i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i

Tamanho: px
Começar a partir da página:

Download "i CC gerador tg = P U = U.i o i i r.i 0 i CC i i i"

Transcrição

1 GEDO ELÉTIO "Levao-se em cota a esstêca tea o geao, pecebemos que a p ete os temas é meo o que a foça eletomotz (fem), evo à pea e p a esstêca tea." - + = -. OENTE DE TO-IITO Se lgamos os os temas e um geao po um fo e esstêca ula, zemos que o geao está em cuto, pos toa a eega que pouz é sspaa po ele mesmo. Lgação em cuto Obsevações: ª) eclvae essa eta etema a esstêca o geao. tg = = = tg ª) áea caa o gáfco a fgua epeseta a potêca elétca laçaa o ccuto. P =. o emeto e um geao Defe como emeto elétco e um geao a elação ete a potêca útl foeca ao ccuto exteo e sua potêca total geaa. Pot T geao Pot Pot D Nesse caso, a tesão ete seus temas é ula, = 0, e a coete coespoete é tesa o mas possível, a qual eoma-se coete e cuto-ccuto ( ) Seu valo é ao po: = 0 = uva caacteístca o geao omo a fução = E -. é o º gau em elação a, seu gáfco epesetatvo é uma eta. uao: = 0 = = = 0. 0 omo Pot =. e Pot T =., vem: Outa foma comum e expessa o emeto é obta pela substtução o valo e :. Obsevações: Pot Pot T.. uao = 0, geao eal, o emeto é máxmo η =.. uato mao fo a tesae a coete, meo seá o emeto o geao. 3. omo <, teemos sempe η <, sto é, η < 00 %. Pofesso Macos Emílo

2 Máxma tasfeêca e potêca osee o ccuto a segu: potêca máxma tasfea ao ccuto exteo pelo geao é : Pot =. Pot (. ). = -. Pot.. Esta é uma fução e º gau, cuja epesetação gáfca é uma paábola com poto e máxmo: Pot Pot MÁX O omo a paábola é smétca em elação à pepecula ao exo, pelo seu poto e máxmo, vem:. aízes. Substtuo-se a equação o geao: a MÁX MÁX equação.. potêca máxma tasfea ao ccuto exteo pelo geao ocoe quao a tesão ete seus temas é gual à metae a sua f.e.m. Em coção e máxma tasfeêca e potêca, o emeto o geao é e 50 %. ou ssocações e geaoes 50 % É comum, em apaelhos elétcos, como áos e lateas, efetuamos uma assocação e geaoes (plhas) em sée. assocação e geaoes também é chamaa batea e geaoes. ssm, po exemplo, a batea e um automóvel a veae é uma assocação em sée e váos elemetos. É mas ao, mas também poe have ecessae e assocaem-se geaoes em paalelo. No caso a assocação em paalelo, só emos aalsa a stuação em que os geaoes são guas, po se a úca a teessa teesse pátco. hamamos geao equvalete o geao úco que, pecoo po uma coete e tesae gual à a que pecoe a assocação, matém ete seus temas, uma..p. gual à mata ete os temas a assocação. ssm, esolve uma assocação e geaoes é ecota as caacteístcas (f.e.m. e esstêca tea ) o geao equvalete. a) ssocação em sée Geaoes estão assocaos em sée quao são lgaos em seqüêca, e moo que caa pólo e um geao assocao está lgao ao pólo e sal oposto o geao que o sucee ou que o atecee. )... N N N m geao foeceá a potêca máxma quao sua esstêca tea fo gual à esstêca o ccuto exteo. potêca elétca máxma tasfea = N ao ccuto seá: eq = N Pot MÁX 4. eq = N Pofesso Macos Emílo ) eq eq

3 Obsevações: ) geaoes assocaos em sée são pecoos pela mesma coete elétca. ) o geao equvalete é pecoo po coete e mesma tesae que a assocação e matém ete seus pólos a mesma..p. que a assocação. 3) a assocação em sée possu a vatagem e aumeta a foça eletomotz, poém a esvatagem e aumeta a esstêca tea, potato, ssspao uma gae quatae e eega (Pot D ) a foma e calo (efeto joule). No caso e esstoes guas, com foça eletomotz e esstêca tea, teemos: eq =. eq =. b) ssocação em paalelo Neste tpo e assocação, toos os pólos postvos os geaoes são lgaos ete s e toos os pólos egatvos também. oseemos que geaoes assocaos sejam guas, teo a mesma f.e.m. e a mesma esstêca tea 3) o geao equvalete, pecoo po coete e tesae gual à a assocação, matém a mesma..p. 4) a assocação em paalelo possu a vatagem e euz a esstêca tea equvalete à mea que são acescetaos mas geaoes, poém a..p. pemaece a mesma. EEPTO ELÉTIO É um spostvo que tasfoma eega elétca em outa moalae e eega, ão exclusvamete témca. O pcpal ecepto é o moto elétco. O ecepto, ao ecebe a eega elétca e um geao, tasfoma pate ela em eega mecâca útl e a outa pate é sspaa teamete po aquecmeto. Equação caacteístca o ecepto Duate a tasfomação eegétca um ecepto, ocoem peas. Fazeo um balaço eegétco a uae e tempo, temos: P T (elétca ) ecepto ' P P D P T = P + P D P T = E +. ' (mecâca ) (témca ) eq eq = e eq = Obsevação: ) Seo a tesae a coete que atavessa a assocação, em caa um os geaoes assocaos a tesae a coete é. eq ) os geaoes assocaos em paalelo matém = = em cojuto uma mesma..p.. Pofesso Macos Emílo 3 = E + Em que: P T = (potêca total cosuma pelo ecepto) P = E (potêca útl foeca pelo ecepto) P D = (potêca sspaa pelo ecepto) uva caacteístca o ecepto O gáfco a fução = E +. é o º gau em elação a ; logo, o gáfco epesetatvo essa fução é uma eta. uao: = 0 = E 0

4 Obsevação: eclvae essa eta etema a esstêca tea o ecepto: ' ' tg = ' ' tg cutos elétcos ( Le e Ohm Poullet ) ' = e outos o quocete a sua caga amazeaa pelo seu potecal V. uae e o Sstema Iteacoal é o faa (F). faa coulomb volt É usual o empego os submúltplos: o ccuto. = soma e toas as foças eletomotzes ' = soma e toas as foças cota eletomotzes o ccuto. = soma e as esstêcas o mesmo ccuto. Ietfcação os gáfcos e ssto e cepto Geao tg tg PITO O ONDENSDO apacae e um couto osee um couto, calmete euto, seo paulatamete eletzao. elétos ue-se sabe até que poto se cosegue tasfe cagas paa esse couto, ou seja, até que poto ele tem capacae e amazea cagas elétcas. Sabe-se, expemetalmete, que essa capacae o couto eletzao e solao e outos o quocete a sua caga amazeaa pelo seu potecal V. Defe-se como capacae ou capactâca e um couto eletzao e solao Pofesso Macos Emílo 4 ' tg mcofaa = μf = 0-6 F aofaa = F = 0-9 F pcofaa = pf = 0 - F Os coutoes solaos, estuaos ateomete, ão possuem gae capacae e amazea cagas elétcas, pos, mesmo com uma pequea caga, aquem potecas muto altos. Dessa foma o campo elétco também é alto e o couto se escaega com faclae. ma maea e cosegu aumeta a capacae e amazea cagas e um couto é oloca-lo em peseça e outo couto, pos este últmo, evo ao feômeo e ução, ocasoa uma mução o potecal o copo póxmo a ele. Dmuo-se o potecal, o couto poe ecebe mas cagas elétcas até atg ovamete o potecal-lmte. Deoma-se coesao ou capacto o cojuto e coutoes e elétcos aumaos e tal maea que se cosga amazea a máxma quatae e cagas elétcas. Num coesao o copo uto e o uzo ecebem o ome e amauas. O uto é eomao amaua coletoa e o uzo, amaua coesaoa. O meo que sepaa as amauas ecebe o ome e elétco. O que classfca um coesao é a foma as suas amauas e a atueza o seu elétco. uao as amauas são plaas, o coesao é to plao, e quao são clícas o coesao é to clíco. coesao plao coesao clíco

5 Dz-se que um coesao está caegao quao as suas amauas estão caegaas com cagas e mesmo móulo, poém e sas cotáos. Em patcula quao o elétco é o vácuo, temos: absoluta 0 oe - Eega potecal 0 = pemssvae o vácuo 0 = 8, F/m m coesao plao é fomao po placas paalelas e póxmas umas as outas, sepaaas po um elétco e pemssvae. E P ou E P ssocação e coesaoes Paa um coesao e placas paalelas valem as segutes expessões: - apacae em fução a caga e o potecal * é a caga e uma as amauas, pos a soma as uas é ula. * é a feeça e potecal ete as amauas. - apacae em fução o campo elétco omo o campo elétco ete as placas paalelas é ufome, vale: Logo: E E. solate e pems s v ae Os coesaoes poem se assocaos ete s a fm e atee às ecessaes e cetos tpos e ccuto. Po exemplo: os ccutos eletôcos. ssocação em sée Numa assocação em sée, a amaua egatva e um capacto está lgaa à amaua postva o segute. Essa assocação poe se substtuía po um úco coesao, o qual, submeto à mesma..p. a assocação, amazea a mesma quatae e caga: coesao equvalete. E *. caga é gual à os emas coesaoes. = = = 3 * feeça e potecal é gual à soma as p e caa coesao. = * capacae o coesao equvalete coesao equvalete eq - apacae em fução a áea útl as amauas = pemssvae o elétco. oe = áea a supefíce as placas = stâca ete as placas eq 3 Pofesso Macos Emílo 5

6 ssocação em paalelo Numa assocação em paalelo, toas as amauas postvas estão lgaas a um poto e mesmo potecal, assm como toas as egatvas estão lgaas a um outo poto e potecal comum oesao equvalete feeça e potecal é a mesma em toos os coesaoes, uma vez que toos estão lgaos aos mesmos os potos. * p é gual à os emas coesaoes. = = = 3 * caga amazeaa é gual à soma as cagas e caa coesao. = * capacae o coesao equvalete. eq = Pofesso Macos Emílo 6

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001 Ceecaa e Autozaa pelo MEC, Potaa. o. 644 e 8 e maço e 00 Publcao o D.O.U. em 0/04/00 ESTATÍSTICA Pelo Poesso Gealo Pacheco A Estatístca é uma pate a Matemátca Aplcaa que oece métoos paa coleta, ogazação,

Leia mais

Geradores elétricos. Antes de estudar o capítulo PARTE I

Geradores elétricos. Antes de estudar o capítulo PARTE I PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de

Leia mais

A Base Termodinâmica da Pressão Osmótica

A Base Termodinâmica da Pressão Osmótica 59087 Bofísca II FFCLRP P Pof. Atôo Roque Aula 7 A Base emodâmca da Pessão Osmótca Elemetos de emodâmca As les báscas da temodâmca dzem espeto à covesão de eega de uma foma em outa e à tasfeêca de eega

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da físca ndade Capítulo 9 Geadoes elétcos esoluções dos execícos popostos 1 P.19 Dados: 4 ; 1 Ω; 0 a) 0 4 1 4 b) Pot g Pot g 4 4 Pot g 96 W Pot º Pot º 0 4 Pot º 80 W Pot d Pot g Pot º Pot d 96 80 Pot

Leia mais

EXPERIÊNCIA No. 2 - Associação de Resistores

EXPERIÊNCIA No. 2 - Associação de Resistores FTEC-SP Faculdade de Tecologa de São Paulo Laboatóo de Ccutos Elétcos Pof. Macelo aatto EXPEIÊNCI No. - ssocação de esstoes Nome do luo N 0 de matícula FTEC-SP Faculdade de Tecologa de São Paulo Laboatóo

Leia mais

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

Capítulo 6 Corpo Rígido, Estática e Elasticidade

Capítulo 6 Corpo Rígido, Estática e Elasticidade Capítulo 6 Copo Rígdo, Estátca e Elastcdade 6. Noção de Copo Rígdo Estudamos já os movmetos de copos cujas dmesões eam despezáves face às meddas das suas tajectóas ou po coveêca e smplfcação, tomados como

Leia mais

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama.

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama. ELEICIDADE CAPÍULO 5 GEADOES Cofome visto o Capítulo, o geado é uma máquia elética capaz de estabelece uma difeeça de potecial elético (ddp) costate (ou fime) ete os extemos de um coduto elético, de maeia

Leia mais

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 839 PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 Abeuçon Atanáso Alves 1 ;AntonoDelson Conceção de Jesus 2 1. Bolssta voluntáo, Gaduando

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3 apítulo a físca xercícos propostos nae apítulo apactores apactores Resoluções os exercícos propostos P.8 a) aos: ε 0 8,8 0 F/m; (0,0 0,50) m ; 0 m ε 0 8,8 0 0,0 0,50 0 6,6 0 0 F b) ao:.000 V 6,6 00.000,

Leia mais

TRABALHO E POTENCIAL ELETROSTÁTICO

TRABALHO E POTENCIAL ELETROSTÁTICO LTOMAGNTISMO I 5 TABALHO POTNCIAL LTOSTÁTICO Nos capítulos ateioes ós ivestigamos o campo elético devido a divesas cofiguações de cagas (potuais, distibuição liea, supefície de cagas e distibuição volumética

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

Amperímetros e voltímetros

Amperímetros e voltímetros Apesentaemos, neste tópco, os galvanômetos, ou seja, apaelhos ou dspostvos capazes de detecta ou med a coente elétca. Apesentamos, também, um método paa a medda da esstênca elétca. Meddoes de coente Ampeímetos

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO 13 CAPÍTULO 2 DINÂMICA DA PATÍCULA: OÇA E ACELEAÇÃO Nese capíulo seá aalsada a le de Newo a sua foma dfeecal, aplcada ao movmeo de paículas. Nesa foma a foça esulae das foças aplcadas uma paícula esá elacoada

Leia mais

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013 Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS

Prática VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESFERAS Pátca VIII CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO DE UM SISTEMA DE DUAS ESERAS OBJETIVO: Vefca expeetalete a cosevação a quatae e oveto lea e u sstea solao. INTRODUÇÃO TEÓRICA A segua le e Newto às vezes

Leia mais

IND 1603 - Gerência Financeira

IND 1603 - Gerência Financeira 6 IND 603 - Geêca Facea apítulo - Valo Pesete e o usto de Opotudade do aptal Neste capítulo estaemos teessados em calcula valoes pesetes (e futuos) e vamos apede como ada paa fete e paa tás com o dheo.

Leia mais

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE) Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C apítulo da físca apactores Testes propostos ndade apítulo apactores Resoluções dos testes propostos T.55 Resposta: d O potencal elétrco de uma esfera condutora eletrzada é dado por: Vk 0 9 00 9 0,0 0 9

Leia mais

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele.

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele. Tópco ogem do campo magnétco Tópco Um campo magnétco é geado: a) po eletzação: o polo note magnétco é postvo e o polo sul magnétco é negatvo. b) po cagas elétcas em epouso. c) po cagas elétcas necessaamente

Leia mais

2 - Circuitos espelho de corrente com performance melhorada:

2 - Circuitos espelho de corrente com performance melhorada: Electóica 0/3 - Cicuitos espelho de coete com pefomace melhoada: Po ezes é ecessáio aumeta a pefomace dos cicuitos espelho de coete, tato do poto de ista da pecisão da taxa de tasfeêcia de coete como da

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? *

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * Comentáo sobe o atgo Assocação de plhas novas e usadas em paalelo: uma análse qualtatva paa o ensno médo, de Deyse Pedade Munhoz Lopes, Dante

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

PREFEITURA MUNlClPAL DE VIÇOSA

PREFEITURA MUNlClPAL DE VIÇOSA PRAÇA DO ROSÃRIO, 5 - CEP 36570000 - VIÇOSA - MG GABINETCTOPREFEnO LEI N«1199/97 Dispõe sobe alteações no Código Tibutáio do Munícipto e dá outas povidências 0 Povo cte Muntoípio cto Viçosa, po seus epesentutes,

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κ µ

ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κ µ ÁREA DE COBERTURA EM AMBIENTE DE PROPAGAÇÃO MODELADO COM A DISTRIBUIÇÃO κµ κµ JAMIL RIBEIRO ANTÔNIO Dssetação apesetada ao Isttuto Nacoal de Telecomucações INATEL como pate dos equstos paa obteção do Título

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Exercícios Resolvidos Astronomia (Gravitação Universal)

Exercícios Resolvidos Astronomia (Gravitação Universal) Execícios Resolvios Astonoia (Gavitação Univesal) 0 - Cite as leis e Keple o oviento os copos celestes I "As óbitas que os planetas esceve ao eo o Sol são elípticas, co o Sol ocupano u os focos a elipse"

Leia mais

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb.

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb. apítul 3-Ptencal eletc PÍTULO 3 POTEIL ELÉTRIO Intduçã Sabems ue é pssível ntduz cncet de enega ptencal gavtacnal pue a fça gavtacnal é cnsevatva Le de Gavtaçã Unvesal de ewtn e a Le de ulmb sã mut paecdas

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Análise de Componentes Principais

Análise de Componentes Principais PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Prof. Daniel I. De Souza, Jr., Ph.D.

Prof. Daniel I. De Souza, Jr., Ph.D. CONAMET/SAM 26 TESTE DE VIDA SEQÜENCIAL APLICADO A UM TESTE DE VIDA ACELERADO COM UMA DISTRIBUIÇÃO DE AMOSTRAGEM WEIBULL DE TRÊS PARÂMETROS - UMA ABORDAGEM UTILIZANDO-SE O MÉTODO DO MAXIMUM LIKELIHOOD

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb

Curso de Física Básica - H. Moysés Nussenzveig Resolução do Volume III Capítulo 2 A Lei de Coulomb uso e Física Básica - H Mosés Nussenzveig Resolução o Volue III apítulo A Lei e oulob - Moste que a azão a atação eletostática paa a atação gavitacional ente u eléton e u póton é inepenente a istância

Leia mais

Tópico 4. , o capacitor atinge plena carga. , até anular-se. Em t 2. , o valor de i é igual a

Tópico 4. , o capacitor atinge plena carga. , até anular-se. Em t 2. , o valor de i é igual a Tóco 4 aactores Tóco 4 ER No nstante t, um caactor e μf, escarregao, é lgao a uma fonte e V, or meo e uma chave colocaa na osção Em um etermnao nstante t, o caactor atnge lena carga () () e) Durante a

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V apítulo 7 da físca Exercícos propostos Undade apítulo 7 ssocação de resstores ssocação de resstores esoluções dos exercícos propostos 1 P.15 a) s 1 s 6 s b) U s U 10 U 0 V c) U 1 1 U 1 U 1 8 V U U 6 U

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelmna 4 de setembo de Notas de Aula de Físca. OTAÇÃO... AS VAÁVES DA OTAÇÃO... Posção angula... Deslocamento angula... Velocdade angula... 3 Aceleação angula... 3 OTAÇÃO COM ACELEAÇÃO ANGULA CONSTANTE...

Leia mais

4. Potencial Elétrico (baseado no Halliday, 4a edição)

4. Potencial Elétrico (baseado no Halliday, 4a edição) 4. Potencal létco 4. Potencal létco (baseado no Hallday, 4a edção) Gavtação, letostátca e nega Potencal Mutos poblemas podem se tatados atavés de semelhanças. x.: a Le de Coulomb e a Le da Gavtação de

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

INTERFERÊNCIA DE MICROONDAS (RELATÓRIO / EXPERIÊNCIA

INTERFERÊNCIA DE MICROONDAS (RELATÓRIO / EXPERIÊNCIA UNIVRSIDAD FDRAL DA BAHIA INSTITUTO D FÍSICA DPARTAMNTO D FÍSICA DO STADO SÓLIDO FIS 14 - FÍSICA GRAL XPRIMNTAL IV / LABORATÓRIO PROF.: José Ferao Turma: Teórica/ Prática T: P: 13 Data: 13/09/00 Aluo:

Leia mais

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1 ATIVIDADES - CAPÍTULO 1 1 COMPLETE AS FASES USANDO AS PALAVAS DO QUADO: CUIDADOS INTENET CONTAS DIGITA TAEFAS COMPUTADO A COM O COMPUTADO É POSSÍVEL DE TEXTO B O COMPUTADO FACILITA AS tarefas digitar VÁIOS

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Potencial Elétrico. Prof. Cláudio Graça 2012

Potencial Elétrico. Prof. Cláudio Graça 2012 Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Aula 4: O Potencial Elétrico

Aula 4: O Potencial Elétrico Aula 4: O Potencal létco Cuso de Físca Geal III F-38 º semeste, 4 F38 S4 Potencal elétco Como podemos elacona a noção de oça elétca com os concetos de enega e tabalho? Denndo a enega potencal elétca (Foça

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

CAPÍTULO 4 4.1 GENERALIDADES

CAPÍTULO 4 4.1 GENERALIDADES CAPÍTULO 4 PRIMEIRA LEI DA TERMODINÂMICA Nota de aula pepaada a pati do livo FUNDAMENTALS OF ENGINEERING THERMODINAMICS Michael J. MORAN & HOWARD N. SHAPIRO. 4. GENERALIDADES Enegia é um conceito fundamental

Leia mais

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6

Eletrodinâmica III. Geradores, Receptores Ideais e Medidores Elétricos. Aula 6 Aula 6 Eletrodiâmica III Geradores, Receptores Ideais e Medidores Elétricos setido arbitrário. A ddp obtida deve ser IGUAL a ZERO, pois os potos de partida e chegada são os mesmos!!! Gerador Ideal Todo

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

Integração de Monte Carlo

Integração de Monte Carlo Integação e Monte Calo Ilumnação e FotoRealsmo uís Paulo Peoto os Santos htt://www..umnho.t/uce-cg/ne.h Cometêncas GERAIS : Relacona os váos métoos e lumnação global com o moelo geal sustentao ela equação

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Fnancera 007. Prof.: Luz Gonzaga Damasceno E-mals: amasceno04@yahoo.com.br amasceno@nterjato.com.br amasceno@hotmal.com 5. Taxa Over mensal equvalente. Para etermnar a rentablae por a útl one

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

AMPLIFICADORES A TRANSISTOR

AMPLIFICADORES A TRANSISTOR MINISTÉIO D DUÇÃO STI D DUÇÃO POFISSION TNOÓGI INSTITUTO FD D DUÇÃO, IÊNI TNOOGI D SNT TIN USO D TOMUNIÇÕS Áa d onhcmnto: ltônca I MPIFIDOS TNSISTO Pofsso: Pdo mando da Sla J São José, nomo d 213 1 1 MPIFIDOS

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo Depatameto de Ifomática Disciplia: Modelagem Aalítica do Desempeho de Sistemas de Computação Elemetos de Aálise Combiatóia Pof. Ségio Colche colche@if.puc-io.b Teoema: Elemetos de Aálise Combiatóia Modelagem

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais