CONTROLE VETORIAL (FASORIAL) DE UM MOTOR ASSÍNCRONO TRIFÁSICO USANDO DSP S

Tamanho: px
Começar a partir da página:

Download "CONTROLE VETORIAL (FASORIAL) DE UM MOTOR ASSÍNCRONO TRIFÁSICO USANDO DSP S"

Transcrição

1 CONTOE VETOIA (FAOIA) DE UM MOTO AÍNCONO TIFÁICO UANDO DP Pof. Ineu Alfeo oncon J. Doutoano o Insttut fü egelungstechnk Baunschweg - If Funação Escola Técnca beato alzano Vea a Cunha Unvesae o Vale o o os nos UNIINO e-mal: esumo O pesente texto tem como objetvo a subsío ao pofesso o ensno pofssonal nas áeas e eletônca, eletotécnca, automação e contole, paa ensno ou esenvolvmento e um pojeto pátco sobe Contole vetoal e máqunas assínconas e nução. Paa tanto, apesentam-se funamentação teóca o contole, poposta e pojeto e mplementação a técnca o mesmo e exemplos e smulação no IMUINK. Palavas-chave: Máqunas Elétcas, Contole Vetoal, Moto e Inução, DP. Abstact The followng atcle has as ts objectves povng backgoun fo the techncal teache n the aeas of electoncs, electotechncs, automaton an contol, n oe to evelop a pactcal o teachng poject on the subject of Vecto Contol of asynchonous nucton machnes The basc contol theoy, a poject poposal, a poposal fo mplementng t an examples of IMUINIC smulatons ae also pesente. Keywos: Electc Machne, Vecto Contol, Inucton Moto, DP. 1. Intoução O pesente texto esceve e manea sucnta uma poposta paa pojeto e contole e um moto e nução assíncono tfásco a se usao po pofessoes em pátcas e sala e aula. O moto possu em seu exo um encoe paa que se possa etemna e contola a posção o mesmo. Exstem pelo menos os DP s bem conhecos, a sée os TM a Texas e a sée 56F8x a Motoola. Pessupõe-se que a estutua e o pncípo e funconamento o moto e nução seja conheco, po este motvo, apenas concetos báscos são elembaos. Um moto e nução tem a segunte estutua eleto-mecânca: cacaça, estato e oto. O oto poe se o e gaola (e esqulo) ou bobnao e não há nenhum contato ente este e o enolamento o estato. Ele á ga uncamente sob o efeto o campo gante cao pelo estato, confome fgua 1.

2 Fgua 1: Moto e sua estutua No nteo a cacaça (fgua ), exste o estato, fomao po chapas lamnaas e aço slíco, extemamente elgaas e solaas umas as outas. Nela se encontam os entes (sulcos) o estato, one são epostaos os conutoes que fomam os pólos a máquna, e também as combnações e fase. Fgua : Cacaça No nteo o ofíco o estato, é colocao o oto (fgua ). Ente este e o estato a lgação é feta apenas atavés o campo magnétco. Há mutos tpos e oto, o mas comum é o e gaola: Fgua : oto Uma máquna assíncona tfásca equlbaa poe se epesentaa pelas equações a segu: θ [ V ] [ ][ ] [ ] [ ] [ ( θ )] [ ] [ ( θ ) ][ ] θ e [ V ] [ ][ ] [ ] [ ] [ ( θ )] [ ] [ ( θ ) ][ ] θ θ

3 Nestas equações [ epesenta a tensão nos temnas o estato e [ a tensão nos temnas o oto que, no caso o moto tpo gaola, é gual a zeo. [ ] ] V V s] e [ ] epesentam e foma matcal as esstêncas o estato e o oto espectvamente. Estas matzes são: [ ], [ ] [ ] e [ ] epesentam as nutâncas pópas o estato, espectvamente e são esctas matcalmente po: [ ] M M M M M M, [ ] M M M M M M [ (θ)] e [ (θ), epesenta nustâncas mútuas ente o estato e oto e epene o ângulo θ. Poem se calculaas po: [ ] θ π θ π θ π θ θ π θ π θ π θ θ θ cos ) 4 cos( ) cos( ) cos( cos ) 4 cos( ) 4 cos( ) cos( cos ) ( M, e [ ] [ ] t ) ( ) ( θ θ A fgua 4 mosta como o moto poe se epesentao fasoalmente. Fgua 4: epesentação fasoal Poemos, também, epesenta o moto (fgua 5), em egme pemanente, em função o escoegamento. O moelo elétco teá o segunte fomato:

4 Fgua 5: Moelo Elétco o moto As equações poem se faclmente euzas ou encontaas na maoa as publcações técncas efeentes a máqunas elétcas.. Descção matemátca o moto e nução tfásco usano vetoes (fasoes) Poe-se esceve um moto tfásco como uma máquna fásca. O objetvo é euz o númeo e equações e smplfca o poblema..1. Veto espacal ejam a, b, e c as coentes no estato a máquna que pessupomos estejam balanceaas. Então: a b c O veto coente espacal é efno como o segunte: π j k( a a ), one a epesenta o opeao espacal a e, sto é, os ângulos e s a b c gaus ( a - efeênca), 1 e 7 gaus ( a ). K é chamaa e constante e tansfomação e vale k / (Este valo poe se outo e povém a ecomposção os tês enolamentos em os enolamentos ). Gáfco 1: Almentação tfásca

5 O gáfco 1 epesenta a almentação tfásca e valo untáo. Poemos epesenta estas tês tensões, pelos tês exos a segu: Fgua 6: Tensões: epesentação fasoal A fgua 6 epesenta o valo a tensão paa a fase a, sobe o exo hozontal, a fase b está mnuno e valo e valo,87 a unae, a fase c está aumentano e, neste momento, também tem ampltue e,87. Quano a fase a atnge o valo untáo, as outas uas estaão com a ampltue pela metae, confome fgua 7. Fgua 7: Tensões: epesentação fasoal Quano a fase a chega novamente ao valo zeo (18 gaus), as outas uas fases estaão, novamente, com os valoes e,87 a unae, poém em sentos nvetos. Tomano estes vetoes (fasoes) e fazeno a sua soma, teemos uma esultante sempe e mesma ampltue, poém com a sua posção gano em tono o cento os exos, confome fgua 8.

6 esultante Fgua 8: Tensões: epesentação fasoal Esta esultante (fgua 9) é também aa pela expessão : s k( a ab a c ), que poea se também a tensão ou. Tomemos agoa um nstante qualque, po exemplo, quano a fase a completa o : B A C C B esultante I s Fgua 9: Faso esultante upono que esta seja uma posção qualque, abtáa, poemos agoa esenvolve o mesmo esquema, no luga e tês exos, evo as tês fases a ee, esenvolvemos em os exos, sto é, pojetamos s sobe as cooenaas αβ e fazemos, paa faclta, o exo α conc com a fase A, confome fgua 1. j, então: s β β

7 B sα A C C esultante I s β B Fgua 1: Decomposção fasoal e α β a Fazeno as pojeções e usano somente os os exos teemos as seguntes elações: 1 ( b b 1 c c ), one k1, sto é, fo feta somente a ecomposção em os exos. Como explcao anteomente, se a ecomposção é feta e tês tensões (coentes, etc) paa uas, temos que cog, fazeno k se gual a /, potanto o veto (faso) esultante, apesentao na fgua 1, seá um pouco meno em móulo (compmento).. Moelo e um moto e nução - Equações feencas. As equações conseam que o moto tem uma geometa pefeta e se efeem ao moelo espacal anteomente escto, potanto estão esctas em elação às cooenaas α e β. a) Equações feencas paa as tensões o estato: u α α ψ α u β β ψ β b) Equações feencas paa as tensões o oto: u α α ψ α ωψ β

8 u β β ψ β ωψ β É mpotante obseva que temos nas equações anteoes o evo ao movmento o oto, e as tensões são guas a zeo, sto é, o moto é o tpo gaola, one os conutoes (baas) o oto estão em cuto-ccuto. c) Os s que enlaçam o oto e o estato em função as coentes são: ψ ψ ψ ψ α β α β α β α β m α m β m sα m sβ ) O Toque eletomagnétco é: t e p ( ψ p α β ψ β α ) One os símbolos epesentam: α,β : cooenaas otogonas ao estato u α,β : tensão o estato α,β : coentes o estato u α,β : tensão no oto α,β : coente no oto; ψ α,β : magnétco o estato ψ α,β : magnétco o oto : esstênca e fase o estato : esstênca e fase o oto : nutânca e fase o Estato : nutânca e fase o oto m : nutânca mútua ( ente estato e oto) ω/ω : velocae (elétca) o oto / velocae síncona p p : númeo e paes e polos t e : toque eletomagnétco Este sstema e efeênca estaconáo, lgao ao estato, poe se novamente ecomposto e, em seu luga, se esenvolvo um sstema e efeênca genealzao que ga com uma velocae angula geal ω g, confome fgua 11. Então supomos os exos x e y, cooenaos com mesma ogem e α e e β, gano com velocae nstantânea θ g ω g, one θ g é o ângulo ente o exo eto o sstema e efeênca estaconáo (α) e o exo os númeos eas (x). Então, neste caso, o veto espacal e coente é escto pela segunte equação: g e jθ g x j y

9 y x g q, s g Fgua 11: Decomposção fasoal É mpotante lemba que k1 e na tansfomação e tfásca paa bfásca k/. A tensão no estato e os efeos s poem se obtos e foma semelhante. Da mesma foma, poemos etemna as coentes, tensões e s que estão elaconaos ao oto. Então os exos α e β teão um ângulo θ ente o oto e os mesmos. Estes exos gam com uma velocae ω. Em elação ao oto, as cooenaas x e y gam com uma velocae qualque ω g, assm vamos te um ângulo que seá ao po θ g -θ. ogo a segunte equação efne o veto espacal e coente o oto com elação a uma efeênca qualque. j( θ g θ ) e j g x y Também e foma semelhante poem se etemnaos as tensões e s paa o oto. As equações a máquna poem agoa se expessas em elação a um sstema e efeênca genealzao. Esta equação é amplamente usaa em algoítmos paa contole e máqunas e nução, pos mta aquelas usaas em contole e máqunas e coente contínua. O pogama Matlab, a segu, exemplfca essas tansfomações. % scpt paa mosta a tansfomacao e tes exos paa os exos % ao plotaos os s e os fasoes vaam e ampltue com o tempo % exo, exo o peto % q exo, q-exo o vemelho % fase a magnenta % fase b cyano % fase c azul % total nstantaneo vee flux_ax(1); flux_ay(1); flux_bx(1);

10 flux_by(1); flux_bx(1); flux_by(1); total_flux_x(1); total_flux_y(1); _axs_x(1); _axs_y(1); q_axs_x(1); q_axs_y(1); n_steps; F1nput('Ente com a fequenca a ee: '); omega_e*f1*p; % toque os valoes paa ve paa altea as caactestcas os fames. f nput(' Ente com a fequenca em Hz: '); omega*f*p; An nput('ente com o angulo Theta: '); theta_an*p/18; hffgue(1); clf ect get(hf,'poston'); ect(1:) [ ]; fo 1:n_steps t*4*p/(omega_e*n_steps); tme()t; % cooenaas atuas paa os exos q, thetaomega*ttheta_; _axs_x()sn(theta); _axs_y()-cos(theta); q_axs_x()cos(theta); q_axs_y()sn(theta); flux_abc[cos(omega_e*t) ; cos(omega_e*t-*p/) ; cos(omega_e*t*p/)]; %tansfoma os s e cooenaas abc em cooenaas alfa e beta (x e y). Note que paa toos os 'vetoes' são aos os valoes %o pmeo em (,) que pemte plota uma lnha paa %mosta o 'veto' flux_ax()cos()*flux_abc(1); flux_ay()sn()*flux_abc(1); flux_bx()cos(*p/)*flux_abc(); flux_by()sn(*p/)*flux_abc(); flux_cx()cos(4*p/)*flux_abc(); flux_cy()sn(4*p/)*flux_abc(); total_flux_x()flux_ax()flux_bx()flux_cx(); total_flux_y()flux_ay()flux_by()flux_cy();

11 ks[cos(theta) cos(theta-*p/) cos(theta*p/); sn(theta) sn(theta-*p/) sn(theta*p/)]; flux_q(:,)ks*flux_abc; subplot(1,,1); plot(_axs_x,_axs_y,'k',q_axs_x,q_axs_y,'',flux_ax,flux_ay,'m',flux_bx,flux_by,'c ',flux_cx,flux_cy,'b',total_flux_x,total_flux_y,'g'); text(_axs_x(),_axs_y(),''); text(q_axs_x(),q_axs_y(),'q'); text(flux_ax(),flux_ay(),'\ps_{a}'); text(flux_bx(),flux_by(),'\ps_{b}'); text(flux_cx(),flux_cy(),'\ps_{c}'); text(total_flux_x(),total_flux_y(),'\ps_{tot}'); axs equal axs([-1.7,1.7,-1.7,1.7]); subplot(1,,); plot(q_axs_x*flux_q(1,),q_axs_y*flux_q(1,),'',_axs_x*flux_q(,),_axs_y *flux_q(,),'k',total_flux_x,total_flux_y,'g') text(q_axs_x()*flux_q(1,),q_axs_y()*flux_q(1,),'\ps_{q}'); text(_axs_x()*flux_q(,),_axs_y()*flux_q(,),'\ps_{}'); text(total_flux_x(),total_flux_y(),'\ps_{tot}'); axs equal axs([-1.7,1.7,-1.7,1.7]); an()getfame(hf,ect); flux_a()flux_abc(1); flux_b()flux_abc(); flux_c()flux_abc(); flux_()flux_q(1,); flux_q()flux_q(,); en fgue() plot(tme,flux_a,'m',tme,flux_b,'c',tme,flux_c,'b',tme,flux_,'k',tme,flux_q,''); fgue(1) clf N 1; FP 5; move(hf,an,n,fp,ect) O gáfco lusta as tês tensões e fase, e as tensões e q têm o segunte fomato (em pu s):

12 Gáfco : Tensões e q A confguação mas popula paa o contole e máqunas e nução é a efeênca lgaa ao ognao pelo oto. Esta elação poe se expessa pelas seguntes equações: a) Equações feencas paa as tensões o estato: u ψ ω ψ q u q q ψ q ω ψ s b) Equações feencas paa as tensões o oto: u u q ψ ( ω ω) ψ q ψ q ( ω ω) ψ q c) Fluxos que enlaçam o oto e o estato em função as coentes: ψ ψ ψ ψ q q q q m m q m s m sq ) Toque eletomagnétco: t e p ( ψ p q ψ q ) Os ccutos equvalentes (fgua 1) seão aos po:

13 q ωψ ( ω - ωψ ) q U s ψ ψ e ω ψ ( ω - ωψ ) U sq ψ q ψ q Fgua 1: Ccuto elétco equvalente 4. O contole vetoal e máqunas assínconas e nução O chamao contole vetoal é uma técnca amplamente usaa paa o contole e máqunas assínconas. Conseano uma máquna e oto lso (eal) e colocano-se a efeênca q em elação ao o oto e fazeno com que este esteja alnhao ao exo eto, teemos: Ψ q e também: Ψ q. Isto é, a componente o com eção a q é sempe nula. Po sso, zemos que a componente é a componente o, e a q é a componente o toque. Toas as componentes (, coentes e tensões) evem se apamente calculaas paa que se faça o contole, sso é conseguo usano-se mcocontolaoes (DP s) muto ápos e ecaos Dagama e blocos o contole A fgua 1 é um agama básco que esceve o contole e uma máquna e nução. Paa sso é necessáo: me vaáves a máquna (coentes e tensões e fase); tansfoma as vaáves em cooenaas e fases (α,β), usano a tansfomação e Clake; calcula o o oto em ampltue e fase (posção); tansfoma as coentes o estato em cooenaas -q, usano a tansfomaa e Pak; contola sepaaamente, po pouzem efetos feentes, as coentes q (toque) e (); esacopla as tensões e saía o estato; usa a tansfoma nvesa e Pak, pos os vetoes tensão estão em cooenaas q, paa tansfomá-los no sstema e cooenas α e β e uas fases fxas; usa a moulação vetoal e gea, novamente, tês fases e tensão paa o chaveamento o nveso PWM.

14 EQUEMA PAA O CONTOE DE MOTOE DE INDUÇÃO AÍNCONO EQUEMA BÁICO: Toque(I q) - Fluxo(I ) Contole e Velocae - Contole e Contole e toque U U q T[q, αβ] U α U β PWM [T ] a b c Encoe - ωθ, q Tansfomação αβ/q T[ α,q] sα sβ Tansfomação abc/ αβ [T ] Fgua 1: Dagamas em bloco o contole 4.. Tansfomaa eta e nvesa e Clake (a,b,c paa α,β e vc-vesa): A tansfomaa eta e Clake tansfoma um sstema e tensão tfásco a,b,c em um sstema bfásco α e β, confome mostao na fgua 14. Os exos α e β são chamaos e exos em quaatua. B sα A C C esultante I s β B Fgua 14: Decomposção fasoal Assumno que o exo a fase a está na mesma eção que o exo α, as coentes em quaatua α e β estão elaconaas a segunte foma: 1 1 ï α k a b c e

15 β k ( b c ), one: a é a coente nstantânea a fase a; b é a coente nstantânea a fase b; c é a coente nstantânea a fase c. Assumno, sempe, que o sstema é consevatvo, que e que paa a b c este caso k /. A expessão anteo em foma matcal teá a segunte foma: α β 1 1/ 1/ k a b b A tansfomação nvesa e Clake faz com que se volte ao sstema e tês exos a,b e c tfáscos, a pat as cooenaas α e β: a α b c 1 1 α β α β ou na foma matcal: a b b α β 4.. Tansfomação eta e nvesa e Pak (α e β paa -q e vce-vesa) As componentes α e β calculaas com a tansfomação e Clake estão efeencaas ao estato. No contole, é necessáo que toas a ganezas tenham uma efeênca comum. A efeênca no estato não é aequaa ao contole poposto, pos s está gano com uma taxa gual à a feqüênca angula as coentes e fase. As componentes em α e β epenem o tempo e a velocae. Estas componentes poem se tansfomaas a efeênca o estato paa o sstema e cooenaas -q, gano na mesma velocae que a feqüênca angula as coentes e fase. Neste caso, as coentes e q nepenem o tempo e também a velocae. e o exo- é alnhao com o o oto, como é lustao na fgua 15 a segu, as coentes poem se faclmente calculaas.

16 β β q ω q α Ψ ω m Ψβ θ Ψα Fgua 15: epesentação gáfca os exos -q e α e β α As componentes e q poem se calculaas pelas seguntes equações: α cos θ β snθ q α sn θ β cosθ Em foma matcal, poemos esceve: q cosθ snθ snθ cosθ α β A componente é chamaa e componente o exo eto e q é chamaa e componente o exo em quaatua. Elas são nvaantes no tempo, e é possível calcula o e o toque e manea elatvamente fácl. Paa evta equações tgonométcas no uso e mcocontolaoes ou DP, poe se feto o segunte: Ψ Ψ Ψ α β sn θ Ψ Ψ β cos θ Ψ Ψ α A tansfomação nvesa e -q paa α e β é aa pelas seguntes equações: α cosθ q snθ β sn θ q cosθ

17 Expessas na foma matcal fcam: α β cosθ snθ snθ cosθ q Obsevação: A foma matcal é nteessante paa o uso as equações em pogamas e softwaes como o mulnk Moelo paa o o oto e uma máquna assíncona: A etemnação a magntue e a posção o veto espacal o é a nfomação chave paa o contole a máquna. Com estas nfomações as cooenaas -q poem se estabelecas com gane pecsão. Há mutos métoos paa obte este veto, o aqu mplementao utlza a montoação (atavés o encoe) a velocae o oto e as tensões e coentes no estato. ão, paa sso, ncalmente efnas as vaáves nas cooenaas efeencaas ao estato (α e β). O eo calculao paa a posção o oto evo a vaações e tempeatua é espezao (nos DP s mas novos este eo já poe se conseao, aumentano com sso a pecsão o contole). O moelo paa o o oto é obto a pat as equações feencas: u α α ψ α ωψ β u β β ψ β ωψ e utlzano-se as equações: e α β 1 1 k a b c k ( b c ) β após manpulação algébca poe-se chega as seguntes equações: [( 1 σ ) T T ] Ψ α m u α Ψ α ωt Ψ β σ m T s α [( 1 σ ) T T ] One, Ψ β m u β Ψ β : Inutânca pópa o estato [H] : nutânca pópa o oto [H] m : Inutânca e magnetzação [H] : estênca e fase o oto [Ohm] s : esstênca e fase o estato [Ohm] ω : Velocae o oto [/s] p p : númeo e paes e pólos o moto ωt Ψ α σ m T s β

18 T, constante e tempo o oto [s] T ; constante e tempo o estato [s] m σ 1, constante magnétca e acoplamento u α, u β, α, β, ψ α, ψ β, são componentes α e β o estato 4.5. Ccuto e esacoplamento: Paa esenvolve o contole vetoal com as cooenaas o o oto é necessáo contola nepenentemente e q (a componente que pouz o e a componente que pouz o toque). Toava, obsevano as equações a segu, u u q q ψ ω ψ ψ q ω ψ q s poemos vefca que u epene e q, pos ψ e u q epene e s, pos ψ q q m q q q m q, po este motvo zemos que estas ganezas estão acoplaas e pecsam se esacoplaas. As coentes o estato ( e q ) poem se nepenentemente contolaas (contole esacoplao) se as equações e tensão o estato são esacoplaas, e as coentes o estato ( e q ) são netamente contolaas, contolano-se os temnas e tensão o moto e nução. Paa alcança este objetvo, as equações em cooenaas -q anteoes são ecompostas em uas componentes, uma componente lnea e a outa componente esacoplaa, fcano então a segunte foma: ln esacoplao u u u K K ω K e ln esacoplao uq uq uq K q K q ω K one: m K e K m As componentes u u q q Ψ T m ωψ ln ln e são as saías os contoles e coente que contolam as esacoplao esacoplao componentes e q, elas são aconaas às componentes esacoplaas. Desta foma poemos te as componentes eta e em quaatua. Isto sgnfca que a tensão na saía os contolaoes e coente é: m u q u

19 u e u ln ln q K K K q K q e as componentes esacoplaas são: esacoplao u ω K q Ψ T m u esacoplao q ω K ωψ m Como se poe ve, o algotmo e esacoplamento tansfoma o moelo não lnea o moto em um moelo com equações lneaes que poem se contolaas po contolaoes genécos PI ou PID, ao nvés e contolaoes mas complcaos. Um exemplo smulao e contole vetoal e uma máquna e nução assíncona poe se esenvolvo no Matlab/mulnk. Os blocos o sstema (fgua 16) lustam como as tansfomações e cooenaas são utlzaas. ão apesentaos gáfcos (valoes elatvos) e como se compotam a coente, o toque e a velocae a máquna paa um etemnao caso aleatóo. Fgua 16: Dagama em blocos o moto AC O gáfco a velocae (scope) é:

20 O gáfco 4 o toque é: Gáfco : Velocae a máquna Gáfco 4: Toque a máquna O gáfco 5 epesenta as coentes no estato: Gáfco 5: Coente o estato 4.6. Moulação Vetoal (pace Vecto Moulaton - VM) A moulação espacal poe tansfoma etamente as tensões o estato expessas nas cooenaas α e β em uma moulação po lagua e pulso (PWM). Um esquema paa emonsta o funconamento e um nveso PWM poe se feto no MATAB e poeá te a foma o agama em blocos (fgua 17) apesentao a segu:

21 Fgua 17: Dagama em blocos e um PWM Uma manea e se consegu uma moulação PWM é utlzano uma moulação em alta feqüênca. Tem-se uma tensão e efeênca que é a magem a tensão que se que utlza, neste caso uma senóe. Esta senóe seá moulaa po uma potaoa tangula, que tenha, pelo menos, um valo e feqüênca 1 vezes mao, sto é, ntouzo o snal moulao em um ccuto e hsteese, o esultao seá uma ona e pulsos etangulaes, cujas laguas epenem a ampltue a ona e efeênca. No gáfco 6, temos a ona e efeênca (senóe), a potaoa e a e pulsos no mesmo plano. Gáfco 6: PWM Obseva-se que a lagua o pulso epene e os fatoes: a ampltue a senóe e o peíoo (feqüênca) a ona tangula. Esta ona e pulsos etangulaes é epos e moulaa e fltaa e moo a epouz o seno e efeênca. A técnca paão paa a geação as tensões em VM é o uso a tansfomação nvesa e Clake paa obte os tês valoes as espectvas fases. Usano o valo a tensão e fase, o cclo e tabalho necessáo paa contola a etapa e potênca é então calculaa. Emboa esta técnca ê bons esultaos, a técnca e moulação vetoal é mas eta, mesmo seno vála somente paa tansfomações o sstema e cooenaas α e β.

22 O pncípo e funconamento poe se explcao, conseano-se os estágos e potênca e um ccuto PWM, como na fgua 18 a segu: V U DC/ Q1 D Q D Q5 D C -U DC/ Q D Q4 D Q6 D -V U AB U BC U CA Fa U b Fb Fc U a U C Moto Assíncono Fgua 18: Chaveamento a máquna Obsevano o ccuto e potênca, como o mostao na fgua anteo, poemos vefca que exstem ses tansstoes e potênca (chaves) que, se chaveaos, pemtem uas combnações e tês chaves, e caa combnação poe te oto estaos. Isto poe se epesentao confome tabela 1: A Q1 ~Q B Q ~Q4 C Q5 ~Q6 U a U b U c U AB U BC U AC epes. Vetoal 1 -U DC / -U DC / U DC / -U DC U DC U 1 -U DC / U DC / -U DC / -U DC U DC U U DC / U DC / U DC / -U DC U DC U 4 1 U DC / -U DC / -U DC / U DC -U DC U 1 1 U DC / -U DC / U DC / U DC -U DC U U DC / U DC / -U DC / U DC -U DC U Tabela 1: Chaveamento Obsevação: ~ sgnfca negação ou complemento.

23 A tabela epesenta os valoes nstantâneos no chaveamento as tensões e lnha e e fases. Estes vetoes, como exemplo, poeam se os calculaos pelo pogama oao no Matlab/mulnk, como os mostaos no gáfco segu: Gáfco 7: Vetoes no espaço A stuação mostaa anteomente coespone à tabela 1, poém exstem váos estaos ntemeáos que epenem o chaveamento (feqüênca, pocemento, etc). Então, se sto é levao em conseação (e nomalmente é), teemos um agama que poeá se paece com o segunte: Gáfco 8: Tajetóa escta pelos fasoes A técnca e moulação vetoal espacal (VM) é usaa como uma ponte eta ente o contole vetoal e PWM e consste em feentes passos: a) entfcação o seto: como se poe ve no gáfco 8, temos ses setoes efnos pelos vétces o polígono que, po sua vez, é efno pelos valoes e abc a tabela; b) ecomposção o veto tensão nas eções o seto U x, U x±6 ; c) cálculo o cclo e tabalho o PWM. O pncípo a VM é a aplcação os vetoes e tensão U xxx e xxx, em etemnaos nstantes e tal manea que o veto méo, pouzo pelo ccuto PWM, no peíoo T PWM seja gual ao veto e tensão esejao.

24 Este métoo pemte uma gane vaeae e aanjos e zeos e não zeos uante o peíoo o PWM. Deve-se leva em conseação as peas no chaveamento, o tempo e chaveamento, etc. Paa escolhe um VM, é sugea a segunte ega: O veto espacal e tensão é geao somente com a aplcação os vetoes báscos não zeos (U x e U x±6 ) e zeos ( ou 111 ). A segunte expessão efne o pncípo a VM: TPWM. U [ α, χ ] T1U X T. U X ± 6 T.( U 111) T PWM T T 1 T Paa etemna os peíoos T, T 1 e T, é necessáo ecompo a tensão U s nas eções e suas bases. Então: TPWMU X T1 T PWM U U X T U ± 6 X ± 6 T U Utlzano-se as expessões anteoes, poem-se etemna os peíoos que são: X 1 TPWM paa o veto U x U X T U X T paa o veto U PWM x±6 e, U X ± 6 T TPWM ( T ) paa os vetoes ou T Uma melho vsão e como a moulação eve se feta, sto é, quano e qual chave eve se fechaa, poe se vsta pela fgua 19, a segu:

25 Fgua 19: Moulação espacal

26 Teno em vsta que o pocessamento eve se extemamente ápo, são utlzaos DP s especas paa este fm (Moulação vetoal). Na fgua a segu, apesenta-se o esquema utlzao pela famíla Motoola DP 56F8x: Fgua : Esquema o kt a Feescale A fgua esceve, atavés e agamas e blocos, a estutua ntena o DP e as suas conexões com a máquna e nução assíncona. Nomalmente, o DP é apesentao paa a vena na foma e kt, este consttu-se a placa com o DP, bem como as chaves, os conectoes e, também, o softwee paa a smulação e pogamação o mesmo.

27 Com o uso esse kt, é sugea a segunte confguação (fgua 1) paa ensaos e máqunas assínconas e nução. Conseações fnas Fgua 1: Esquema paa uso o kt com motoes AC Infomações técncas sobe o kt a Feescale (Motoola), aspectos constutvos, pogamas e aplcações poem se encontaas no ste Há ana um kt ponto paa fns eucaconas, cujo custo apoxmao é e ólaes. Emboa este texto tenha utlzao componentes a Feescale, naa mpee que o mesmo seja usao como funamentação teóca em pátcas com DP s e outos fabcantes. Outas fontes e consulta Insttut fü egelungstechnk. egelung n e elektsche Antebstechnk 1. Übung Anee Wenzel. Matlab 5 Vesão o Estuante. Gua o Usuáo. Makon Books. stemas e Contole Moenos. Dof/Bshop. TC. AHMAN, F. ectues Vecto Contolle of Dves. EEC41/91- Intenet. -Phase AC Inucton Moto Vecto Contol Usng DP56F8x. AN19/D. Motoola, Inc,

Potencial Elétrico. Prof. Cláudio Graça 2012

Potencial Elétrico. Prof. Cláudio Graça 2012 Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de

Leia mais

Geradores elétricos. Antes de estudar o capítulo PARTE I

Geradores elétricos. Antes de estudar o capítulo PARTE I PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de

Leia mais

Breve Revisão de Cálculo Vetorial

Breve Revisão de Cálculo Vetorial Beve Revsão de Cálculo Vetoal 1 1. Opeações com vetoes Dados os vetoes A = A + A j + A k e B = B + B j + B k, dene-se: Poduto escala ente os vetoes A e B A B A B Daí, cos A AB cos A B B A A B B AB A B

Leia mais

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013 Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco

Leia mais

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 839 PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 Abeuçon Atanáso Alves 1 ;AntonoDelson Conceção de Jesus 2 1. Bolssta voluntáo, Gaduando

Leia mais

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001 Ceecaa e Autozaa pelo MEC, Potaa. o. 644 e 8 e maço e 00 Publcao o D.O.U. em 0/04/00 ESTATÍSTICA Pelo Poesso Gealo Pacheco A Estatístca é uma pate a Matemátca Aplcaa que oece métoos paa coleta, ogazação,

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelmna 4 de setembo de Notas de Aula de Físca. OTAÇÃO... AS VAÁVES DA OTAÇÃO... Posção angula... Deslocamento angula... Velocdade angula... 3 Aceleação angula... 3 OTAÇÃO COM ACELEAÇÃO ANGULA CONSTANTE...

Leia mais

i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i

i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i GEDO ELÉTIO "Levao-se em cota a esstêca tea o geao, pecebemos que a p ete os temas é meo o que a foça eletomotz (fem), evo à pea e p a esstêca tea." - + = -. OENTE DE TO-IITO Se lgamos os os temas e um

Leia mais

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele.

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele. Tópco ogem do campo magnétco Tópco Um campo magnétco é geado: a) po eletzação: o polo note magnétco é postvo e o polo sul magnétco é negatvo. b) po cagas elétcas em epouso. c) po cagas elétcas necessaamente

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca ndade Capítulo 9 Geadoes elétcos esoluções dos execícos popostos 1 P.19 Dados: 4 ; 1 Ω; 0 a) 0 4 1 4 b) Pot g Pot g 4 4 Pot g 96 W Pot º Pot º 0 4 Pot º 80 W Pot d Pot g Pot º Pot d 96 80 Pot

Leia mais

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE) Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto

Leia mais

MODELAÇÃO ESTOCÁSTICA DE ESCOAMENTOS EM AQUÍFEROS. SIMULAÇÕES DE MONTE-CARLO CONDICIONADAS

MODELAÇÃO ESTOCÁSTICA DE ESCOAMENTOS EM AQUÍFEROS. SIMULAÇÕES DE MONTE-CARLO CONDICIONADAS MODELAÇÃO ESTOCÁSTICA DE ESCOAMENTOS EM AQUÍFEROS. SIMULAÇÕES DE MONTE-CARLO CONDICIONADAS Manuel M. PACHECO FIGUEIREDO (1), Luís RIBEIRO (2) e José M. P. FERREIRA LEMOS (3) RESUMO Na sequênca do desenvolvmento

Leia mais

Amperímetros e voltímetros

Amperímetros e voltímetros Apesentaemos, neste tópco, os galvanômetos, ou seja, apaelhos ou dspostvos capazes de detecta ou med a coente elétca. Apesentamos, também, um método paa a medda da esstênca elétca. Meddoes de coente Ampeímetos

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ANÁLISE DO ESCOAMENTO E DA GERAÇÃO DE RUÍDO NO SISTEMA DE VENTILAÇÃO EXTERNO DE UM MOTOR DE INDUÇÃO TRIFÁSICO Dssetação

Leia mais

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? *

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * Comentáo sobe o atgo Assocação de plhas novas e usadas em paalelo: uma análse qualtatva paa o ensno médo, de Deyse Pedade Munhoz Lopes, Dante

Leia mais

Integração de Monte Carlo

Integração de Monte Carlo Integação e Monte Calo Ilumnação e FotoRealsmo uís Paulo Peoto os Santos htt://www..umnho.t/uce-cg/ne.h Cometêncas GERAIS : Relacona os váos métoos e lumnação global com o moelo geal sustentao ela equação

Leia mais

MANUAL DE ADMINISTRAÇÃO DE RISCO DA CÂMARA DE DERIVATIVOS: SEGMENTO BM&F

MANUAL DE ADMINISTRAÇÃO DE RISCO DA CÂMARA DE DERIVATIVOS: SEGMENTO BM&F MAUAL DE ADMIISRAÇÃO DE RISCO DA CÂMARA DE DERIVAIVOS: SEGMEO BM&F Maço 0 Págna ÍDICE. IRODUÇÃO... 4. CÁLCULO DE MARGEM DE GARAIA... 6.. MEOOGIAS DE CÁLCULO DE MARGEM DE GARAIA... 7.. PRICIPAIS COCEIOS

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

CONCEITOS EM PLANEJAMENTO E OTIMIZAÇÃO DE REDES PARA MONITORAMENTO DE DEFORMAÇÕES

CONCEITOS EM PLANEJAMENTO E OTIMIZAÇÃO DE REDES PARA MONITORAMENTO DE DEFORMAÇÕES CONCEIOS EM PLANEJAMENO E OIMIZAÇÃO DE REDES PARA MONIORAMENO DE DEFORMAÇÕES Antono Smões Slva 1 Veônca Maa Costa Romão 1 Unvesdade Fedeal de Vçosa UFV -Depatamento de Engenhaa Cvl, asmoes@ufv.b Unvesdade

Leia mais

4. Potencial Elétrico (baseado no Halliday, 4a edição)

4. Potencial Elétrico (baseado no Halliday, 4a edição) 4. Potencal létco 4. Potencal létco (baseado no Hallday, 4a edção) Gavtação, letostátca e nega Potencal Mutos poblemas podem se tatados atavés de semelhanças. x.: a Le de Coulomb e a Le da Gavtação de

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Método Alternativo de Controle Vetorial Usando Processador Digital de Sinais

Método Alternativo de Controle Vetorial Usando Processador Digital de Sinais U NIVERSIDADE F EDERAL DE G OIÁS E SCOLA DE E NGENHARIA E LÉTRICA PROGRAMA DE PÓS GRADUAÇÃO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO Método Altenativo de Contole Vetoial Usando Pocessado Digital de Sinais

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa.

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa. Custo e Captal 1 Custo e Captal Seguno Gtman (2010, p. 432) o custo e Captal é a taxa e retorno que uma empresa precsa obter sobre seus nvestmentos para manter o valor a ação nalterao. Ele também poe ser

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb.

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb. apítul 3-Ptencal eletc PÍTULO 3 POTEIL ELÉTRIO Intduçã Sabems ue é pssível ntduz cncet de enega ptencal gavtacnal pue a fça gavtacnal é cnsevatva Le de Gavtaçã Unvesal de ewtn e a Le de ulmb sã mut paecdas

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Eletrotécnica. Módulo III Parte II - Máquina de Indução. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte II - Máquina de Indução. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletotécnica Módulo III Pate II - Máquina de Indução Pof. Máquina de Indução ou Máquina Aíncona Tipo de máquina elética otativa mai utilizado Tipo de máquina com contução mai obuta (oto em gaiola quiel

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Fenômenos de Transporte I

Fenômenos de Transporte I Prof. Carlos Ruberto Fragoso Jr. Fenômenos e Transporte I 1. Funamentos e Cnemátca os Fluos 1.1 Defnções Escoamento é a eformação contínua e um fluo que sofre a ação e uma força tangencal, por menor que

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

MODELO PLANO DE SUSPENSÃO MACPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS

MODELO PLANO DE SUSPENSÃO MACPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS MODELO PLNO DE UPENÃO MPHERON UTLZNDO TRNFORMDORE NEMÁTO Rcado Texea da osta Neto cado@epq.me.eb.b nsttuto Mlta de Enenhaa, Depatamento de Enenhaa Mecânca Paça Geneal Tbúco, 8 9-7 Ro de Janeo, RJ, Basl

Leia mais

Exercícios Resolvidos Astronomia (Gravitação Universal)

Exercícios Resolvidos Astronomia (Gravitação Universal) Execícios Resolvios Astonoia (Gavitação Univesal) 0 - Cite as leis e Keple o oviento os copos celestes I "As óbitas que os planetas esceve ao eo o Sol são elípticas, co o Sol ocupano u os focos a elipse"

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBEMAS ESOVIDOS DE FÍSICA Pof. Aneson Cose Gauo Depatamento e Físca Cento e Cêncas Eatas Unvesae Feeal o Espíto Santo http://www.cce.ufes.b/aneson aneson@np.ufes.b Últma atualzação: 8/11/6 15: H 4 - e

Leia mais

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler).

3 - DESCRIÇÃO DO ELEVADOR. Abaixo apresentamos o diagrama esquemático de um elevador (obtido no site da Atlas Schindler). 3 - DESCRIÇÃO DO EEVADOR Abaixo apesentamos o diagama esquemático de um elevado (obtido no site da Atlas Schindle). Figua 1: Diagama esquemático de um elevado e suas pates. No elevado alvo do pojeto, a

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

A estrutura do PAEG Ângelo Costa Gurgel, Matheus Wemerson G. Pereira e Erly Cardoso Teixeira Dezembro 2010 PAEG Technical Paper No.

A estrutura do PAEG Ângelo Costa Gurgel, Matheus Wemerson G. Pereira e Erly Cardoso Teixeira Dezembro 2010 PAEG Technical Paper No. A estutua do PAEG Ângelo Costa Gugel, Matheus Wemeson G. Peea e Ely Cadoso Texea Dezembo 2010 PAEG Techncal Pape No. 1 A estutua do PAEG Ângelo Costa Gugel; Matheus Wemeson G. Peea e Ely Cadoso Texea PAEG

Leia mais

A Base Termodinâmica da Pressão Osmótica

A Base Termodinâmica da Pressão Osmótica 59087 Bofísca II FFCLRP P Pof. Atôo Roque Aula 7 A Base emodâmca da Pessão Osmótca Elemetos de emodâmca As les báscas da temodâmca dzem espeto à covesão de eega de uma foma em outa e à tasfeêca de eega

Leia mais

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA

AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA CAPÍTULO 5 A COMPONENTE IMÉTICA INTANTÂNEA E A MÁQUINA IMÉTICA 5. INTODUÇÃO O emprego das componentes smétrcas nstantâneas permte a obtenção de modelos mas smples que aqueles obtdos com a transformação

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA UNIERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA MATRIZ DE LINHA DE TRANSMISSÃO TRIDIMENSIONAL SCN-TD E FD CONTRIBUIÇÃO AO DESENOLIMENTO DE FERRAMENTAS COMPUTACIONAIS

Leia mais

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981 CC Vsã Cputacnal Câeas Insttut ecnlógc de Aenáutca P. Cals Henque Q. Fste Sala IEC aal 598 ópcs da aula Mdels de câeas Aqusçã de agens Paâets da câea Recupeaçã da atz de pjeçã Calbaçã de sa Lv paa acpanha

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Motores Elétricos. IX.1 Motores de Indução Trifásicos (MIT)

Motores Elétricos. IX.1 Motores de Indução Trifásicos (MIT) Eletotécnica Geal IX. Motoes Eléticos IX Motoes Eléticos Um moto elético é uma máquina capaz de tansfoma enegia elética em enegia mecânica, utilizando nomalmente o pincípio da eação ente dois campos magnéticos.

Leia mais

Um Modelo Adaptativo para a Filtragem de Spam

Um Modelo Adaptativo para a Filtragem de Spam Um Modelo Adaptatvo paa a Fltagem de Spam Ígo Asss Baga, Macelo Ladea Depatamento de Cênca da Computação Unvesdade de Basíla (UnB) Basíla, DF Basl goasssbaga@aluno.unb.b, mladea@unb.b Abstact. Spammng

Leia mais

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo.

Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo. Motores síncronos Prncípo de funconamento ão motores com velocdade de rotação fxa velocdade de sncronsmo. O seu prncípo de funconamento está esquematzado na fgura 1.1 um motor com 2 pólos. Uma corrente

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb uso e Física Básica - H Mosés Nussenzveig Resolução o Volue III apítulo A Lei e oulob - Moste que a azão a atação eletostática paa a atação gavitacional ente u eléton e u póton é inepenente a istância

Leia mais

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO 13 CAPÍTULO 2 DINÂMICA DA PATÍCULA: OÇA E ACELEAÇÃO Nese capíulo seá aalsada a le de Newo a sua foma dfeecal, aplcada ao movmeo de paículas. Nesa foma a foça esulae das foças aplcadas uma paícula esá elacoada

Leia mais

A questão das cotas: otimização empresarial respeitando a capacidade de suporte ambiental

A questão das cotas: otimização empresarial respeitando a capacidade de suporte ambiental A questão das cotas: otmzação empesaal espetando a capacdade de supote ambental Mesa: a Teoa econômca e meo ambente: mco e macoeconoma, métodos de valoação. Autoes: Eto Maques de Souza Flho Lcencado em

Leia mais

Aula 4: O Potencial Elétrico

Aula 4: O Potencial Elétrico Aula 4: O Potencal létco Cuso de Físca Geal III F-38 º semeste, 4 F38 S4 Potencal elétco Como podemos elacona a noção de oça elétca com os concetos de enega e tabalho? Denndo a enega potencal elétca (Foça

Leia mais

Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA

Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA Capítulo 4 COSERAÇÃO DA MASSA E DA EERGIA 4.1. Equações para um Sstema Fechao 4.1.1. Defnções Consere o volume materal e uma aa substânca composta por espéces químcas lustrao na Fgura 4.1, one caa espéce

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e eoa da Decsão Logístca e Lcencatua em Engenhaa vl Lcencatua em Engenhaa do etóo 005/006 Agenda 005/006. O papel dos stocks. lassfcação dos odelos de. omposção do custo assocados aos stocks 4.

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

ESTRATÉGIA DE CONTROLE PARA ACIONAMENTO A VELOCIDADE VARIÁVEL PARA MOTORES MONOFÁSICOS COM OPERAÇÃO OTIMIZADA

ESTRATÉGIA DE CONTROLE PARA ACIONAMENTO A VELOCIDADE VARIÁVEL PARA MOTORES MONOFÁSICOS COM OPERAÇÃO OTIMIZADA ESTRATÉGA DE CONTROLE PARA ACONAMENTO A VELOCDADE VARÁVEL PARA MOTORES MONOFÁSCOS COM OPERAÇÃO OTMZADA Ronilson Rocha * Pedo F Donoso Gacia * Selênio Rocha Silva * Mácio Fonte Boa Cotez x UFMG -CPDEE *

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3 apítulo a físca xercícos propostos nae apítulo apactores apactores Resoluções os exercícos propostos P.8 a) aos: ε 0 8,8 0 F/m; (0,0 0,50) m ; 0 m ε 0 8,8 0 0,0 0,50 0 6,6 0 0 F b) ao:.000 V 6,6 00.000,

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

IV SEMEAD TÍTULO SINTÉTICO REPRESENTATIVO DE UM FUNDO DE INVESTIMENTOS. José Roberto Securato 1 RESUMO

IV SEMEAD TÍTULO SINTÉTICO REPRESENTATIVO DE UM FUNDO DE INVESTIMENTOS. José Roberto Securato 1 RESUMO IV SEMEAD TÍTULO SINTÉTIO EPESENTATIVO DE UM FUNDO DE INVESTIMENTOS José obeto Secuato ESUMO O atigo tata da possibilidade de obtemos um título sintético que seja uma mímica em temos de isco e etono de

Leia mais

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo

Rotor bobinado: estrutura semelhante ao enrolamento de estator. Rotor em gaiola de esquilo Coente altenada é fonecida ao etato dietamente; Coente altenada cicula no cicuito de oto po indução, ou ação tanfomado; A coente de etato (que poui uma etutua n-fáica) poduzem um campo giante no entefeo;!"

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

MODELAGEM DE INCERTEZAS EM SISTEMAS DE ATERRAMENTO ELÉTRICOS JOÃO BATISTA JOSÉ PEREIRA

MODELAGEM DE INCERTEZAS EM SISTEMAS DE ATERRAMENTO ELÉTRICOS JOÃO BATISTA JOSÉ PEREIRA UNIERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA MODELAGEM DE INCERTEZAS EM SISTEMAS DE ATERRAMENTO ELÉTRICOS JOÃO BATISTA JOSÉ PEREIRA ORIENTADOR: LEONARDO R. A. X.

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Dados da Empesa Razão Social: Infotec Cusos Pofissionalizantes Ltda. Nome Fantasia: CEBRAC Cento Basileio de Cusos Data de fundação:

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Controle de Erros Adaptativo para Redes de Sensores sem Fio usando Valor de Informação de Mensagens Baseado em Entropia

Controle de Erros Adaptativo para Redes de Sensores sem Fio usando Valor de Informação de Mensagens Baseado em Entropia Contole de Eos Adaptatvo paa Redes de Sensoes sem Fo usando Valo de Inomação de Mensagens Baseado em Entopa João H. Klenschmdt e Walte C. Boell Resumo Este atgo popõe estatégas de contole de eos adaptatvo

Leia mais

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1 ATIVIDADES - CAPÍTULO 1 1 COMPLETE AS FASES USANDO AS PALAVAS DO QUADO: CUIDADOS INTENET CONTAS DIGITA TAEFAS COMPUTADO A COM O COMPUTADO É POSSÍVEL DE TEXTO B O COMPUTADO FACILITA AS tarefas digitar VÁIOS

Leia mais

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado

PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoria Franqueado PRÊMIO ABF-AFRAS DESTAQUE RESPONSABILIDADE SOCIAL 2011 Categoia Fanqueado Dados da Empesa Razão Social: Pé Vemelho Ensino Pofissionalizante SS LTDA Nome Fantasia: BIT Company Data de fundação: 23/05/2009

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

TRIBUNAL DE CONTAS DA UNIÃO. Índice:

TRIBUNAL DE CONTAS DA UNIÃO. Índice: ANEXO 4 ROTEIRO DE VERIFICAÇÃO DO CÁLCULO DO CUSTO DO CAPITAL Roteio de Veificação do Cálculo do Custo do Capital Índice: Índice: Conceitos Veificações 1 VISÃO GERAL... 3 1.1 O QUE É CUSTO DE CAPITAL...

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Fnancera 007. Prof.: Luz Gonzaga Damasceno E-mals: amasceno04@yahoo.com.br amasceno@nterjato.com.br amasceno@hotmal.com 5. Taxa Over mensal equvalente. Para etermnar a rentablae por a útl one

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais