UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA"

Transcrição

1 UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macrocooia I 1º Ssr d 2017 Profssors: Gilbro Tadu Lia Pdro Garcia Duar Lisa d Exrcícios 3 [1] Supoha qu a dada por oda ros rais, ( M / P ) d, qu M rprsa o ívl d oda ros oiais P doa o ívl gral d prços, dpd da axa d iflação sprada,. Espcifica falado, supoha qu a dada por oda ros rais é dada por l( M/ P) d, qu 0 1 é u parâro. Ua vz qu o rcado oário sá spr quilíbrio, ssa sa xprssão dscrv a ofra d oda ros rais. E rlação à axa d iflação sprada, supoha qu sua axa d variação é rprsada por d / d ( ). Supodo a cosâcia da axa d crscio oial da oda (ou sja, d( M / M )/ d 0 ), pod-s dizr qu a cosâcia da axa d iflação (ou sja, d / d 0) rqur a cosâcia da axa d variação da axa d iflação sprada (ou sja, d / d 0)? Jusifiqu sua rsposa ros [2] Cosidr ua acrocooia dscria pla sgui rlação d dada agrgada: d y p (1) od oária d y é o produo dadado ( log, coo as dais variávis), s p é o ívl d prço. A ofra agrgada, por sua vz, é dada por: y ( p w ) (2) é a ofra s od y é o produo ofrado, é u parâro posiivo w é o salário oial. A ofra oária,, é sablcida logo o iício do príodo, sdo qu a rgra oária adoada, co a qual a auoridad oária s copro d aira crívl, é a sgui: (3) 1 O salário oial, w, cuja vigêcia é por u úico príodo, é sablcido ao fial do arior. Dado sr scolhido por idivíduos racioais, ss salário é o sgui:

2 2 [ 1 w E 1 p ] (4) od 1 w é o salário scolhido ao fial do príodo 1 para vigr o príodo E 1[ p ] é a xpcaiva ao fial do príodo 1 do prço a vigr o príodo. [a] Rsolva para p coo ua fução d, E [ P ] parâro(s). 1 [b] Supodo qu o prço é fixado por idivíduos qu fora xpcaivas corras rlação ao prço fuuro, rsolva para o prço sprado, E 1[ p ], co ua fução d parâro(s). [c] Rsolva para o produo d quilíbrio, y. [d] Pod-s afirar qu o rsulado obido o i arior dosra qu a oda é ura o curo prazo, val dizr, qu variaçõs a ofra oial d oda ão afa o produo ral d quilíbrio d curo prazo? [3] Cosidr ua acrocooia dscria plas sguis rlaçõs: (1) * q ( p p ) (Ofra Agrgada) p q (Dada Agrgada) (2) * od q é o produo ral, p é o ívl d prço fivo, p é o ívl d prço sprado é a ofra oária, xprssos odos logario. Por sua vz, são parâros cohcidos posiivos. [a] Supodo qu os ags fora suas xpcaivas d aira corra, co qu o ívl d prço sprado é cosis co o procsso grador do ívl d prço fivo, xprss E p ] coo ua fução d E ]. [ [ [b] Após rsolvr para q coo ua fução d, E [ ] parâros, aalis o qu ssa xprssão idica ívl d fio da políica oária sobr o produo ral. Val dizr, aalis ao a aurza dss fio coo, s assi for o caso, os drias d sua isidad. [4] Cosidr ua acrocooia dscria plas sguis rlaçõs: Y N (fução d produção) P W (quação d prço) ( dw / d) W W ( ) (diâica salarial via curva d Phillips) Y M / P (dada agrgada)

3 3 qu Y, N, P,, W,,, M doa, rspciva, o produo ral, o ívl d prgo, o ívl gral d prços, o faor d arkup (u ais o arkup), o salário oial, a axa d prgo, a axa d prgo aural o soqu oial d oda. Por sua vz, 0 é u parâro. A axa d prgo é dada por N / L, qu L doa o volu (cosa) da força d rabalho. Logo, o ívl d prgo corrspod à axa d prgo aural (, por xsão, corrspod ao ívl d produo aural, Y ) é dado por N, qu é xógo. Por su uro, a rlação d dada agrgada dscrv o produo ral qu rsula do quilíbrio siulâo os rcados d bs oário-fiaciro. [a] Supodo a cosâcia do faor d arkup (ou sja, ( d / d) 0), rprs grafica a rlação r a axa d iflação, ( dp / d)(1/ P) ( P/ P), a axa d prgo. [b] Pod-s afirar qu, udo o ais cosa, a u salário oial ais alo corrspod ua axa d dsprgo ais baixa? Jusifiqu sua rsposa ros algébricos coôicos. [c] Pod-s afirar qu, udo o ais cosa, a u faor d arkup ais alo corrspod u ívl d prgo ais alo? Jusifiqu sua rsposa ros [d] Supoha qu o faor d arkup é cosa o ívl d prgo vig é aqul qu gra a cosâcia do salário oial. Qual é a axa d crscio do soqu oial d oda corrspod a ss quilíbrio? [] Supoha qu a cooia cora-s a siuação d quilíbrio dscria o i arior. É corro afirar qu u choqu xógo qu viss a lvar ua úica vz ( pouco) o faor d arkup faria co qu a cooia s afasass apas poraria daqul quilíbrio? Jusifiqu sua rsposa ros [f] Volado ao i arior, supoha qu o Baco Cral ão dsja qu a cooia s afas por u isa daqul quilíbrio. Caso o Baco Cral cosguiss acipar ( quaificar) corra a ocorrêcia daqul choqu xógo, qual dvria sr sua ação siulâa ívl d políica oária? Jusifiqu sua rsposa ros [g] D qu aira, s algua, as rsposas dadas os dois is ariors dpd da suposição paraérica rprsada por 0 1? Jusifiqu sua rsposa ros [h] É corro afirar qu a variação do salário ral, V W / P, é or a siuação dscria o i [f] do qu a siuação dscria o i []? Jusifiqu sua rsposa ros [i] Supoha agora qu a fução d produção dssa cooia sja dscria por Y AN, qu A é a produividad do rabalho. D qu aira, s algua, a rsposa dada o i

4 4 [] sria alrada caso A foss cosa? Jusifiqu sua rsposa ros algébricos coôicos. [j] Volado ao i arior, supoha agora qu A foss ua variávl dóga ao salário ral, variado a sa dirção (aida qu uio la) qu s (ou sja, A A( V ), sdo qu A(0) 0, AV '( ) 0 A''( V) 0. D qu aira, s algua, a rsposa dada o i [] sria alrada caso a produividad do rabalho assi s coporass? Jusifiqu sua rsposa ros [5] Supoha qu a cooia coc o ívl aural d produo (ou ívl d quilíbrio d édio prazo do produo). Supoha agora qu haja u dclíio o sado d cofiaça dos prsários, d odo qu a dada por ivsio caia para qualqur axa d juros. [a] No diagraa AD-AS, osr o qu acoc co o produo o ívl d prços o curo o édio prazo. [b] O qu acoc co a axa d dsprgo o curo prazo? E o édio prazo? [c] Supoha qu o Baco Cral dcida rspodr idiaa ao dclíio da cofiaça dos prsários o curo prazo. E spcial, supoha qu o Baco Cral quira ipdir qu a axa d dsprgo ud o curo prazo após o dclíio do sado d cofiaça dos prsários. O qu o Baco Cral dv fazr? Mosr coo a ação do Baco Cral, cobiada co o dclíio da cofiaça dos prsários, afa o diagraa AD-AS o curo édio prazos. [d] Coo o produo o ívl d prços o curo prazo s copara co suas rsposas ao i [a]? [] Coo as axas d dsprgo o curo o édio prazo s copara co suas rsposas ao i [b]? [6] Supoha qu a cooia coc o ívl aural d produo (ou ívl d quilíbrio d édio prazo do produo). Supoha agora qu haja u choqu gaivo da produividad do rabalho. [a] No diagraa AD-AS, osr o qu acoc co o produo o ívl d prços o curo édio prazos. [b] O qu acoc co a axa d dsprgo o curo prazo? E o édio prazo? [c] Sria possívl viar, via políicas oária ou fiscal, os fios do choqu cioado sobr o produo o prgo, caso o govro cosiga ragir idiaa a l?

5 5 [7] Supoha qu o rcado d rabalho d ua driada cooia sja caracrizado plas sguis quaçõs: [rlação d fixação d salários] sdo. [rlação d fixação d prços] [a] Qual é o ívl d prgo d quilíbrio d édio prazo dssa cooia? S o valor d rduz-s para 0,1, qual é o ovo ívl d prgo d quilíbrio d édio prazo? O qu podria rsular ssa alração do ark-up? [b] No caso acia, o dsprgo é voluário ou ivoluário? Expliqu as duas jusificaivas aprsadas por Carli Soskic para qu a rlação WS fiqu acia da curva d ofra d rabalho o caso da cocorrêcia prfia. Qu ipo d políica podria auar cada ua dssas iprfiçõs? [c] Supodo o caso iicial (co ) supodo adicioal qu a cooia sá o su quilíbrio d édio prazo (co iflação a a d 4 o prgo o su ívl d quilíbrio), qual srá a iflação o príodo sgui s u choqu d dada porário lvar o prgo para 5? Dê u xplo dss ipo d choqu, xpliqu qual dvrá sr a ração da auoridad oária, sgudo o odlo IS-PC-MR, rcosrua os fios dssa ração os rcados d rabalho d bs a diâica iflacioária. Rprs grafica o roro da cooia ao quilíbrio, usado o odlo IS-PC-MR. [supoha qu a curva d Phillips d curo prazo é a sgui:.] [d] Coo a auoridad oária agirá o rcado oário para obr o rsulado discuido o i arior?

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da rsposa m frquêcia 5. Trasformadas d Fourir propridads Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Objivo: Dparao d Maáica Ciêcias Expriais Física.º Ao Aividad Laboraorial TL. Assuo: Força d ario sáico força d ario ciéico Esudar as forças d ario sáico ario ciéico driado os faors d qu dpd. Irodução órica:

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semesre de 2017 Professor Fernando Rugisky Lisa de Exercícios 3 [1] Considere

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS

MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS MACROECONOMIA III PROFESSOR JOSÉ LUIS OREIRO PRIMEIRA LISTA DE EXERCÍCIOS 1 Qusão: Considr o modlo d crscimno d Solow com a sguin função d 1 3 2 produção, Y K AL3. Os mrcados d faors são prfiamn compiivos

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroecoomia I 1º Semestre de 2018 Professor Ferado Rugitsky Lista de Exercícios 3 [1] Cosidere

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte:

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte: Oscilaçõs forçadas Dpois d tr visto coo são as oscilaçõs aortcidas, agora você pod facilnt ntndr as oscilaçõs forçadas. Aqui vou ignorar a dissipação apnas introduzir ua força oscilant ao sista assa-ola.

Leia mais

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES

U.C Investigação Operacional. 27 de junho de INSTRUÇÕES Miisério da Ciêcia, Tcologia Esio uprior U.C. 276 Ivsigação Opracioal 27 d juho d 26 -- INTRUÇÕE O mpo d duração da prova d xam é d 2 horas, acrscida d 3 miuos d olrâcia. Dvrá rspodr a odas as qusõs a

Leia mais

5 Caracterização da política monetária ótima

5 Caracterização da política monetária ótima 5 Caracrização a políica oária óia Colocaros aqui ois cocios políica oária óia. Coo oao Woofor (999), is ois ipos óio co coproio u coo iâico. No priiro cocio, chaao óio co coproio "oc a for all", a solução

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

As Equações de Maxwell Macroscópicas

As Equações de Maxwell Macroscópicas As Equaçõs d Maxwll Marosópias Dtro da atéria há oléulas por toda part. E ada oléula, há átoos opostos por úlos positivos orbitados por létros gativos. Sobr ada ua dssas iúsulas partíulas, s osidradas

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia Faculdad d Econoia, Adinistração Contabilidad d Ribirão Prto Dpartanto d Econoia REC00 MICROECONOMIA PRIMEIRA PROVA (0) ROBERTO GUENA () Esboç u apa d curvas d indifrnças para cada ua das funçõs d utilidad

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISRAÇÃO E CONABILIDADE DEPARAMENO DE ECONOMIA EAE 26 Macroconomia I 1º Smstr d 217 Profssor Frnando Rugitsky Lista d Exrcícios 4 [1] Considr uma macroconomia

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas 6. Dual do Ídic d hil Dfiição Gral do Dual: Sja x uma variávl alatória com média µ distribuição tal qu o valor d crta mdida d dsigualdad é M. Chama-s dual a distribuição com as sguits caractrísticas: a.

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T.

Desse modo, podemos dizer que as forças que atuam sobre a partícula que forma o pêndulo simples são P 1, P 2 e T. Pêndulo Simpls Um corpo suspnso por um fio, afastado da posição d quilíbrio sobr a linha vrtical qu passa plo ponto d suspnsão, abandonado, oscila. O corpo o fio formam o objto qu chamamos d pêndulo. Vamos

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc o c voc RESOLUÇÃO voc A1 [A] valors ínio áxio igual a -1 1. Portanto, b =. Coo o valor édio a dfasag são nulos a = 0 k = 0. T-s a sguint função: Os valors

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador

Leia mais

TÓPICOS. 4. Método de primitivação por partes.

TÓPICOS. 4. Método de primitivação por partes. No bm, a lira dss apoamos ão dispsa d modo alm a lira aa da bibliorafia pricipal da cadira. Nomadam, o rfr ao Módlo 0, Apoamos d Aális Mamáica, Mamáica - E. Mal Mssias páias: 0 a 9 hama-s à ação para a

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Curso Gabarito Macroeconomia Parte 5

Curso Gabarito Macroeconomia Parte 5 Curso Gabario Macroconomia Par 5 Modlo AS-AD Prof.: Anonio Carlos Assumpção Modlo AS-AD AD (Ofra Agrgada-Dmanda Agrgada) Anriormn, rabalhamos com as políicas fiscal monária dsprzando a possibilidad d qu

Leia mais

5. Implementação da solução da equação de estados

5. Implementação da solução da equação de estados Sisma para vrifiação Lógia do Corolo Dzmbro 3 5. Implmação da solução da uação d sados No apiulo arior abordamos a aális dsvolvimo mamáio d Sismas d Corol por Espaço d Esados u os prmiiu hgar à Solução

Leia mais

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas

Leia mais

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Uma Extensão ao Modelo Schumpeteriano de Crescimento Endógeno

Uma Extensão ao Modelo Schumpeteriano de Crescimento Endógeno Uma Exsão ao Modlo Schumpriao d Crscimo Edógo RESUMO O modlo Schumpriao d crscimo dógo cosidra o progrsso écico (iovaçõs) lmo fudamal para xplicar o crscimo coômico Porém, aida ão cosguiu xplicar como

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018]

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018] Novo Espaço Matmática A 1.º ao Proposta d Tst [maio 018] Nom: Ao / Turma: N.º: Data: - - Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

AVALIAÇÃO DO RISCO DA EMPRESA ESTUDO INTRODUTÓRIO

AVALIAÇÃO DO RISCO DA EMPRESA ESTUDO INTRODUTÓRIO AVALIAÇÃO DO RISCO DA EPRESA ESTUDO INTRODUTÓRIO José Robrto Scurato Rsuo: A odra Toria d Fiaças t s dsvolvido co a itrodução do cocito dida do risco, as várias atividads fiaciras. A Toria d arkowitz o

Leia mais

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

FÍSICA MÓDULO III (triênio )

FÍSICA MÓDULO III (triênio ) FÍSCA MÓDUO (riênio -3) QUESTÕES OBJETVAS 9. Para conoizar dinhiro co sua cona d luz, você dv aprndr a calcular o consuo d nrgia lérica d sua casa, qu é forncido, sua cona, na unidad d Wh (quilowa-hora).

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Conteúdo Programático

Conteúdo Programático Toria Macroconômica I Prof. Andrson Litaiff Prof. Salomão Nvs 2 Contúdo Programático 3ª Avaliação Rfinamntos do modlo IS-LM Taxas d juros nominais rais Expctativas nas dcisõs d consumo d invstimntos Expctativas

Leia mais

Vamos partir de uma antena isotrópica, situada em um ponto T. Ela irradia um sinal com potência PT

Vamos partir de uma antena isotrópica, situada em um ponto T. Ela irradia um sinal com potência PT -POPGÇÃO Propagação d spaço lir amos parir d uma aa isorópica, siuada m um poo. Ela irradia um sial com poêcia P m um mio ambém isorópico como, por xmplo, o ácuo. Esamos irssados m drmiar a isidad do sial

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Integração numérica: Método de Euler

Integração numérica: Método de Euler Intgração nuérica: Método d Eulr Quando ua partícula s ov sob influência d forças co rsultant constant, sua aclração tabé é constant, podos ncontrar sua vlocidad posição a cada instant a partir d fórulas

Leia mais

Trabalho 3. Gustavo Mello Reis Página 1

Trabalho 3. Gustavo Mello Reis Página 1 Trabalho 3 Gustavo Mllo Ris Págia 1 1. Histograma a) Uma mprsa qu fabrica doc d lit dsja studar a distribuição da quatidad d doc lit por lata (), com o objtivo d visualizar a variação dsta. Para isto foi

Leia mais

UNIDADE 3 - VIBRAÇÕES FORÇADAS SOB EXCITAÇÃO HARMÔNICA

UNIDADE 3 - VIBRAÇÕES FORÇADAS SOB EXCITAÇÃO HARMÔNICA Uidad : Vibraçõs Forçadas sob Exciação Harôica UNIDADE - VIBRAÇÕES FORÇADAS SOB ECITAÇÃO HARMÔNICA. - Irodução Vibração forçada é aqula qu ocorr quado o sisa sofr a ação d forças xras dura o ovio. As forças

Leia mais

EXAME NACIONAL DE SELEÇÃO 2016

EXAME NACIONAL DE SELEÇÃO 2016 EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA o Dia: 4/09/015 QUINTA-EIRA HORÁRIO: 8h00m às 10h15m (horário d Brasília) EXAME NACIONAL DE SELEÇÃO 016 PROA DE MATEMÁTICA º Dia: 4/09 - QUINTA-EIRA (Mahã)

Leia mais

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome *

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome * Estruturas Estruturas Também chamadas d rgistro Conjunto d uma ou mais variávis agrupadas sob um único nom * As variávis qu compõm uma strutura são chamadas campos *Damas, L. Linguagm C. Rio d Janiro:

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência EAC 44 Maáica Auaria II Ciêcia Auariai Nouro FEA USP Prof. Dr. Ricaro Pachco MAEMÁICA AUARIAL DE VIDA Moo Sobrvivêcia Uivria São Pauo º Sr 5 A ábua oraia u oo icro obrvivêcia. Daa a ábua Moraia hipoéica:

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º 7 - Fuçõs - º ao Eams 05 a 07 k 3 log 3? 9. Qual das sguits prssõs é, para qualqur úmro ral k, igual a k k ( A) ( B) k ( C) ( D) k 9 (05-ª) 9. Cosidr

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar.

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar. Eam m 7 d Jairo d 007 Cálculo ATENÇÃO: FOLHAS DE EXAE NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eam fial ª Época 7 Jairo d 007 Duração: horas 0 miutos Rsolva os grupos do am m folhas sparadas O uso

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares Aáli d Sima iar Dvolvido plo Prof Dr Emilo Rocha d Olivira, EEEC-UFG, 6 Traformada d aplac A ididad d Eulr dfi uma rlação r o ial xpocial o iai oidai a forma ± j = co ( ) ± j ( ) N cao, é dfiido como a

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

EAE 206 Macroeconomia I 1º Semestre de 2018 Período Diurno Professor Fernando Rugitsky Primeira Prova

EAE 206 Macroeconomia I 1º Semestre de 2018 Período Diurno Professor Fernando Rugitsky Primeira Prova UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semestre de 2018 Período Diurno Professor Fernando Rugitsky Primeira Prova

Leia mais

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO TC-433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO Rcordado a visualização gométrica pod-s aida scrvr qu: ara dtctar até l rros por palavra d mi l Corrigir até t rros

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético Dparano d Maáia Ciênias Exprinais Curso d Eduação oração Tipo 6 Nívl Aividad Laboraorial TL 0 Assuno: orça d ario sáio inéio Objivo: Esudar as forças d ario sáio inéio drinando os faors d qu dpnd. Inrodução

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

Sistemas e Sinais (LEIC) Resposta em Frequência

Sistemas e Sinais (LEIC) Resposta em Frequência Sismas Siais (LEIC Rsposa m Frquêcia Carlos Cardira Diaposiivos para acompahamo da bibliografia d bas (Srucur ad Irpraio of Sigals ad Sysms, Edward A. L ad Pravi Varaiya Sumário Dfiiçõs Sismas sm mmória

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d 000 Aa Pirs, IST, Dzmbro d 000 Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Modlos d rgrssão liar simpls: ou E( Y ) β 0 Y β 0 + ε São modlos utilizados para comprdr

Leia mais

PROVA NACIONAL ESCRITA DE MATEMÁTICA

PROVA NACIONAL ESCRITA DE MATEMÁTICA PROVA NACIONAL ESCRITA DE MATEMÁTICA Equip Rsposávl Pl Elorção Corrção d Prov: Prof. Douor Sérgio Brrir Prof.ª Douor Cri Lmos Durção d Prov: 0 miuos. Tolrâci: 30 miuos Coção: 00 PONTOS Escol d Proviêci

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

MACROECONOMIA I. Licenciatura em Economia 2007/2008 TÓPICOS DE RESOLUÇÃO Exame Época Especial - 9 Setembro Normas e Indicações: Bom trabalho!

MACROECONOMIA I. Licenciatura em Economia 2007/2008 TÓPICOS DE RESOLUÇÃO Exame Época Especial - 9 Setembro Normas e Indicações: Bom trabalho! MACROECONOMIA I LEC20 Licnciaura m Economia 2007/2008 TÓPICOS DE RESOLUÇÃO Eam Época Espcial - 9 Smbro 2008 Normas Indicaçõs: A prova m a duração d 2 horas 5 minuos (65 minuos). Não é prmiida a consula

Leia mais

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc. Cotabilomtria Prof.: Patricia Maria Bortolo, D. Sc. Dimsioado Amostras Itrvalos d Cofiaça m Auditoria Fot: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Toria Aplicaçõs,

Leia mais

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 rodinâica Oraçõs Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 No quacionanto d 3 stados/corrnts binários, isobáricos, quiantos/stágios

Leia mais

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados.

- Pilares Curtos Os efeitos de 2ª ordem podem ser desprezados. Classificação dos Pilars quanto à Esbltz λ λ - Pilars Curtos Os fitos d ª ord pod sr dsprzados. λ < λ 90, ond λ 35 - Pilars dianant Esbltos Os fitos d ª ord são avaliados por procssos siplificados basados

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin Toria dos Jogos Prof. Maurício Bugari Ca. 5. Jogos Diâmicos com Iformação Icomlta Rotiro Caítulo 5. Jogos Diâmicos com Iformação Icomlta Dfiição d Equilíbrio Baysiao Prfito Alicação: Jogos d sialização:

Leia mais

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA VIBAÇÕE MECÂNICA - CAPÍTULO 3 VIBAÇÃO OÇADA 8 3. VIBAÇÃO OÇADA - OÇA HAMÔNICA No apíulo aio sudou-s a vibação liv d sisas o u gau d libdad. A vibação liv é obida aavés da solução hoogêa da quação difial

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Aa Pirs, IST, Dzmbro d Modlos d rgrssão liar simpls: ou E( Y ) β Y β + ε São modlos utilizados para comprdr a rlação

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais