y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

Tamanho: px
Começar a partir da página:

Download "y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe"

Transcrição

1 COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo cosdraros u xplo qu aprsa solução aalíca Ass o odlo é cosuído por ua quação drcal ordára d sguda ord qu dscrv a varação co da cocração do rag: dy( ) d y( ) Da y() dda o doío: << sua às codçõs d d d cooro: dy( ) CC: a rada do raor: =: y ( ) d dy( ) CC: a saída do raor: = : d Os valors caracríscos do probla são as raís d: Da = Da 4 P Da Da Da 4 c Ass: y c c sdo: c Da : y quado Para rsolvr urca as quaçõs drcas dss xplo d-s as dy( ) sgus varávs d sado: y u y d rsulado : dy( ) dy( ) y u y u d d du( ) du( ) Da y Da y d d CC: a rada do raor: =: u() CC: a saída do raor: = : y() u() Rsolução por aproxação poloal global+ éodo dos oos Cosdrado a aproxação poloal d grau d y: () y( ) y ( ) l y Sasado as codçõs d cooro orgas: CC: = A y y CC: = A y A subsução da aproxação y xprssão do rsíduo: () a quação drcal orgal dá org à

2 COQ-86 Méodos Nuércos para Ssas Dsrbuídos B () l A y Da y qu é abé ua ução poloal d grau + d Aplcado o éodo dos oos copuado as gras corrspods por quadraura d Lobao obé-s: B x A y Da y para Dado org ao ssa algébrco lar d dsão +: A y y B x A y Da y para A y Quado a úla la da ar caracrísca do ssa algébrco aca é ula orado ass a ar sgular o ssa ão aprsa solução Rsolução por aproxação poloal global aplcada às varávs d sado+ éodo dos oos Cosdrado a aproxação poloal d grau d u: () u( ) u ( ) l u co u Subsudo ssa aproxação a quação: Essa úla quação aprsa a solução aalíca: qu os valors d A dy ( ) y () u d y ( ) a l v v são calculados aravés da rsolução do ssa algébrco lar: v v u para Alé dsso coo: y u a u a u : () () v v rsulado ( ) y u v l v Quado obê-s v u para cosquêca: y ( ) u ( ) l y y u As subsuçõs das xprssõs d org a xprssão do rsíduo: u () y () du() d Da y dão

3 COQ-86 Méodos Nuércos para Ssas Dsrbuídos v v ( ) l A u Da Da u Cosdrado o oo d ord do rsíduo: copuado por quadraura d Gauss-Lobao a ora: () d qu pod sr ( ) Aulado os prros oos obé-s o ssa algébrco: A v v u para A u Da v Da u v I para E qu: u I I d I d I Qu é u ssa algébrco lar d dsão 3 cuas cógas são: v para u para Quado obé-s: ( ) A u Da v rsulado o ssa algébrco lar: v u para co u A u Da v para Qu é u ssa algébrco lar d dsão 3 ão sgular! -) Explo uérco Da 5 Co 4 a aproxação dos prs d cocração é basa boa rao a gral do rro quadráco do éodo dos oos covcoal é gual a 54 7 o do éodo dos oos aplcado às aproxaçõs poloas das varávs d sado é gual a 8 7 Oura vaag dss úlo éodo é a aulação dos rsíduos cco poos o lugar dos quaro poos do prro éodo as rsíduos são aprsados a gura a sgur 6 -) Explo uérco Da Co a aproxação dos prs d cocração é basa boa rao a gral do rro quadráco do éodo dos 3

4 COQ-86 Méodos Nuércos para Ssas Dsrbuídos oos covcoal é gual a o do éodo dos oos aplcado às aproxaçõs poloas das varávs d sado é gual a868 8 Oura vaag dss úlo éodo é a aulação dos rsíduos o poos o lugar dos d poos do prro éodo as rsíduos são aprsados a gura a sgur O ao d o úlo procdo aular o rsíduo + poos pod sr xplcado plo ao das gras () d sr ulas para o côpuo dssas gras por quadraura d Lobao quval a aproxar o rsíduo () por u polôo d grau coo o polôo d Lgdr d aprsa a proprdad: () srá ulo as P P ( ) d para o rsíduo raís d Sdo ass o éodo pod sr cosdrado coo quas quval ao éodo d colocação adoado coo poos d colocação as + raís do polôo d Lgdr d grau + Dado org ass às quaçõs algébrcas: A v v u para ˆ ( ˆ ) l ˆ A u Da v Da u v = para E qu: u ˆ ˆ ˆ são as + raís do polôo d Lgdr d grau + Nas guras abaxo os dos éodos d calcular os oos ulos dos dos xplos uércos arors são coroados Os poos as guras são as + raís do polôo d Lgdr d grau + -) Modlo ras da parda d u raor ubular co dsprsão soérco Ns caso o odlo é cosuído por ua quação drcal parcal d sguda ord qu dscrv a varação co da cocração do rag: 4

5 COQ-86 Méodos Nuércos para Ssas Dsrbuídos y( ) y( ) y( ) Da y( ) dda o doío: << > Sua às codçõs: y( ) CC: a rada do raor: =: y( ) y( ) CC: a saída do raor: = : E à codção cal: y( ) y( ) Co a dção da varávl: u( ) y( ) rscrv-s as quaçõs do probla a ora: y( ) y( ) u( ) y( ) u( ) Da y( ) Suas às codçõs: CC: a rada do raor: =: u( ) CC: a saída do raor: = : u( ) y( ) E à codção cal: y ( ) u( ) Rsolução por aproxação poloal global+ éodo dos oos Cosdrado a aproxação poloal d grau d y( ) : y( ) y ( ) l y Sasado as codçõs d cooro orgas: CC: = A y y CC: = A y Obê-s da sa ora qu a do probla sacoáro as quaçõs drcas ordáras: d d para sdo: Da D y D C E qu: y para Para calcular os valors d y lar: rsolv-s o ssa algébrco 5

6 COQ-86 Méodos Nuércos para Ssas Dsrbuídos A y y y = para A y Rsolução por aproxação poloal global aplcada às varávs d sado+ éodo dos oos Cosdrado a aproxação poloal d grau d u( ) : co u( ) u ( ) l u u y ( ) Subsudo ssa aproxação a quação: y ( ) u ( ) Essa úla quação aprsa a solução aalíca: v qu os valors d y ( ) a l aravés da rsolução do ssa algébrco lar: A v v u para v são calculados Alé dsso coo: u ( ) y ( ) a u a u v v rsulado : y ( ) u v l v As subsuçõs das xprssõs d u ( ) y ( ) y( ) u( ) Da y( ) dão org à xprssão do rsíduo cada u dos poos d rpolação: dy () A u Da y ( ) d qu: y ( ) u v v Cosdrado o oo d ord do rsíduo: ( ) qu d pod sr copuado por quadraura d Gauss-Lobao a ora: ( ) gualado a ro os + prros oos ddo as varávs: 6

7 COQ-86 Méodos Nuércos para Ssas Dsrbuídos v v y ( ) d= u I + para qu: I I d I d I Rsula: d d para para sdo Da B u B A A ssas quaçõs drcas ordáras assoca-s as quaçõs algébrcas: A v v u para co u u v I + v = para Qu é u ssa algébrco lar! Aulado os rsíduos as + raís do polôo d Lgdr d grau + rsula : d d para sdo ˆ Da B u B l A A ssas quaçõs drcas ordáras assoca-s as quaçõs algébrcas: A v v u para co u ˆ u v l ˆ v = para E qu ˆ ˆ ˆ são as + raís do polôo d Lgdr d grau + Rsolução por aproxação parabólca los os aplcada às varávs d sado+ éodo dos oos ( ) u p a p ( ) ( ) Co: u u para () ( ) () y u p u p ( ) y ( ) u p a p E qu = Rsolvdo aalca ssa quação rsula: 7

8 COQ-86 Méodos Nuércos para Ssas Dsrbuídos ( ) y b p a p 3 y ( ) b p a p ( ) y b p a p 3 ( ) y b p a p y ( ) b p a p ( ) q y d b p a p Para qu: y ( ) y ( ) dv-s r: 3 b p a p 3 b p a p Rarraado a xprssão: p 3 p p b b a a para Tdo sdo oda as xprssõs aca a dpdêca co a varávl dpd Alé dsso: 3 y ( ) b p a p u ( ) p 3 p p b a Rsulado o ssa r-dagoal: 8

9 COQ-86 Méodos Nuércos para Ssas Dsrbuídos p p 3 p p b b a a para 3 p p b a Tdo vsa: () u p a p obrgado aos dos prros oos da quação: sr ulos rsula: dy Da y p p d dq p a p d 3 Sdo: Da q y ( ) u ( ) Da y ( ) para y ( ) b p a p q b p a p Ou sa: 3 a y () 6 6 p q b p rdo xprssar: a v u () s r y q p p b v u s r Ass: b b a a y y q q p p p

10 COQ-86 Méodos Nuércos para Ssas Dsrbuídos b a y q ˆ p ˆ p 4 3 Mado a aura rdagoal do ssa orgal a ora: p a p b p c p y y 3 q 4 q para a p ˆ b p y 4 q Rsulado u ssa algébrco-drcal o qual a par algébrca é lar aprsa ua sruura rdagoal! No caso sacoáro -s: 3 a 6 Da 6 Da p b p Da 3 6 3Da 3 3Da rdo xprssar: a s r p p b s r Ass: b b a a p p p E b a p p 3 Mado a aura rdagoal do ssa orgal a ora: p a p b p c p para a p ˆ b p É pora rssalar qu a dração das varávs: 3 a b p ao o caso ras coo o sacoáro é obda aravés d u ssa lar rdagoal so s o probla orgal or ão lar 3-) Modlo sacoáro do raor co dsprsão axal adabáco d dy( ) y( ) Da y xp d d d ( ) dy( ) ( ) y( ) y d d Ddas o doío: < < suas às codçõs d cooro:

11 COQ-86 Méodos Nuércos para Ssas Dsrbuídos dy( ) CC: a rada do raor: =: y() y d dy( ) CC: a saída do raor: = : d CC3: balaço global d rga: () y y() Rsolução por aproxação poloal global+ éodo dos oos dy( ) d y( ) Da y xp d d d ( ) dy( ) ( ) y y( ) d d Ddas o doío: < < suas às codçõs d cooro: dy( ) CC: a rada do raor: =: y() y d dy( ) CC: a saída do raor: = : d CC3: balaço global d rga: () y y() Cosdrado a aproxação poloal d grau d y: () y( ) y ( ) l y qu s cosdra por splcdad: y ( ) y A rodução dssa aproxação o balaço d rga pr calcular a solução aalíca da quação d acordo co: ( ) A y l p qu os valors d p são drados aravés da rsolução do ssa algébrco lar: p A p A y y para A cosa A é drada plo balaço global d rga ass: () A y p y y A p y p p Rsulado : ( ) y l y O rsíduo do balaço d assa cada poo d rpolação é dado por: B A y Da y xp C y Da y xp Sdo: dl d l B A B C A d d

12 COQ-86 Méodos Nuércos para Ssas Dsrbuídos A aplcação do éodo dos oos copuado as gras por quadraura d Gaus-Lobao dá org ao ssa algébrco: y A y y C y para A y Sdo : Da y xp y p p y p A p A y y para Rsolução por aproxação poloal global aplcada às varávs d sado+ éodo dos oos dy( ) d ( ) Usado as varávs d sado: u y( ) v ( ) d d -s: du( ) Da y xp d assocadas a: v( ) u y CC: =: u() y u( ) y( ) y y D ara sla aos xplos arors propõ-s: u( ) u ( ) l u co u y CC3: v ( ) v ( ) y l u l v sdo v y u dy( ) d ( ) u y( ) ( ) obê-s: d d E vsa d v y y ( ) u l y v ( ) l E qu:

13 COQ-86 Méodos Nuércos para Ssas Dsrbuídos A A u para co u y = y y v v As subsuçõs das xprssõs d u () y () do balaço d assa dão org a xprssão do rsíduo: y () l A u E qu: v () () a quação Da u y l y xp v l Cosdrado o oo d ord dos rsíduos: sr copuados por quadraura d Gauss-Lobao a ora: ( ) () d qu pod Aulado os prros oos obé-s o ssa algébrco: A y y u para co u y A v para co v B u C para Sdo : Da u xp y y v C B C A D ora quas quval aulado-s os rsíduos as + raís do polôo d Lgdr d grau + rsula : 3

14 COQ-86 Méodos Nuércos para Ssas Dsrbuídos y A y u para co u y A u para co u y B u C para C l ˆ B C A Sdo s caso 4-) Modlo ras do raor co dsprsão axal adabáco y( ) y( ) y( ) Da y( ) xp ( ) ( ) ( ) Da y( ) xp Ddas o doío: < < > Suas às codçõs: Codçõs cas: y( ) ( ) y( ) y( ) y CC: a rada do raor: =: ( ) ( ) y( ) CC: a saída do raor: = : ( ) y( ) ( ) Adoado: u y( ) v ( ) rsula: y( ) u( ) Da y( ) xp ( ) v( ) Da y( ) xp Codçõs cas: y u u( ) y u y CC: =: ( ) ( ) ( ) v v CC: = : v Cosdrado as aproxaçõs poloas: u( ) u ( ) l u co u y 4

15 COQ-86 Méodos Nuércos para Ssas Dsrbuídos v( ) v ( ) l v co v Rsula : ( ) y u y l y ( ) v l As subsuçõs das xprssõs d y ( ) ( ) as quaçõs drcas dão org aos rsíduos: dy () y A u Da y ( ) xp d d () A Da y ( ) xp d v E qu: ( ) ( ) y u y y v Aulado os prros oos obé-s o ssa: d A u d para d A d v sdo Da y ( ) xp Co: y d d d A ssas quaçõs drcas ordáras assoca-s as quaçõs algébrcas: A y y u para co u y A v para co v u y I y = para v I = para 5

16 COQ-86 Méodos Nuércos para Ssas Dsrbuídos E qu I d I d (copuados d ora rcursva aáloga à aror aprsada) D ora quas quval aulado-s os rsíduos as + raís do polôo d Lgdr d grau + rsula : d l ˆ A u d d l ˆ A d v para A y y u para co u y A v para co v ˆ u y l ˆ y = para ˆ v l ˆ = para E qu ˆ ˆ ˆ são as + raís do polôo d Lgdr d grau + 6

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós

PMR Mecânica Computacional para Mecatrônica. Elemento Isoparamétrico de 4 nós PMR3 - Mcâca opacoal para Mcarôca Elo Isoparaérco d ós osdros cal a fção rpoladora para lo raglar osrado a fgra: 3 sdo a arál d sado os cofcs as arás dpds. osdrado os alors dssa fção os ós do râglo os:

Leia mais

Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria

Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria Recea do Méodo da Aromação olomal Recea do Méodo da Aromação olomal Global Alcado a roblemas Esruura Geral do roblema: Udrecoas sem Smera y y y F y o domío : 0 < < e >0. Suea às codções de cooro: CC: G

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

7. 7. RESPOSTA à ACÇÃO SÍSMICA de de UM UM SISTEMA COM COM UM UM GRAU DE DE LIBERDADE

7. 7. RESPOSTA à ACÇÃO SÍSMICA de de UM UM SISTEMA COM COM UM UM GRAU DE DE LIBERDADE 7. 7. RESPOSA à ACÇÃO SÍSICA d d U U SISEA CO CO U U GRAU DE DE LIBERDADE Cohcdo-s a l d ovo do solo, prd-s a rsposa da srra. xo d rrêca g k/ k/ s caso a qação do ovo da srra v g c k - dslocao do solo

Leia mais

LICENCIATURA. b. Da expressão da energia potencial elástica de uma mola, pode-se afirmar que a energia potencial do sistema 1 é: 1 k.

LICENCIATURA. b. Da expressão da energia potencial elástica de uma mola, pode-se afirmar que a energia potencial do sistema 1 é: 1 k. NC FÍSICA LICNCIAUA Qusão a. Coo, abos os casos, os ssas são pouso, a foça qu aua sob a ola úca, ou sob cada ola a assocação, é a sa, gual ao pso do copo pduado. Sdo dêcas solcadas pla sa foça, cada ola

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da rsposa m frquêcia 5. Trasformadas d Fourir propridads Capíulo 5 Trasformadas d Fourir 5. Aális da composição d sismas aravés da

Leia mais

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte:

k m d 2 x m z = x + iy, d 2 z m Essa mesma equação também pode ser escrita assim: dt 2 + ω2 0z = F 0 Veja que interessante a propriedade seguinte: Oscilaçõs forçadas Dpois d tr visto coo são as oscilaçõs aortcidas, agora você pod facilnt ntndr as oscilaçõs forçadas. Aqui vou ignorar a dissipação apnas introduzir ua força oscilant ao sista assa-ola.

Leia mais

sendo classificado como modelo de primeira ordem com (p) variáveis independentes.

sendo classificado como modelo de primeira ordem com (p) variáveis independentes. RGRSSAO MULTIPLA - comlmtação Itrodução O modlo lar d rgrssão múltla é da forma: sdo classfcado como modlo d rmra ordm com () varávs ddts. od: é a varávl d studo (ddt, xlcada, rsosta ou dóga); é o cofct

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macrocooia I 1º Ssr d 2017 Profssors: Gilbro Tadu Lia Pdro Garcia Duar Lisa d Exrcícios 3

Leia mais

TÓPICOS. Teoria dos residuos. Classificação de singularidades. Teorema dos resíduos.

TÓPICOS. Teoria dos residuos. Classificação de singularidades. Teorema dos resíduos. Not bm a ltura dsts apotamtos ão dspsa d modo algum a ltura atta da bblograa prcpal da cadra hama-s à atção para a mportâca do trabalho pssoal a ralar plo aluo rsolvdo os problmas aprstados a bblograa

Leia mais

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b)

Capítulo 8. (d) 1) 0,5 2) 1,0 3) 0,5 4) 0 5) 2/3 6) 1/2. Problema 02. (a) (b) Capítulo Problma. Ω{C C C C C5 C R R R R R5 R} Od: Ccara Rcoroa 5 P 5 5 P 7 7 7 7 7 7 c Sm pos P j P P j j d 5 5 5 / / Problma. P 5 P 5 9 5 7 9 c Não pos P P P 9 d P / P / 5 P 5 P 5 Problma. Prchdo os

Leia mais

3. Termodinâmica dos Gases. Modelos:

3. Termodinâmica dos Gases. Modelos: 3. rmodâmca dos Gass Modlos: Srm como rrêcas ara as quas os sstmas ras s aroxmam m codçõs lmts. Os modlos qu os trssam são os sguts: - gás rto - mstura d gass rta - solução dal Os modlos odm sr ddos d

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0 EXEMPLO MOTIVADO II EXEMPLO MOTIVADO II Método da Apromação Polomal Aplcado a Problemas Udrecoas sem Smetra. Equações Dferecas Ordáras Problemas de Valores o otoro Estrutura Geral do Problema: dy() d y()

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equaçõs Dfrcas Ordáras ISIG Eg. d Ssmas Dcsoas Eg. d Iformáca Vasco A. Smõs Aáls Ifsmal III Vasco Smõs Aáls Ifsmal III Vasco Smõs ÍNDICE ag.. Irodução. Equaçõs Dfrcas d rmra Ordm. Equaçõs dfrcas d varávs

Leia mais

5 Cálculo Diferencial em IR n

5 Cálculo Diferencial em IR n 5 Cálculo Derecal e IR Irodução Cosdereos a órula que os dá a área de u raulo: b h A b h Coo podeos vercar a área de u râulo depede de duas varáves: base b e alura h. Podeos caracerar esa ução coo sedo

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Objivo: Dparao d Maáica Ciêcias Expriais Física.º Ao Aividad Laboraorial TL. Assuo: Força d ario sáico força d ario ciéico Esudar as forças d ario sáico ario ciéico driado os faors d qu dpd. Irodução órica:

Leia mais

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos

Tópicos Especiais em Identificação Estrutural. Representação de sistemas mecânicos dinâmicos Tópicos Espciais m Idiicação Esruural Rprsação d sismas mcâicos diâmicos O problma diro... rada Sisma rsposa rsposa y() rada x() Problma diro: rada x() Cohcimo + rsposa do sisma y() O problma ivrso...

Leia mais

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO CAPÍTULO 7 TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO 7.1 INTRODUÇÃO Vaos cosderar o caso de u oor de dução dusral, aleado por esões rfáscas balaceadas. Tal oor e a caracerísca orque-velocdade represeada

Leia mais

Problemas. Regressão Linear Múltipla. Ajuda a encontrar relações Ceteris Paribus entre variáveis; Melhora o ajuste ao dados; Maior flexibilidade.

Problemas. Regressão Linear Múltipla. Ajuda a encontrar relações Ceteris Paribus entre variáveis; Melhora o ajuste ao dados; Maior flexibilidade. Prof. Lorí Val, Dr. val@at.ufrgs.br http://www.at.ufrgs.br/~val/ Rgrssão Lar Múltpla O odlo d rgrssão lar últpla Itrodução Dfção trologa Itrprtação Estação Itrprtação rvstada Qualdad do aust Proprdads

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 1 hora e 30 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smsr / TESTE INTERMÉDIO Tópi d rsolução Abril Duração: ora miuos Não é prmiido o uso d calculadoras. Não pod dsagraar as olas do uciado. Rspoda d orma jusiicada

Leia mais

ANOVA Modelos de Efeitos Aleatórios

ANOVA Modelos de Efeitos Aleatórios O Modlos d Eftos latóros Modlos d Eftos latóros Ex. Tmpratura Corporal (ºC d mas Rpl 3 4 5 6 3 5 8 3 8 8 7 3 3 5 4 4 9 8 4 9 7 3 3 Obtvo do Exprmto: Estmar a tmpratura corporal dos amas d crta spéc m codçõs

Leia mais

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA

3. VIBRAÇÃO FORÇADA - FORÇA HARMÔNICA VIBAÇÕE MECÂNICA - CAPÍTULO 3 VIBAÇÃO OÇADA 8 3. VIBAÇÃO OÇADA - OÇA HAMÔNICA No apíulo aio sudou-s a vibação liv d sisas o u gau d libdad. A vibação liv é obida aavés da solução hoogêa da quação difial

Leia mais

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx EXEMPLO MOTIVADOR I Método da Aproxmação Polomal Aplcado a Problema Udrecoa com Smetra. Eqaçõe Dfereca Ordára Problema de Valor o Cotoro Etrtra Geral do Problema: d dy( x) x f x, yx x dx dx o domío : x

Leia mais

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12 Traaeno de Dados º Seesre 5/6 Tópcos de Resolução do Trabalho Quesão a Para agrupar os dados e classes ora consderados os valores das rendas aé 5. ua vez que a parr dese valor os dados se enconra basane

Leia mais

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito Aáls d mprauras m uma Barra Uform d Aço-Carboo com o Méodo Eplíco Jorg Corrêa d Araújo Rosa García Márquz Rsumo Nss rabalho é dsvolvda uma solução umérca por dfrças fas com o méodo plíco para a codução

Leia mais

As Equações de Maxwell Macroscópicas

As Equações de Maxwell Macroscópicas As Equaçõs d Maxwll Marosópias Dtro da atéria há oléulas por toda part. E ada oléula, há átoos opostos por úlos positivos orbitados por létros gativos. Sobr ada ua dssas iúsulas partíulas, s osidradas

Leia mais

FÍSICA MODERNA I AULA 22 -

FÍSICA MODERNA I AULA 22 - Unvrsa São Paulo Insuo Físca FÍSIC MODRN I UL - Profa. Márca la Rzzuo Pllron sala 4 rzzuo@f.us.br o. Ssr 04 Monor: Gabrl M. Souza Sanos Págna o curso: ://sclnas.soa.us.br/cours/vw.?=905 30/05/04 Função

Leia mais

ANÁLISE DE SOBREVIVÊNCIA - COX. Airlane P. Alencar IME-USP Alessandra C. Gourlart FM-USP

ANÁLISE DE SOBREVIVÊNCIA - COX. Airlane P. Alencar IME-USP Alessandra C. Gourlart FM-USP ANÁLISE DE SOBREVIVÊNCIA - COX Arlan P. Alncar IME-USP Alssandra C. Gourlar FM-USP Arlan P. Alncar Alssandra C. Goular - USP Modlo d Cox Modlo d rscos proporconas O rsco no mpo com varávl xplcava X é X

Leia mais

4. Condução de Calor Multidimensional em Regime Permanente

4. Condução de Calor Multidimensional em Regime Permanente 79 4. Codução d Calor Multdsoal Rg Prat A quação da codução d calor, qu é o procsso d trasfrêca d rga qu ocorr a frotra d u ssta rpouso dvdo a u gradt d tpratura, t sdo dduzda utos lvros. Essa quação gérca

Leia mais

Simulação Analítica Transiente da Dispersão de Poluente Na Atmosfera pela Técnica GILTT Dupla

Simulação Analítica Transiente da Dispersão de Poluente Na Atmosfera pela Técnica GILTT Dupla Slação Aalítca Trast da Dsprsão d Polt a Atosfra pla Técca GILTT Dpla Maraa Cassol, Sérgo Worta, Marco Tllo Ma Barrto d Vlha Dpartato d Matátca Pra Aplcada,UFRGS Avda Bto Goçalvs, 95 9159-9, Porto Algr,

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

3. VARIÁVEIS ALEATÓRIAS

3. VARIÁVEIS ALEATÓRIAS 3. VARIÁVEIS ALEATÓRIAS 0 Varávl alatóra Ω é o spaço amostral d um prmnto alatóro. Uma varávl alatóra,, é uma função qu atrbu um númro ral a cada rsultado m Ω. Emplo. Rtra-s, ao acaso, um tm produzdo d

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim

Limites Questões de Vestibulares ( )( ) Solução: Primeiro Modo (Fatorando a fração usando BriotxRuffini): lim. Segundo Modo: lim Limis Qusõs d Vsibulars 7. (AMAN-RJ) Calculado o i, coramos: 9 7 a) b) c) d) ) 9 7 Solução: Primiro Modo (Faorado a ração usado BrioRuii): 9 7., qu é uma idrmiação. Faorado a ução, umrador 9. 7 domiador

Leia mais

Modelos com Variáveis Dependentes Qualitativas. Prob(Y = 1) = F(β X) probabilidade de um indivíduo com determinadas características X trabalhar

Modelos com Variáveis Dependentes Qualitativas. Prob(Y = 1) = F(β X) probabilidade de um indivíduo com determinadas características X trabalhar Modlos co Varávs Dpdts Qualtatvas Cosdr, por xplo, odlar a partcpação a força d trabalho. Atrbura-s valor zro a ão partcpação p u a partcpação p o rcado d trabalho. Fators tas coo: dad, ducação, stado

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Ondas Electromagnéticas

Ondas Electromagnéticas Faculdad d ghaa Odas lcomagécas Op - MIB 007/008 Pogama d Ópca lcomagsmo Faculdad d ghaa Aáls Vcoal (vsão) aulas lcosáca Magosáca 8 aulas Odas lcomagécas 6 aulas Ópca Goméca 3 aulas Fbas Ópcas 3 aulas

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Definições. 3. Misturadores 3.1. Introdução Objectivo específico

Definições. 3. Misturadores 3.1. Introdução Objectivo específico . Msuradors.. rodução... Objco spcífco fçõs rasposção a frquêca d u sal co foração f para ua frquêca f s para aproar a lhor fcêca da rasssão d sas ala frquêca spaço lr a rádo rrsr ou a saél ou guada a

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

Análise de regressão : uma introdução à econometria

Análise de regressão : uma introdução à econometria Uvrsdad d São Paulo Bbloca Dgal da Produção Ilcual - BDPI Dparamo d Ecooma, Admsração Socologa - ESALQ/LES Lvros Capíulos d Lvros - ESALQ/LES 6 Aáls d rgrssão : uma rodução à coomra hp://www.producao.usp.br/hadl/bdpi/4866

Leia mais

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino Tanssto Bpola d Junção TBJ Cap. 4 Sda/Sth Cap. 7 Boylstad Cap. 9 Malno Análs Pqunos Snas Notas d Aula SEL 313 Ccutos Eltôncos 1 Pat 5 1 o S/2016 Pof. Manol Modlos Pqunos Snas do TBJ Tas odlos são úts paa

Leia mais

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão.

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão. Moto do dipolo agtico toio araiva ajps@otail.co Para o lctrão: p c + µ p-- Moto caóico; -- Massa do lctrão; c Vlocidad da luz; c-- Moto ciético; µ -- Moto potcial (falso oto do dipolo agético). µ q ; c

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução

1 1 2π. Área de uma Superfície de Revolução. Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Ára d uma Suprfíc

Leia mais

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO

AULA 9 CONDUÇÃO DE CALOR EM REGIME TRANSITÓRIO SÓLIDO SEMI-INFINITO Noas d aula d PME 336 Procssos d ransfrênca d Calor 66 AULA 9 CONDUÇÃO DE CALOR EM REGIME RANSIÓRIO SÓLIDO SEMI-INFINIO Fluo d Calor num Sóldo Sm-Infno Na aula anror fo sudado o caso da condução d calor

Leia mais

Integração numérica: Método de Euler

Integração numérica: Método de Euler Intgração nuérica: Método d Eulr Quando ua partícula s ov sob influência d forças co rsultant constant, sua aclração tabé é constant, podos ncontrar sua vlocidad posição a cada instant a partir d fórulas

Leia mais

2 Descrição do modelo

2 Descrição do modelo 2 Dscrção o olo rra scrvros o olo co prços flxívs qu srvrá rfrêca para a aáls. oçaros scrvo o lao a aa qu srá vara à hpós flxbla os prços. Dpos cosruros o lao a ofra sob a hpós prços flxívs. Nsa apa surgrão

Leia mais

TÓPICOS. 4. Método de primitivação por partes.

TÓPICOS. 4. Método de primitivação por partes. No bm, a lira dss apoamos ão dispsa d modo alm a lira aa da bibliorafia pricipal da cadira. Nomadam, o rfr ao Módlo 0, Apoamos d Aális Mamáica, Mamáica - E. Mal Mssias páias: 0 a 9 hama-s à ação para a

Leia mais

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2

EEN300-MÉTODOS MATEMÁTICOS EM ENGENHARIA NAVAL. Série No. 2 N3-MÉODOS MAMÁICOS M NGNHARIA NAVAL Sér No.. Faça ma aáls d sabldad lar d vo Nma o sqma crado plíco mosrado abao lzado para rsolvr a qação da oda m ma dmsão drm o rvalo do úmro d CFL para a sabldad ds

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011

Representação de Sistemas Dinâmicos. Profa. Vilma A. Oliveira USP São Carlos Março de 2011 Rprsação d Ssmas Dâmcos Smáro Profa Vlma A Olvra USP São Carlos Março d Ssmas físcos modlos Dscrção rada-saída Eqaçõs d ssmas dâmcos Ssmas rlaados, casas lars dscros por opradors 3 Igral d sprposção 3

Leia mais

Os Modelos CA para Pequenos Sinais de Entranda Aula 7

Os Modelos CA para Pequenos Sinais de Entranda Aula 7 Os Molos CA para Pqunos Snas Enrana Aula 7 PS/EPUSP Aula Maéra Cap./págna ª 6/02 2ª 9/02 3ª 23/02 4ª 26/02 5ª 0/03 6ª 04/03 7ª 08/03 8ª /03 9ª 5/03 0ª 8/03 PS/EPUSP Elrônca PS332 Programação para a Prmra

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy.

TÓPICOS. Integração complexa. Integral de linha. Teorema de Cauchy. Fórmulas integrais de Cauchy. No m, liur dss pomos ão disps d modo lgum liur d iliogri pricipl d cdir hm-s à ção pr imporâci do rlho pssol rlir plo luo rsolvdo os prolms prsdos iliogri, sm ul prévi ds soluçõs proposs, ális compriv

Leia mais

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros.

conjunto dos números inteiros. conjunto dos números que podem ser representados como quociente de números inteiros. Cpítulo I Noçõs Eltrs d Mtátic. Oprçõs co frcçõs, Equçõs Iquçõs Tipos d úros {,,,,,6, } cojuto dos úros turis. 0 { 0} {,,,, 0,,,, } cojuto dos úros itiros., 0 0 p : p, q q cojuto dos úros rciois ou frccioários,

Leia mais

C5 C O termo geral do desenvolvimento de A( x ) é. Assim, vem: Número de casos possíveis: 6 C

C5 C O termo geral do desenvolvimento de A( x ) é. Assim, vem: Número de casos possíveis: 6 C Tst d avalação Pág Estm duas stuaçõs, a sabr: A Crsta ão va, ortato, o Atóo também ão va Os quatro blhts srão dstrbuídos los rstats quatro jovs, assm, o úmro d gruos é gual a um A Crsta va; os rstats três

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

Curso de Óptica Aplicada

Curso de Óptica Aplicada Curso de Ópca Aplcada Faculdade de Cêcas e Tecologa Uversdade Nova de Lsboa AT 4 Propagação Deparameo Aula Teórca de Físca 5 Ópca Geomérca Curso de Ópca Aplcada Aula Teórca 4 Propagação Curso de Ópca Aplcada

Leia mais

ANÁLISE TEÓRICA E EXPERIMENTAL DE SUPERFÍCIES SELETIVAS DE FREQUÊNCIA E SUAS APLICAÇÕES EM ANTENAS PLANARES

ANÁLISE TEÓRICA E EXPERIMENTAL DE SUPERFÍCIES SELETIVAS DE FREQUÊNCIA E SUAS APLICAÇÕES EM ANTENAS PLANARES UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENARIA ELÉTRICA E DE COMPUTAÇÃO ANÁLISE TEÓRICA E EXPERIMENTAL DE SUPERFÍCIES SELETIVAS DE FREQUÊNCIA E

Leia mais

EDMARY SILVEIRA BARRETO ARAÚJO

EDMARY SILVEIRA BARRETO ARAÚJO DARY SLRA BARRTO ARAÚJO RSDAD FDRAL D LARAS FLA DOTORADO TRSTTCOAL DTR STATÍSTCA PRTAÇÃO TRABALHO DA DSCPLA PROBABLDAD SALADOR 9 DARY SLRA BARRTO ARAÚJO RSDAD FDRAL D LARAS FLA DOTORADO TRSTTCOAL DTR STATÍSTCA

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc o c voc RESOLUÇÃO voc A1 [A] valors ínio áxio igual a -1 1. Portanto, b =. Coo o valor édio a dfasag são nulos a = 0 k = 0. T-s a sguint função: Os valors

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capíulo 7 Problmas d Valor Incal para Equaçõs Dfrncas Ordnáras Muos problmas m modlagm d procssos químcos são formulados m rmos

Leia mais

1. Estatística Descritiva

1. Estatística Descritiva . Esaísca Descrva Tabelas de Frequêcas a. Dados qualavos ou quaavos quado os valores se reee Frequêca absolua sles (F ) úero de vezes que cada valor dso da varável observada se reee (,, ). Te-se que: F

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No ana.no@ufabc.du.br Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Fenómenos Transitórios

Fenómenos Transitórios 2-7-24 Fnónos Transóros Dfnção fnónos ransóros São fnónos q ocorr crcos lécrcos nr os saos rg rann. Noraln, os fnónos ransóros ocorr crcos lécrcos ran as anobras abrra fcho nrrors. Po abé aconcr vo a oras

Leia mais

Computação Gráfica Interativa - Gattass 01/10/15

Computação Gráfica Interativa - Gattass 01/10/15 Coção Gáf I - G 0/0/5 Aoo d Ro d Ro P o o P o o Ição oção O q á f? A q dâ do oo? R T Coção Gáf I - G 0/0/5 So Oão Efo Po Gd d I ê do do o Idd do oo oo Foof D Pooo o éo XX! R T Coção Gáf I - G 0/0/5 C o

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Tópicos de Álgebra Linear Aplicados a Equações Diferenciais

Tópicos de Álgebra Linear Aplicados a Equações Diferenciais UNIVERSIDDE FEDERL DE SNT CTRIN Ctro d Cêas Físas Matmátas Curso d Latura m Matmáta Tópos d Álgbra Lar plados a Equaçõs Dras utora: Dala Fraso Ortador: Pro Dr Gustavo dolo Torrs Frads da Costa Floraópols

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Probabilidade de Ruína com eventos espaciais

Probabilidade de Ruína com eventos espaciais Uvrsdad Fdral d as Gras Probabldad d uía om vos spaas Dssração submda omo rquso paral para obção do grau d sr m saísa pla Uvrsdad Fdral d as Gras ALI ATIS PIOUTK Orador: Prof. Dr. ao ars Assução arço-9

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

UCP Gestão/Economia Matemática II 9 de Abril de 2010

UCP Gestão/Economia Matemática II 9 de Abril de 2010 UCP Gstão/Economia Matmática II 9 d Abril d 00 ª frquência h30m GRUPO (.5). Sja f ( x, ) x com x u uv, u sn t, v log( t ). Calcul df dt. z4 x (.0). Dtrmin a drivada da função f x no ponto P (,,) na dircção

Leia mais

TRANSFORMADAS DE FOURIER

TRANSFORMADAS DE FOURIER TRASORMADAS DE OURIER Dfção: É a raformação qu lva uma magm a r rprada o domío da frqüêca Io é poívl porqu uma magm pod r dcompoa m fuçõ o coo com dfr frqüêca amplud A vaagm prcpal d rabalhar o domío da

Leia mais

5. MODELOS MECÂNICOS - N GL

5. MODELOS MECÂNICOS - N GL BRAÇÕE MECÂNCA - CAPÍUO 5 - MODEO MECÂNCO 6 5. MODEO MECÂNCO - N G O studo das vbraçõs lvrs orçadas d sstas ânos, o odlos dsrtos, sto é, o N graus d lbrdad, é to a partr d odlos obtdos através d uaçõs

Leia mais

Copyright LTG 2013 LTG/PTR/EPUSP

Copyright LTG 2013 LTG/PTR/EPUSP 1 Na Godésia a Topografia s ralizam mdiçõs d âgulos, distâcias, tc. Mdir uma gradza sigifica obtr um úmro associado a uma uidad qu rprst o valor dssa gradza. Tudo o qu s pod mdir (obsrvar) é domiado obsrvávl.

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12

PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12 Escolha sob Icrtza PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP. OBS.: ESTAS NOTAS DE AULA NÃO FORAM SUBMETIDAS A REVISÃO, TENDO COMO ÚNICA FINALIDADE A ORIENTAÇÃO DA APRESENTAÇÃO EM CLASSE. COMENTÁRIOS SÃO

Leia mais

1. Tensão Uma das repostas do MC ao carregamento

1. Tensão Uma das repostas do MC ao carregamento Dscla RM-LEG, Z. Drovová, DEC/FCT/UNL, 6. Tesão Ua das reosas do MC ao carregaeo. Vecor das esões forças eras ssea ssea core ssea A F F - ssea ssea ssea B Cojuo( ssea + ssea ) esá e equlíbro Cojuo( ssea

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A = Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 4 EQUAÇÕES DIFERENCIAIS LINEARES Formas canónicas d Jordan () Para cada uma das matrizs A

Leia mais