1.1. Função Seno e Função Cosseno

Tamanho: px
Começar a partir da página:

Download "1.1. Função Seno e Função Cosseno"

Transcrição

1 Funções Trigonomérias.. Função Seno e Função Cosseno Função seno é a função f:, dada por f() = sen, al que sen é a ordenada do pono do aro orienado A, no ilo rigonomério, de origem A e eremidade om medida. Função osseno é a função f:, dada por f() = os, al que os é a absissa do pono do aro orienado A, no ilo rigonomério, de origem A e eremidade om medida. sen os (os, sen ) Sendo a função seno e osseno raadas, respeivamene, omo a ordenada e a absissa do pono ese assumirá onvenienemene os sinais segundo o sisema aresiano orogonal. (os, sen ) (-, +) (+, +) (-, -) (+, -) A de a. rese de a. rigonomeria De a o seno derese de a. e de - a. De a o seno res- Observe que pode oninuar a desloar-se no ilo indefinidamene, dando um número qualquer de volas. Noemos que o seno assumirá, em qualquer uma desas volas, os mesmos valores da primeira vola, dadas as mesmas ondições, ou seja, iso signifia dizer que a função f = sen repeese periodiamene de em. Noemos iso no seu gráfio, denominado senóide. - - eríodo da função seno 5 Uma função = f ( ) é periódia se emos números reais p ais que f = f ( p), para o do perenene ao domínio da função. Desa forma, o período p da função dada por f = b asen( m n) é dado por: p = m Oura araerísia imporane da função f = sen é que essa função é impar pois sen(- ) = -sen( ), para odo real. Caraerísias da Função Seno Caraerísias da Função Cosseno A função seno nuna assumirá valores maiores que e menores que -, aja viso que o raio do ilo rigonomério é (uniário). Desa forma a imagem da função seno esá ompreendida no inervalo fehado [-, ]. ara analisarmos o omporameno da função seno, imagine um pono desloando-se no senido ane-horário a parir da origem aé omplear uma vola. A função osseno nuna assumirá valores maiores que e menores que -, devido ao fao de que o raio do ilo rigonomério é (uniário). Desa forma a imagem da função osseno esá ompreendida no inervalo fehado [-, ]. ara analisarmos o omporameno da função osseno, imagine um pono, omo feio om a função seno, desloando-se no senido ane-horário a parir da origem aé omplear uma vola. De a o seno rese De a o seno de- De a o osseno de- De a o osseno de-

2 rigonomeria rese de a. rese de a -. De a o osseno De a o seno rese de a. rese de - a. Observe que aqui pode oninuar a desloarse no ilo indefinidamene, dando, ambém, um número qualquer de volas. Noemos que o osseno assumirá, em qualquer uma desas volas, os mesmos valores dos da primeira vola, dadas as mesmas ondições, ou seja, iso signifia dizer que a função f = os repee-se de em. Sendo, ambém, uma função periódia. Observe iso no seu gráfio, denominado ossenóide. f() = g A função angene ambém é periódia, porém, seu período, diferenemene das funções seno e osseno ujo período é, vale, ou seja, no ilo rigonomério, em ondições idênias, ela se repee em inervalos de em, veja a seqüênia abaio. De a o angene rese de aé +. De a o angene rese de - aé eríodo da função osseno O período p da função f = b aos( m n) é dado por: p = m Observe, ambém, que a função osseno é uma função par, ou seja, os(-) = os(), para odo real. Observe que, da primeira meia vola em diane a angene em o mesmo omporameno anerior, ou seja, ela se repee de meia em meia vola (de em ). Aompanhando o desrio aima podemos failmene onsruir o gráfio da função angene, omo eposo abaio: Comparação Enre as Funções Seno e Cosseno Noe que o gráfio da função osseno nada mais é do que o gráfio da função seno desloado de unidades na horizonal para a esquerda. Tal araerísia pode ser, de forma simples, raduzida maemaiamene assim: os() = sen, para odo. Noe esse fao na figura abaio. - - Função Tangene 5-5 Observe que a imagem da função angene é odo onjuno dos reais. O período de uma função angene qualquer f() = g (m n) é dado por: p = m É a função definida para dada por: k, k,

3 EXERCÍCIOS rigonomeria. Observe o movimeno da máquina indiada na figura. O O O d d d - Q Um moor gira a manivela O em orno do pono O. A eremidade desa manivela, ao girar, desloa-se denro do vão da peça, empurrando-a para ima ou para baio. Esse movimeno de vaivém verial é o únio que a peça pode efeuar, pois ela passa pelo inerior da peça d, que funionando omo guia, lhe impede os movimenos laerais. Vamos esudar o movimeno verial do pono Q (eremidade inferior da peça ) em função do empo, supondo que a manivela O enha m de omprimeno e gire no senido ani-horário a uma veloidade onsane de 5 roações por minuo e que no insane = a ordenada do pono Q seja =, onforme india a figura anerior. Tomando omo unidade a medida de m, podemos onsiderar a irunferênia desria pelo pono omo sendo uma irunferênia rigonoméria. Com base no eo, alule o que se pede: a) Qual o desloameno angular, em radianos do pono no insane = s? b) Em que insane o pono esará em uma posição siméria em relação à horizonal à posição do iem anerior? ) Qual a ordenada do pono Q no insane =? d) Enre o primeiro e ereiro segundos a ordenada de Q aumena ou diminui? E enre o seo e o nono segundo? e) Como seria o gráfio que represena o movimeno verial do pono Q em função do empo?. Um espeialisa, ao esudar a influênia da variação da alura das marés na vida de várias espéies em ero manguezal, onluiu que a alura A das marés, dada em meros, em um espaço de empo não muio grande, poderia ser modelada de aordo om a função: A(),6, sen. Nessa função, a variá- 6 vel represena o empo deorrido, em horas, a parir da meia-noie de ero dia. Nesse oneo, onlui-se que a função A, no inervalo [,], esá represenada pelo gráfio: Q Q. represena o gráfio da função definida por f() = aosb. Os valores de a e b são, respeivamene: a) e b) - e ) e d) - e e) - e - -

4 . Se f() a bsen() em omo gráfio - Enão: a) a=- e b= b) a=- e b= ) a= e b=- d) a= e b=- d) a= e b=- 5. Uma equipe de mergulhadores, denre eles um esudane de iênias eaas, observou o fenômeno das marés em deerminado pono da osa brasileira e onluiu que o mesmo era periódio e podia se aproimado pela epressão: 5 () os( ) 6 onde é o empo (em horas) deorrido após o iníio da observação (=) e () é a profundidade da água (em meros) no insane. 5 a) Resolva a equação os( ) para >. 6 b) Deermine quanas horas após o iníio da observação oorreu a primeira maré ala. 6. Esudando-se o fluo de água em um pono do esuário de um rio, deerminou-se que a água flui para o oeano na vazão v, em milhões de liros por hora, em função do empo, em horas, de aordo om a equação v() A Bsen(w) em que A,B e w são onsanes reais posiivas e. A vazão na qual a água do rio flui para o oeano varia por ausadas marés. Na maré baia, a água flui mais rapidamene, om vazão máima de milhões de liros por hora, e, na maré ala, ela flui mais lenamene, om vazão mínima de milhões de liros por hora. Nessa região, o empo enre duas marés ala é igual a horas e minuos. Com base nessas informações, esolha apenas uma das opções a seguir e faça o que se pede, desonsiderando, para efeio de maração na folha de resposas, a pare fraionária do resulado final obido, após efeuar os álulos soliiados. a) Calule o valor do oefiiene A. b) Calule o período, em minuos, da função v. ) Deermine o valor de, em minuos, quando h h, para o qual v() é máima. 7. A emperaura, em graus élsius (ºC), de uma âmara frigorífia, durane um dia ompleo, das rigonomeria hora às horas, é dada aproimadamene pela função: f () os os,. 6 om em horas. Deermine: a) a emperaura da âmara frigorífia às horas e às 9 horas (use as aproimações =, e =,7); b) em quais horários do dia a emperaura aingiu ºC. 8. A função ujo gráfio esá represenada na figura abaio é definida por: - a) sen b) os( / ) ) sen( / ) d).os( / ) e).sen() 9. o gráfio, na figura, é o a função f :. definida por: - a) f().sen() b) f().sen( / ) ) f().sen( / ) d) f().sen() e) f().sen(). O gráfio a seguir represena a função real f. a) f() os() b) f() os() ) f() os( ) d) f() os( ) e) f() os( )

5 . Na figura abaio se em represenada pare do gráfio de uma função rigonoméria f, de em. + rigonomeria Usando as informações dadas nesse gráfio, analise as afirmaivas seguines. () Tal gráfio é o da função dada por f() =.sen. () O período de f é. () f admie duas raízes no inervalo -,. () Se - < <, enão f() <. (5) O onjuno imagem de f é o inervalo -,.. Os dados relaivos aos rimos biológios podem, frequenemene, ser aproimados por urvas de funções rigonomérias. De modo a se ajusar aos dados, a função osseno (gráfio A) sofre algumas ransformações, omo as mosradas nos gráfios B, C e D. (A) (B) (C) = os p A parir dessas informações, julgue os iens. () A função represenada pelo gráfio B é: os ; () O período da função represenada pelo gráfio C é igual ao período da função = os aresido de. () O onjuno imagem da função represenada pelo gráfio D é [, + ].. Uma equipe de agrônomos oleou dados da emperaura (em ºC) do solo em uma deerminada região, durane rês dias, a inervalos de hora. A medição da emperaura omeçou a ser feia às horas da manhã do primeiro dia (=) e erminou 7 horas depois (=7). Os dados puderam ser aproimados pela função. H() 5 5sen( ), onde india o empo (em horas) deorrido após o iníio da observação e H() a emperaura (em ºC) no insane. a) Resolva a equação sen( ), para, b) Deermine a emperaura máima aingida e o horário em que essa emperaura oorreu no primeiro dia da observação. A função U, definida por U() = ros (ω - θ), desreve o desloameno no empo, de um bloo de massa m, preso na eremidade de uma mola, em relação à posição de equilíbrio, onforme a figura adiane. A posição de equilíbrio, nesse aso, é aquela em que U() =. A onsane ω depende apenas da mola e da massa m. As onsanes r e θ dependem da maneira omo o sisema é oloado em movimeno. Com base na siuação apresenada, julgue os iens que se seguem. equilíbrio posição iniial movimeno m m U() U( ) (D) m 5

6 rigonomeria () A função U em período igual a ( - θ). () No insane, o bloo esá novamene na ω posição iniial. () O maior desloameno do bloo, em relação à posição de equilíbrio, é igual a r. () Em qualquer inervalo de empo que enha duração igual a, o bloo passa pela posição ω de equilíbrio. 5. As figuras abaio, om seus respeivos esquemas, ilusram rês das posições assumidas pelo gingar feminino, mosrando que o balançar da pélvis feminina obedee a um ilo osilaório. ) e) d) GABARITO ) A) 6 Tal movimeno osilaório pode ser observado a parir da rea imaginária (r) que passa pelas duas risas ilíaas perpendiular à semi-rea imaginária (s) que, na ilusração, represena a oluna verebral. Quando a mulher se desloa no seu andar, a rea (r) osila em orno do enro C para ima e para baio, aompanhando o rimo da pélvis, onforme mosram as figuras om os respeivos esquemas. Admiindo que o movimeno se omplea a ada,5 segundo e que a função ( ) os represena a variação do ângulo em função do empo, assinale o esboço do gráfio dessa função no inervalo [ ;,5 ]. a) B) segundos. C) m D) subiu E) senoide ) A ) B ) D k 5 5) a),k b) hmin. 6) a) b)7 ) 9 7) a) para =,5 ºC para = 9,7 ºC b) = 8 = hora, = 8 = 8 horas, = 8 = 6 horas e = 8 = horas. 8) E 9) C ) B ) E E C E C ) E E C b) 6

Comprovação por simulação da importância do controle adaptativo de corrente

Comprovação por simulação da importância do controle adaptativo de corrente Universidade Federal do Rio de Janeiro Programa de Engenharia Eléria - COPPE COE723 Conrole de Máquinas Elérias 2ª Lisa de Exeríios Comprovação por simulação da imporânia do onrole adapaivo de orrene Rafael

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1

DVD do professor. banco De questões. 3. (Mackenzie-SP) f 1. I. O período de f 1. II. O maior valor que f 2. III. O conjunto imagem de f 1 coneões com a maemáica banco De quesões Capíulo Funções rigonoméricas banco De quesões capíulo. (FEI-SP) O gráfico da função 5 f() 5 senh H no inervalo [, ] é: Funções rigonoméricas Grau de dificuldade

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais.

FATO Medicina. Lista Complementar Física - MRU / MRUV( Prof.º Elizeu) 5,0 m s, e a maior. 5 km e 10 km, sua velocidade foi 30 km h. 10 km totais. FATO Medicina Lisa Complemenar Física - MRU / MRUV( Prof.º Elizeu) 0. (Efomm 07) Um rem deve parir de uma esação A e parar na esação B, disane 4 km de A. A aceleração e a desaceleração podem ser, no máximo,

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 21/10/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 21/1/217 Aenção: Leia as recomendações anes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do carão de resposas. 2- Leia os enunciados com aenção. 3- Analise sua resposa.

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO . INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

v p Sabendo que o cone formado tem um ângulo = 50 e que a radiação emitida percorreu uma distância d = 1,6 m em t = 12 ns, calcule.

v p Sabendo que o cone formado tem um ângulo = 50 e que a radiação emitida percorreu uma distância d = 1,6 m em t = 12 ns, calcule. 1.Considere que, no ano de, um rem expresso passa por uma esação à veloidade de 0,, em que é a veloidade da luz. Henrique esá denro desse rem, em um vagão que mede 30 m de omprimeno. Quando o rem esá passando

Leia mais

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica

Escola Secundária da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo de 2003/04 Funções exponencial e logarítmica Escola Secundária da Sé-Lamego Ficha de Trabalho de Maemáica Ano Lecivo de 003/04 Funções eponencial e logarímica - º Ano Nome: Nº: Turma: 4 A função P( ) = 500, 0, é usada para deerminar o valor de um

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

(I)

(I) Duas parículas esão em movimeno uniforme descrevendo circunferências concênricas de raio diferenes e períodos de 80 s e 0 s. No insane inicial as parículas esão alinhadas com o cenro das circunferências.

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2

Questões sobre derivadas. 1. Uma partícula caminha sobre uma trajetória qualquer obedecendo à função horária 2 Quesões sobre deriadas. Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária s ( = - + 0 ( s em meros e em segundos. a Deermine a lei de sua elocidade em função do empo. b Deermine

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Se um sinal arbitrário x(t) for aplicado à entrada do filtro de quadratura, o sinal na saída será

Se um sinal arbitrário x(t) for aplicado à entrada do filtro de quadratura, o sinal na saída será 3.5 Filros de uadraura e Transormada de Hilber ransormada de Fourier permie o esudo de ilros apazes de separar sinais, baseados em suas requênias. Conudo, exisem oasiões onde a separação de sinais baseados

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Cinemática unidimensional

Cinemática unidimensional 0.1 Problemas correspondenes ao Capíulo 2 1 0.1 Problemas correspondenes ao Capíulo 2 Cinemáica unidimensional 1. A conclusão de Zeca esá errada. Podemos verificar isso mesmo anes de fazer qualquer cálculo,

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 2 13 FÍSICA QUESTÕES DE 31 A 45 31. No circuio abaixo, uma fone de resisência inerna desprezível é ligada a um resisor R, cuja resisência pode ser variada por um cursor.

Leia mais

k π PROCESSO SELETIVO O DIA GABARITO 3 13 FÍSICA QUESTÕES DE 31 A 45

k π PROCESSO SELETIVO O DIA GABARITO 3 13 FÍSICA QUESTÕES DE 31 A 45 PROCESSO SELETIVO 27 2 O DIA GABARITO 3 13 FÍSICA QUESTÕES DE 31 A 45 31. Um projéil é lançado horizonalmene de uma alura de 2 m, com uma velocidade inicial de módulo igual a 15 m/s. Desprezando-se a resisência

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III LISTA FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III. Faça a represenação gráfica dos campos veoriais gerados por: a) V [, y] x b) V y i x j c) V [ x, y ]. Deermine o lugar no espaço onde os veores, do

Leia mais

3.8. Resolução de grelhas hiperestáticas:

3.8. Resolução de grelhas hiperestáticas: 3.8. Resolução de grelhas hiperesáias: 3.8.1. Esforços inernos e formas de vinulação em grelhas isosáias Chamamos de grelhas as esruuras planas soliiadas por arregameno perpendiular ao plano da esruura.

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO PEF2602

FACULDADE DE ARQUITETURA E URBANISMO DA UNIVERSIDADE DE SÃO PAULO PEF2602 Exeríios sobre Flexão Composa - Gabarios 6.1. Um pose de alumínio é fixado na base e puxado no opo por um abo om uma força de ração T, onforme a figura, fazendo um ângulo α = 0 o. O pose em omprimeno L=,0m

Leia mais

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius

SEM 0534 Processos de Fabricação Mecânica. Professor: Renato Goulart Jasinevicius SEM 0534 Proessos de Fabriação Meânia Professor: Renao Goular Jasineviius SEM 0534 Proessos de Fabriação Meânia Eonomia da Usinagem Condições eonômias de ore CÁLCULO DA VELOCIDADE DE MÁXIMA PRODUÇÃO (Vmxp)

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Relatividade especial Capítulo 37

Relatividade especial Capítulo 37 Relaiidade espeial Capíulo 37 º Posulado: s leis da físia são as mesmas em odos os refereniais ineriais. º Posulado: eloidade da luz no áuo em o mesmo alor em odas as direções e em odos os refereniais

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda) Lisa de Função Eponencial e Logarímica Pré-vesibular Nourno Professor: Leandro (Pinda) 1. (Ueg 018) O gráfico a seguir é a represenação da 1 função f() log a b 3. (Epcar (Afa) 017) A função real f definida

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

7. t x y x t s y s 11. F x y. Dica: y p 12. G x y Calcule a integral. 19. x 3 2x dx t 3t 2 dt 22. y 1.

7. t x y x t s y s 11. F x y. Dica: y p 12. G x y Calcule a integral. 19. x 3 2x dx t 3t 2 dt 22. y 1. . Eercícios. Eplique eaamene o significado da afirmação derivação e inegração são processos inversos.. d 6. sen d. Seja f d, em que f é a função cujo gráfico é mosrado. (a) Calcule para,,,, 4, e 6. (b)

Leia mais

3. Aplicação. As vendas mensais M de um modelo Iphone recém-lançado são modeladas por. em que t é o número de meses desde o lançamento.

3. Aplicação. As vendas mensais M de um modelo Iphone recém-lançado são modeladas por. em que t é o número de meses desde o lançamento. EXERCÍCIOS RESOLVIDOS. Calcule a derivada de cada unção abaio:. Aplicação. Uma parícula se desloca em linha rea, de al orma que sua disância à origem em meros é dada, em unção do empo, pela equação:. Calcule

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [C] No eixo horizonal, o movimeno é uniforme com velocidade consane o empo, podemos calculá-la. Δs 60 m vh vh vh 15 m s Δ 4 s Com o auxílio da rionomeria e com a velocidade

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /08 Obs.: Esa lisa deve ser enregue resolvida no dia da prova de Recuperação. Valor:

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

Respondidos (parte 13)

Respondidos (parte 13) U Coneúdo UNoas de aulas de Transpores Exercícios Respondidos (pare 3) Hélio Marcos Fernandes Viana da pare 3 Exemplo numérico de aplicação do méodo udo-ou-nada, exemplo de cálculo do empo de viagem equações

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Fundamentos de Telecomunicações 2003/04

Fundamentos de Telecomunicações 2003/04 INSIUO SUPERIOR ÉCNICO Número: Fundamenos de eleomuniações 3/ EXAME Fevereiro 5, Duração: minuos Nome: Preende onabilizar as noas dos eses? sim não A preenher apenas por quem não ompareeu ao exame de 7

Leia mais

Física C Extensivo V. 7

Física C Extensivo V. 7 Física C Exensivo V. 7 Resolva Aula 6 Aula 8 6.01) C 6.0) E 8.01) D 8.0) 60º 7.01) B 7.0) E F m = µ 0 π F m = µ 0 π F m = µ 0 π. i i 1.. l d. I. I. l d. I. l d Aula 7 l = 50 cm l,5 m a) φ 1 = B 1. A. cos

Leia mais

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D] Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS ENTRO DE TENOLOGIA LABORATÓRIO DE HIDRÁULIA Vladimir aramori Josiane Holz Irene Maria haves Pimenel Marllus Gusavo Ferreira Passos das Neves Maceió - Alagoas Ouubro de 2012

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

Resolução. Caderno SFB Enem

Resolução. Caderno SFB Enem Caderno SFB Enem COMENTÁRIOS EXERCÍCIOS PROPOSTOS 0. Do enunciado, emos: y x k, onde k é a consane de proporcionalidade. Assim: 6 5 k k 50 Logo: y x 50 y 5 50 y 0. Seja L a quanidade de laranjas ransporadas:

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

CORREÇÃO DE SIMULADO Extensivo - Maio

CORREÇÃO DE SIMULADO Extensivo - Maio www.pascal.com.br CORREÇÃO DE SIMULDO Exensivo - Maio - 009 QUESTÃO 1 (P - 009) QUESTÕES 01. Esá correa. Um dos aspecos posiivos da hidroelericidade é o uso de insumos renováveis e não poluenes (a água),

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

1) Verifique quais das sentenças dadas correspondem à lei de uma função exponencial. x

1) Verifique quais das sentenças dadas correspondem à lei de uma função exponencial. x 9ª LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMÁCIA PROFESSOR: LUIZ CELONI ASSUNTO: FUNÇÃO EXPONENCIAL, LOGARÍTMICA E APLICAÇÕES ) Verifique quais das senenças dadas correspondem à lei

Leia mais

Lista de exercícios Logaritmos Prof: Maurício. Ensino Médio 3º ano classe: Nome:, nº data: /05/18. f(x) x 4 e g(x) 1 log1

Lista de exercícios Logaritmos Prof: Maurício. Ensino Médio 3º ano classe: Nome:, nº data: /05/18. f(x) x 4 e g(x) 1 log1 Lisa de eercícios Logarimos Prof: Maurício Ensino Médio º ano classe: Nome:, nº daa: /0/8.. (Espce (Aman) 08) A curva do gráfico abaio represena a função y log magniudes superiores a 8.0, foi idealizada

Leia mais

2.7 Derivadas e Taxas de Variação

2.7 Derivadas e Taxas de Variação LIMITES E DERIVADAS 131 2.7 Derivadas e Taas de Variação O problema de enconrar a rea angene a uma curva e o problema de enconrar a velocidade de um objeo envolvem deerminar o mesmo ipo de limie, como

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Imersão Matemática Log e Exponenciais

Imersão Matemática Log e Exponenciais Imersão Maemáica Log e Eponenciais. (Fuves) Considere as funções f() e Nessa função, o valor de y g() log, em que o domínio de é o conjuno a) b) dos números reais e o domínio de g é o conjuno dos números

Leia mais

Função Exponencial Nível Básico

Função Exponencial Nível Básico Função Eponencial - 16 Nível Básico 1. (Imed 16) Em relação à função real definida por g(g()) corresponde a: a) 1. b). c) 3. d). e) 5. g() 1, é correo afirmar que. (Uel 15) A miose é uma divisão celular,

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011.

A Teoria da Relatividade Especial. Prof. Edgard P. M. Amorim Disciplina: FEE º sem/2011. A Teoria da Relaiidade Espeial Prof. Edgard P. M. Amorim Disiplina: FEE º sem/. Inrodução Para definirmos o esado de um sisema físio preisamos: Sisema de referênia: em relação ao quê? Posições e deriadas

Leia mais