os parâmetros descohecidos de uma distribuição de probabilidade usamos um cojuto de variáveis aleatórias idepedetes e ideticamete distribuídas. Isto equivale a repetir a experiêcia aleatória que está sedo descrita pelo modelo em questão vezes, em codições idêticas e de maeira idepedete. A partir dos valores observados das variáveis X, X,..., X calcularemos fuções que os permitirão apreder sobre os parâmetros descohecidos do modelo. Estas fuções serão chamadas de "estatísticas". Defiição (estatística) Seja X, X,..., X uma a.a. de uma variável aleatória X. Sejam x, x,..., x os valores observados de X, X,..., X. Seja Y = h(x, X,..., X ) uma fução apeas das variáveis X, X,..., X. Y é chamado de "estatística". Note que uma estatística ão é fução de parâmetros descohecidos, ela só evolve as variáveis a amostra aleatória, ou seja, pode ser diretamete computada a partir dos valores observados uma amostra. Por defiição, qualquer estatística Y é uma variável aleatória, e tem uma distribuição de probabilidade que depede da distribuição de X, X,..., X. O osso problema etão é ecotrar estatísticas que sirvam como bos estimadores potuais de parâmetros descohecidos. Também é importate defiir critérios que os permitam dizer que uma estatística é "melhor" que outra para estimar um dado parâmetro. M. Barros Cosultoria Ltda.

3 3 De uma maeira geral, as estatísticas devem coter "toda" a iformação presete uma amostra. Se ão fosse assim, ão valeria a pea calcular uma estatística, a gete simplesmete usaria uma úica observação da amostra. Este acréscimo de iformação represetado pelo uso de uma estatística (ao ivés de uma úica observação) geralmete se traduz por uma cosiderável redução a variâcia. Por exemplo, a variâcia da média amostral é igual à variâcia de cada observação dividida pelo tamaho da amostra. Quato maior o tamaho da amostra, meor é a variâcia da média amostral, isto é, mais "precisa" é a média amostral. As estatísticas mais famosas Sejam X, X,..., X uma amostra aleatória de uma distribuição qualquer. As estatísticas mais comus, calculadas a partir desta amostra são: ) Média amostral X = X i i= ) Variâcia amostral S = Xi X i= 3) Desvio padrão amostral S= S = ( Xi X) i= 4) Míimo da amostra X () = mi X, X,..., X 5) Máximo da amostra X = max X, X,..., X 6) Amplitude da amostra A = X () - X () M. Barros Cosultoria Ltda.

4 4 7) k-ésima estatística de ordem É o k-ésimo elemeto da amostra ordeada. Por exemplo, X () é o segudo meor elemeto da amostra X, X,..., X. Um dos ossos objetivos aqui é desevolver as distribuições de estatísticas obtidas a partir de uma amostra aleatória da distribuição Normal. O próximo teorema refere-se à média amostral de uma amostra aleatória da desidade Normal. Sejam X, X,..., X uma amostra aleatória da distribuição N(µ, σ ). Seja X a média amostral. Etão: X N µ σ, A demostração do teorema é trivial, e segue das propriedades da fução geradora de mometos. Este teorema pode ser geeralizado para uma amostra aleatória de uma distribuição qualquer. Sejam X, X,..., X uma amostra aleatória de uma distribuição qualquer tal que E(X i ) = µ e VAR(X i ) = σ. Seja X a média amostral. Etão: ) E( X ) = µ ) VAR( X ) = σ / 3) Se é grade, pelo teorema cetral do limite podemos cocluir que:. X µ σ é aproximadamete N(0,). M. Barros Cosultoria Ltda.

5 5 Note que, este caso, ada é dito a respeito da distribuição de X. Apeas a sua média e variâcia são cohecidas, e são fuções da média e variâcia de cada X i. A pricípio a distribuição de X poderia ser uma coisa estraha, que ão tem ada a ver com a distribuição origial de cada X i. No etato, se o tamaho da amostra é grade podemos cocluir que a distribuição de X, devidamete escaloada, é aproximadamete N(0,). O próximo teorema refere-se à distribuição do máximo e do míimo de uma amostra. Sejam X, X,..., X uma amostra aleatória de uma distribuição cotíua qualquer com desidade f(.) e fução de distribuição F(.). Sejam X () e X () respectivamete, o míimo e o máximo da amostra. Etão as desidades de X () e X () são dadas por: ) Desidade do míimo g ( x) =. f( x). F( x) ) Desidade do máximo g ( x) =. f( x). F( x) Demostração Só faremos a demostração do segudo item (máximo da amostra). A demostração do outro item é semelhate. Note que se X () é o máximo da amostra, etão X () < k equivale a : todo X i < k, para qualquer úmero k. Logo, a fução de distribuição do máximo pode ser facilmete ecotrada, e é dada por: ( ) ( ) G ( k) = Pr X k = Pr X k, X k,..., X k Também, os X i 's são idepedetes, e esta última probabilidade pode ser escrita como o produto das probabilidades para cada X i. Etão: G ( k) = Pr X k, X k,..., X k = Pr X k.pr X k...pr X k M. Barros Cosultoria Ltda.

6 6 Como os X i são ideticamete distribuídos, estas probabilidades são as mesmas para todo X i e correspodem à fução de distribuição F(.) com argumeto k. ( ( )) G ( k) = Pr X k = F( k) A desidade de X () é ecotrada derivado-se a fução de distribuição com relação ao argumeto k, e lembrado que a derivada de F(.) é f(.), a desidade de cada X i. Etão : g dg ( k) df( k) ( k) = =. F( k). = dk dk fk..( Fk ) Exemplo Sejam X, X,..., X uma amostra aleatória da desidade Expoecial com parâmetro λ. Ecotre a desidade de X (), o míimo da amostra. Solução A desidade de cada X i é: λ f( x) = λ. e x A fução de distribuição é: t x Fx = Pr ( X x) = λ λ λ. e dt= e A desidade do míimo é, pelo teorema aterior: x 0 λy λy ( λ ) λy +. λ. y λ g ( y) =. F( y). f( y) =. + e.. e =. λ. e =.. e Ou seja, X () tem desidade Expoecial com parâmetro.λ. = Exemplo A duração de um compoete eletrôico é uma variável aleatória T com distribuição Expoecial com parâmetro λ = Testou-se 00 compoetes e observou-se a duração de cada um deles, gerado uma amostra aleatória T, T,..., T 00. Calcule as seguites probabilidades: a) Pr ( 950 < T < 00) M. Barros Cosultoria Ltda.

7 7 b) Pr ( W > 700) ode W = máx( T, T,..., T 00 ) c) Pr ( V < 0) ode V = mí( T, T,..., T 00 ) Solução a) Note que, se T i ~ Expo( 0.00) para i =,,..., 00 etão : E(T i ) = / 0.00 = 000 e VAR(T i ) = /(0.00) = 0 6 Assim: E(T) = E(T i ) = 000 e VAR(T) = VAR(T i )/00 = 0 4 Pelo teorema cetral do limite: T 000 T 000 Z = = tem aproximadamete a distribuição N(0,). Assim: T Pr( 950 T 00) = Pr = ( Z ) Φ Φ = Pr 05. = 05. = 053. Ode estas últimas probabilidades foram obtidas da tabela N(0,). b) Pr ( W > 700) = Pr{ máx( T, T,..., T 00 ) > 700 } = = - Pr{ máx( T, T,..., T 00 ) 700 } Mas, se W = máx( T, T,..., T 00 ) 700 etão todos os T i são 700. ( W 700) ( T 700 T 700 T 700) Pr = Pr,,..., = 00 ( ( T )) ( e. ) (. e ) = Pr 700 = = = = c) Pr ( V < 0) ode V = mí( T, T,..., T 00 ) Pr ( V < 0) = - Pr( V 0) = - Pr(mí( T, T,..., T 00 ) 0) Mas, se mí( T, T,..., T 00 ) 0 etão todos os T i também são 0. Logo, Pr( V < 0) = - Pr(T 0, T 0,..., T 00 0) = [ ( )].. [ ] [ ] = Pr T 0 = e = e = e = M. Barros Cosultoria Ltda.

8 8 A distribuição Qui-Quadrado Defiição (desidade Qui-Quadrado com k graus de liberdade) Seja X uma variável aleatória cotíua e positiva com desidade dada por: k x / f ( x) =. x. e ode x > 0 k / k. Γ Etão X tem desidade Qui-Quadrado com k graus de liberdade, e escrevemos : X ~ χ k A desidade Qui-Quadrado com k graus de liberdade é apeas um caso particular da desidade Gama. Na verdade: χ k = Gama( α = k/, β = /) Desidades Qui-Quadrado com, 3, 4 e 8 Graus de Liberdade Qui Quadrado() Qui Quadrado(3) Qui Quadrado(4) Qui Quadrado(8) Se X tem desidade Qui-Quadrado com k graus de liberdade etão sua média, variâcia e fução geradora de mometos são dadas por: M. Barros Cosultoria Ltda.

9 9 E(X) = k VAR(X) =.k Mt () = ( t) r/ Demostração Segue direto dos resultados correspodetes para a desidade Gama. A desidade Qui-Quadrado é tabelada. As tabelas desta desidade forecem os potos tais que a probabilidade da variável estar acima deles é especificada. Uma pequea porção de uma tabela da desidade Qui-Quadrado é mostrada a seguir. graus de liberdade Por exemplo: Supodo que X seja uma variável aleatória com desidade Qui-Quadrado com 6 graus de liberdade, a probabilidade de X exceder 0.87 é 99%. Aalogamete, a probabilidade de X exceder.59 é 5% e a probabilidade de X estar acima de 6.8 é apeas %. Uma propriedade muito importate da desidade Qui-Quadrado é a preservação da mesma família de desidades quado somamos variáveis idepedetes. Ou seja, se X, X,..., X são variáveis idepedetes, cada uma com distribuição Qui-Quadrado, a soma de X, X,..., X também é uma variável aleatória Qui-Quadrado. (aditividade da desidade Qui-Quadrado) Sejam X, X,..., X variáveis aleatórias idepedetes, e supoha que X i tem desidade Qui-Quadrado com k i graus de liberdade. Seja Y = X + X X. Etão Y tem também uma desidade Qui-Quadrado, mas com k = k + k k graus de liberdade. O próximo teorema exibe a relação existete etre as desidades Normal padrão e Qui- Quadrado. M. Barros Cosultoria Ltda.

10 0 Seja Z ~ N(0,). Etão V = Z tem desidade Qui-Quadrado com grau de liberdade. Demostração A demostração é feita usado-se o método da fução de distribuição, já que a fução V = Z ão é ijetora, o que os impede de usar o método do jacobiao : G(v) = Pr( V v) = Pr( Z v) = Pr( - v Z + v ) = Φ(+ v ) - Φ(- v ) ode Φ(.) idica a fução de distribuição de uma variável aleatória N(0,). Derivado esta expressão em relação a v resulta a desidade de V, que é : ( v) ( v / ) / gv =.exp.. v.exp.. v = π π v =. v. exp v. = π π / / e v / Isto é : v/ g() v v. e v / = / = v. e π / Γ Substituido k = a defiição da desidade Qui-Quadrado resulta a expressão acima, o que prova o teorema. A combiação dos últimos teoremas leva a um resultado importate. Sejam Z, Z,..., Z variáveis aleatórias idepedetes e ideticamete distribuídas com desidade N(0,). Etão: i i= V = Z = Z + Z Z tem desidade Qui-Quadrado com graus de liberdade. M. Barros Cosultoria Ltda.

11 Este resultado segue trivialmete dos dois últimos teoremas, se lembrarmos que cada Z i tem desidade Qui-Quadrado com grau de liberdade ( e são todos idepedetes). Por que a desidade Qui-Quadrado é importate? Esta desidade está relacioada com a distribuição da variâcia amostral obtida a partir de uma amostra aleatória Normal, como idicado o próximo teorema. Sejam X, X,..., X uma amostra aleatória da distribuição N(µ, σ ). Seja S a variâcia amostral, dada por: Etão: S = ( Xi X) i= ( Xi X) ( ) S i= = σ σ tem distribuição Qui-Quadrado com (-) graus de liberdade. A partir deste teorema podemos deduzir facilmete a média e variâcia de S. Sejam X, X,..., X uma amostra aleatória da distribuição N(µ, σ ). Seja S a variâcia amostral. Etão : ES = σ σ VAR( S ) = Demostração 4 Pelo teorema aterior e sabedo a média e variâcia de uma variável aleatória Qui- Quadrado temos: M. Barros Cosultoria Ltda.

12 ( ) σ E S ( ) σ = E( S ) = = σ ( ) ( ) ( σ ) VAR S.. 4. σ =. ( ) VAR( S ) = = σ ( ) M. Barros Cosultoria Ltda.

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

6. Testes de Hipóteses Conceitos Gerais

6. Testes de Hipóteses Conceitos Gerais 6. Testes de Hipóteses Coceitos Gerais Este capitulo itrodutório, pretede apresetar todas as defiições e todo o vocabulário utilizado em testes de hipóteses. Em um primeiro mometo, talvez você fique um

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores

Uma recorrência é uma equação que descreve uma função em termos do seu valor em entradas menores Uma recorrêcia é uma equação que descreve uma fução em termos do seu valor em etradas meores T( ) O( 1) T( 1) 1 se 1 se 1 Útil para aálise de complexidade de algoritmos recursivos ou do tipo dividir para

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

Da Definição 6.1 pode-se concluir que dada uma amostra aleatória X

Da Definição 6.1 pode-se concluir que dada uma amostra aleatória X Capítulo 6 Distribuições Amostrais A iferêcia estatística está iteressada em tomar decisões sobre uma populaçao, baseado-se apeas a iformação cotida em uma amostra aleatória da população de iteresse. Por

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007)

FACULDADE DE CIÊNCIAS E TECNOLOGIA. Redes de Telecomunicações (2006/2007) FCULDDE DE CIÊCIS E TECOLOGI Redes de Telecomuicações (6/7) Egª de Sistemas e Iformática Trabalho º4 (ª aula) Título: Modelação de tráfego utilizado o modelo de Poisso Fudametos teóricos (cotiuação) 7.

Leia mais

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA

TESTE DE HIPÓTESES. Se a Hipótese Nula (H 0 ) é: COMETE O ACEITA DECISÃO CORRETA O PESQUISADOR ERRO TIPO II COMETE O REJEITA DECISÃO CORRETA Embora com pouco tempo, devido à preparação da 3ª edição do livro Estatística ESAF, preocupado com os cadidatos que farão a prova para Fiscal-RS em 19/08/06 resolvi, mesmo em cima da hora, fazer um resumo

Leia mais

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015

RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 RESOLUÇÃO DA PROVA DE RACIOCÍCNIO LÓGICO QUANTITATIVO P/ APO-MPOG 2015 Olá galera!!!! Hoje estou postado a resolução das questões de Raciocíio Lógico Quatitativo da prova de APO/MPOG, ocorrida o último

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

IND 1115 Inferência Estatística Aula 13

IND 1115 Inferência Estatística Aula 13 mbarros.com 3 mbarros.com 4 Coteúdo IND 5 Iferêcia Estatística Aula 3 Novembro 005 Môica Barros Itervalos de Cofiaça para Difereças etre Médias (Variâcias supostas iguais) Itervalo de Cofiaça para a variâcia

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Testes de Ajustamento (testes da bondade do ajustamento)

Testes de Ajustamento (testes da bondade do ajustamento) Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem:

Exame final de Estatística 1ª Época - 3 de Junho de Duração: 2h30m. Note bem: xame fial de statística ª Época 3 de Juho de 4 Faculdade de coomia José Atóio iheiro Uiversidade Nova de Lisboa aria Helea Almeida Duração: h3m Note bem:. Resolva grupos diferetes em folhas diferetes.

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

Métodos Quantitativos em Contabilidade. Prof. José Francisco Moreira Pessanha

Métodos Quantitativos em Contabilidade. Prof. José Francisco Moreira Pessanha Métodos Quatitativos em Cotabilidade Prof. José Fracisco Moreira Pessaha professorjfmp@hotmail.com Rio de Jaeiro, 4 de setembro de 0 Itrodução O propósito da iferêcia estatística cosiste em fazer afirmações

Leia mais

O poço de potencial infinito

O poço de potencial infinito O poço de potecial ifiito A U L A 14 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial V(x) que tem a forma de um poço ifiito: o potecial é ifiito para x < a/ e para x > a/, e tem o valor

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I UNIVERSIAE E SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I Profa. Lívia Chaguri E-mail: lchaguri@usp.br 1- Redução de Tamaho - Fudametos/Caracterização graulométrica - Equipametos:

Leia mais

Estatística Aplicada à Engenharia Prof. Hélio Radke Bittencourt

Estatística Aplicada à Engenharia Prof. Hélio Radke Bittencourt PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE PÓS-GRADUAÇÃO LATO SENSU ESPECIALIZAÇÃO Egeharia de Processos e de Sistemas de Produção Estatística Aplicada à Egeharia

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais

Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) gustavo_epr@yahoo.com.br José Ivo Ribeiro Júior (UFV) jivo@dpi.ufv.br RESUMO: Para comparar

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

RESPOSTA À DECLARAÇÃO EM DEFESA DE UMA MATEMÁTICA FINANCEIRA:- SISTEMA DE AMORTIZAÇÃO PRICE:- BREVE NOTA SOBRE CERTOS ENIGMAS.

RESPOSTA À DECLARAÇÃO EM DEFESA DE UMA MATEMÁTICA FINANCEIRA:- SISTEMA DE AMORTIZAÇÃO PRICE:- BREVE NOTA SOBRE CERTOS ENIGMAS. RESPOSTA À DECLARAÇÃO EM DEFESA DE UMA MATEMÁTICA FINANCEIRA:- SISTEMA DE AMORTIZAÇÃO PRICE:- BREVE NOTA SOBRE CERTOS ENIGMAS. No sistema de amortização Price, com as seguites hipóteses, ocorrerá cobraça

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA

O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA O TESTE DOS POSTOS ORDENADOS DE GALTON: UMA ABORDAGEM GEOMÉTRICA Paulo César de Resede ANDRADE Lucas Moteiro CHAVES 2 Devail Jaques de SOUZA 2 RESUMO: Este trabalho apreseta a teoria do teste de Galto

Leia mais

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA

CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA CONCEITOS FUNDAMENTAIS DA MATEMÁTICA FINANCEIRA Coceito de taxa de juros Taxa de juro é a relação etre o valor dos juros pagos (ou recebidos) o fial de um determiado período de tempo e o valor do capital

Leia mais

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL . CENTROS DE ASSA.. FORÇAS E CORPOS RÍGIDOS Corpo rígido é aquele que ão se deforma. As forças que actuam em corpos rígidos podem ser classificadas em dois grupos: Forças Exteriores que represetam a acção

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói

CES Centro de Ensino Superior de C. Lafaiete Faculdade de Engenharia Elétrica Física II Prof. Aloísio Elói CES Cetro de Esio Superior de C. Lafaiete Faculdade de Egeharia Elétrica Física II Prof. Aloísio Elói Superposição e Odas Estacioárias Resumo Serway & Jewett, capítulo 14. 1. Pricípío da superposição:

Leia mais

Notas de Aula do Curso ET584: Probabilidade 4

Notas de Aula do Curso ET584: Probabilidade 4 Notas de Aula do Curso ET584: Probabilidade 4 Leadro Chaves Rêgo, Ph.D. 2010.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográcas tedo em vista o coteúdo

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

) x N(núcleos) = λ N desint./seg.

) x N(núcleos) = λ N desint./seg. FÍSICA NUCLEAR E PARTÍCULAS PERÍODOS DE SEMI - DESINTEGRAÇÃO (ACTIVAÇÃO COM NEUTRÕES) Um úcleo radioactivo, após a sua formação, pode decair em qualquer istate. Verifica-se que este processo de decaimeto

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

UNIDADES, ERROS E GRÁFICOS

UNIDADES, ERROS E GRÁFICOS UNIDADES ERROS E GRÁFICOS. Gradeas Físicas e Uidades SI: Sstème Iteratioal d Uités Sèvres Fraça http://www.bipm.r http://phsics.ist.gov/cuu As gradeas e uidades de base do SI Gradea Uidade Nome Símbolo

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica Aula 9 Professor: Carlos Sérgio

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica Aula 9 Professor: Carlos Sérgio Cetro de Ciêcias e Teclogia Agroalimetar - Campus Pombal Disciplia: Estatística Básica - 2012.1 Aula 9 Professor: Carlos Sérgio UNIDADE 5 - TEORIA DA AMOSTRAGEM (NOTAS DE AULA) 1 Itrodução Um problema

Leia mais

PROBABILIDADES E ESTATÍSTICA

PROBABILIDADES E ESTATÍSTICA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero

Leia mais

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N Capítulo 3 Séries Numéricas 3. Geeralização da operação adição A operação adição ou soma é iicialmete defiida como a aplicação que a cada par de úmeros reais faz correspoder um úmero real, de acordo com

Leia mais

Material Teórico - Módulo de Princípios Básicos de Contagem. Arranjos e Combinações Simples. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Princípios Básicos de Contagem. Arranjos e Combinações Simples. Segundo Ano do Ensino Médio Material Teórico - Módulo de Pricípios Básicos de Cotagem Arrajos e Combiações Simples Segudo Ao do Esio Médio Prof Fabrício Siqueira Beevides 1 Arrajos e Combiações O objetivo dessa aula é apresetar os

Leia mais

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações

4 HIDROLOGIA ESTATÍSTICA: conceitos e aplicações 4 HIDROLOGIA ESTATÍSTICA: coceitos e aplicações 4. Coceitos básicos de Probabilidades Um cojuto de dados hidrológicos ecessita ser previamete aalisado com base em algus idicadores estatísticos básicos

Leia mais

ELETROQUÍMICA TÓPICOS EXTRAS

ELETROQUÍMICA TÓPICOS EXTRAS ELETROQUÍMCA TÓPCOS EXTRAS trodução Este artigo tem por fialidade tratar de assutos relacioados com a Eletroquímica que têm sido largamete cobrados os vestibulares do ME e do TA. remos tratar e mostrar

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

ESTATÍSTICA. para Psicologia Parte 2. 01/06/2011 Bertolo 1

ESTATÍSTICA. para Psicologia Parte 2. 01/06/2011 Bertolo 1 ESTATÍSTICA para Psicologia Parte 2 01/06/2011 Bertolo 1 01/06/2011 Bertolo 2 Cap 02 - Medidas Estatísticas A distribuição de frequêcias permite-os descrever, de modo geral, os grupos de valores (classes)

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Adréa Pruer de Oliveira CONJUNTOS INFINITOS Floriaópolis 2005 Adréa Pruer de Oliveira CONJUNTOS

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shie, Colégio Etapa Nível Itermediário.. GRAFOS. O que são e para que servem grafos? Defie-se grafo como o par (V, A) ode V = {v, v,...,v } é um cojuto de vértices e

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

Análise Matemática 2 D. Filipe Oliveira, 2011

Análise Matemática 2 D. Filipe Oliveira, 2011 Aálise Matemática 2 D Itrodução às Séries Numéricas Filipe Oliveira, 20 Coteúdo Itrodução às séries uméricas 3. Prelúdio: O paradoxo de Aquiles e da tartaruga................... 3.2 Sucessão das somas

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20 CONJUNTOS NUMÉRICOS - Números Naturais (IN ) Foram os primeiros úmeros a surgir devido à ecessidade dos homes em cotar objetos. IN = { 0,,,,,, 6,... } - Números Iteiros ( Z ) Se jutarmos os úmeros aturais

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS

ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS WWWCONVIBRAORG ESTUDO DA SECAGEM DE BANANAS ATRAVÉS DO MODELO DE DIFUSÃO USANDO SOLUÇÕES ANALÍTICAS ANDRÉA F RODRIGUES 1, WILTON P SILVA 2, JOSIVANDA P GOMES 3, CLEIDE M D P S SILVA 4, ÍCARO CARVALHO RAMOS

Leia mais

Teorema Fundamental da Trigonometria

Teorema Fundamental da Trigonometria Teorema Fudametal da Trigoometria Na ciêcia ada é sagrado, tudo é real deriva da experiêcia, da aálise e da lógica e a experiêcia é o criério da verdade. Prof. Grageiro. A relação etre o comprimeto da

Leia mais

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA

MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Estatística I Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 4 Prof.: Patricia Maria Bortolo, D. Sc. PROBABILIDADE Ates...... de estudarmos probabilidades é preciso saber quais são as possibilidades de um determiado feômeo/experimeto Precisamos

Leia mais

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos

Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis rassis@rassis.com http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

CORDAS E TUBOS SONOROS TEORIA

CORDAS E TUBOS SONOROS TEORIA CORDAS E TUBOS SONOROS TEORIA Já vimos a formação de odas estacioárias de maeira geral. Agora, vamos estudar este assuto de forma mais específica. Primeiramete, vamos os cocetrar em uma corda, que pode

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais