Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria

Tamanho: px
Começar a partir da página:

Download "Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria"

Transcrição

1 Recea do Méodo da Aromação olomal Recea do Méodo da Aromação olomal Global Alcado a roblemas Esruura Geral do roblema: Udrecoas sem Smera y y y F y o domío : 0 < < e >0. Suea às codções de cooro: CC: G y 0 y 0 0 E à codção cal: y y 0 cal e CC: G y y 0 roodo-se a aromação olomal de grau + em ara y( ) : ( ) ( ) ( ) 0 y( ) y ( ) y y y e os olômos base de Lagrage: k. k odal sedo : odal odal k0 k k0 k Um ossível algormo de mlemeação da erolação de Lagrage é a segur descro: Esecfque os valores dos oos de erolação 0 0 dos corresodees valores dscreos da fução: y0 y y y y e do valor geérco de em que se desea erolar a fução y: sea ese valor desgado or z Faça: yerolado 0 ara = 0 faça ara k = 0 faça se k z k k yerolado yerolado y Como o olômo erolador da Lagrage é eao ara fuções cosaes (que é uma fução olomal de grau zero!) em-se: 0

2 Recea do Méodo da Aromação olomal As rmera e seguda dervadas dessa aromação olomal odem ser calculadas em cada um dos oos de erolação segudo: A y e B y. ( ) ( ) y ( ) y ( ) Em que: 0 0 d d d d A e B ara 0. Algumas observações moraes devem ser feas em relação essas marzes: () B A ; ( ) () No caso arcular de ara odo valor de assm: mesma lha das marzes ( ) ( ) e y ( ) y ( ) y C 0 e 0 A B 0 0 A e B é ula; = 0 e = 0 : a soma dos elemeos de uma () Os elemeos da marz A só deedem dos valores das dervadas do olômo odal em cada um dos oos de erolação os: odal odal odal logo: odal Com mas 0 eão: odal A ara odal odal odal odal odal Como: A = 0 A A 0 0 A segur aresea-se o algormo de cômuo da marz A.

3 Recea do Méodo da Aromação olomal ara = 0 faça e v 0 ara = 0 faça: ara = 0 faça A 0 ara = 0 faça se A subsução da aromação olomal roblema dá orgem às equações algébrcas: ( y ) q v q v q v A : v A A A as duas codções de cooro do CC: G 0 y0 A0 y 0 e CC: G y A y A subsução da aromação olomal dá orgem à eressão do resíduo: ( y ) a equação dferecal do roblema R ( ) y y y ( ) F y dy y Em que: ; y y ; d 0 0 y A k yk k A k y 0 k0 0 k0 y k k k k 0 k0 0 k0 B y B y Ese resíduo mede a qualdade da aromação oo a oo do ervalo: 0 < < ara quafcá-lo globalmee o méodo dos momeos o mesmo é assocado à ( ) ( ) segue forma egral: R ( ) R ( ) d 0 ara

4 Recea do Méodo da Aromação olomal Calculado R () or quadraura de Gauss em-se: R H R 0 ara =... em que 00 ( ). A equação acma é sasfea se: ( R R ) ( ) e 0 são as raízes de ( ) dy R R ( ) 0 F y A k yk B k yk d k0 k0 ara.... Com as codções cas: y 0 y cal Sedo ese o Méodo da Colocação Orogoal em que os oos de Colocação são as raízes de 00 ( ). Nesse caso chega-se a um ssema elíco de equações dferecas ão leares acolado às duas equações algébrcas orudas das duas codções de cooro assocadas ao roblema: CC: G 0 y0 A0 y 0 e CC: G y A y Calculado R 0 0 ( ) or quadraura de Lobao em-se: R ( ) H R ( ) 0 ara =... sedo Em que: 0 são as raízes de a eressão de R () as eressões dos resíduos em vsa de: 0 0 ( ) R ( ) R ( ). ( ) 0 0 e. Subsudo dy H H F y A k yk B k yk d 0 0 k0 k0 ara. Resulado em um ssema algébrco dferecal comoso or equações dferecas ordáras acoladas às duas equações algébrcas orudas das duas codções de cooro assocadas ao roblema: 4

5 Recea do Méodo da Aromação olomal CC: G 0 y0 A0 y 0 e CC: G y A y ara evar a forma ão elíca das equações dferecas ordáras do ssema aeror 0 defe-se uma ova varável: erme escrever: d d H y ara o que H F y A k yk B k yk ara. 0 k0 k0 cal 0 Com as codções cas: 0 H y Essas equações dferecas ordáras (agora em forma elíca) esão acoladas ao ssema algébrco: G y A y H y = ara 0 G ` y A y 0 0 Recea do Méodo da Aromação olomal Global Alcado a roblemas Udrecoas com Smera Esruura Geral do roblema: y y y F y o domío : 0 < < e >0. Suea às codções de cooro: 5

6 Recea do Méodo da Aromação olomal CC: y 0 0 y 0 e CC: G y E à codção cal: y y A CC: y 0 0 cal 0 ode ambém ser erreada como uma codção de cooro de smera raduzda or: y y ou sea Tal roredade sugere a mudaça da varável deedee ara y é uma fução ara em. u y y u y u y y u u e u u u u y y u y u y u 4 4u y u u u u y u y u y u F u y u o domío : 0 < u < e >0. u u Suea às codções de cooro: CC: y u u u0 é fa e CC: G y u E à codção cal: yu ycal u 0 y u 0 u u roodo-se a aromação olomal de grau em ara y( u ) : ( ) ( ) ( ) y( u ) y ( u ) u y y y u e os olômos base de Lagrage: u u k odal u u sedo : odal u u u u u u u odal u assm: k. k k u k k As rmera e seguda dervadas dessa aromação olomal odem ser calculadas em cada um dos oos de erolação segudo: 6

7 Recea do Méodo da Aromação olomal A y e B y. ( ) ( ) y ( u ) y ( u ) u u u u Em que: du u du d u d u A e B ara. u A subsução da aromação olomal ( y ) ( u ) a codção de cooro dá orgem à 0 equação algébrca: G y A y A subsução da aromação olomal orgem à eressão do resíduo: ( y ) ( u ) a equação dferecal do roblema dá R ( ) y u y u y u ( u ) F u y u u u y u dy Em que: ; u y u u y ; d y u u A k yk k u A k y u k k y u u k k k k k k u B y u B y Ese resíduo mede a qualdade da aromação oo a oo do ervalo: 0 < u < ara quafcá-lo globalmee o méodo dos momeos o mesmo é assocado à u ( ) ( ) segue forma egral: R u R ( u ) du 0 ara... u0 7

8 Recea do Méodo da Aromação olomal Em muos roblemas com geomeras regulares (laa olar ou esférca) as egras evolvdas esão assocadas ao elemeo fesmal de volume o que ode ser geeralzado aravés da forma: s ( ) d 0 s 0 geomera laa; s geomera olar; s geomera esférca. Caso a fução ( ) for uma fução smérca em relação a so é: s ( ) ( ) sugere-se a mudaça da varável de egração ara du u u e d logo: u s u s s s d u du u ( u ) du. Nese caso os resíduos u0 oderados seram: u s ( ) s ( ) R u u ( u ) du 0 ara... R u0 Calculado R () or quadraura de Gauss em-se: R ( ) H u R 0 ara =... em que ( R R ) ( u ) e 0 u u u são as raízes de 00 ( u ) ou o caso das geomeras regulares areseadas aerormee A equação acma é sasfea se: R dy u F y A y B y ( ) R ( ) 0 k k k k d k k ara.... Com as codções cas: y 0 y u cal s 0 ( u). Sedo ese o Méodo da Colocação Orogoal em que os oos de Colocação são as raízes de 00 ( u ) ou o caso das geomeras regulares areseadas aerormee s 0 ( u). 8

9 Recea do Méodo da Aromação olomal Nesse caso chega-se a um ssema elíco de equações dferecas ão leares acolado a uma equação algébrca oruda da codção de cooro assocada ao roblema: 0 CC: G y A y Calculado R ( ) or quadraura de Radau com eremdade sueror em-se: R ( ) H u R ( ) 0 ara =... sedo Em que: u 0 u u u são as raízes de ( ) R ( ) R ( u ). 0 ( u ) ou o caso das geomeras regulares areseadas aerormee s ( u). Subsudo a eressão de R () as eressões dos resíduos em vsa de: dy H u H u F y A k yk B k yk d k k ara. Resulado em um ssema algébrco dferecal comoso or equações dferecas ordáras acolado a uma equação algébrca oruda da codção de cooro assocada ao roblema: 0 CC: G y A y ara evar a forma ão elíca das equações dferecas ordáras do ssema aeror defe-se uma ova varável: erme escrever: d d H u y ara o que H u F y A k yk B k yk ara. k k 9

10 Recea do Méodo da Aromação olomal Com as codções cas: 0 H u ycal u Essas equações dferecas ordáras (agora em forma elíca) esão acoladas ao ssema algébrco: H u y = ara G y A y 0 Geração dos olômos de Jacob e Deermação Numérca das Raízes Cosderado a forma de adrozação dos olômos de Jacob desgada or a qual o coefcee de é semre gual a [a forma mas usual ecorada a leraura de adrozação dos olômos de Jacob é cosderar o ermo deedee de gual a ]. ode-se gerar recursvamee segudo o rocedmeo: g h ara = 3 com 0 e Em que: g e h ara 3 Tal rocedmeo em comaração com os demas é o mas arorado à mlemeação comuacoal e ara o cálculo do valor umérco do olômo com dferees valores do argumeo. ara deermar as raízes de será alcado o méodo de Newo-Rahso que ecessa do cálculo da dervada de : d ( ) ( ) q que ode ambém d 0

11 Recea do Méodo da Aromação olomal ser obda de forma recursva aravés da dferecação da forma recursva aeror. Reescrevedo a forma recursva aeror a forma: ( ) g ( ) h ( ) ara = resula: q g q h q ara = com q 0 e q0 As duas formas recursvas devem ser assocadas dado orgem a: q g q h q g h ara =. Com: q 0 ; q0 ; 0 e Um ossível algormo de mlemeação da geração de descro. rocedmeo: Jacob e q esecfque os valores de e. é a segur Faça: q dq 0 e d Se ara = faça: g h 3 d g d h dq g h q q dq d d d Saída: F d

12 Recea do Méodo da Aromação olomal A roredade de orogoaldade de assegura que odas suas raízes eseam codas o eror do ervalo de orogoaldade 0. Tal caracerísca erme deermar a meor das raízes de cosderado o 0 chue cal r dado orgem ao rocedmeo recursvo: 0 k k 0 k k r r com r 0 ara k 0 aé r r ol q k r As demas raízes são deermadas segudo o rocedmeo ara : k q k k r r r k q k r r r 0 k k com r r + ara k 0 aé r r ol Sedo r ara os valores covergdos das raízes aerores

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES 1

A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES 1 A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES Resumo. A desgualdade de Chebychev cosu um resulado de grade mporâca a esmação da probabldade de acoecmeos orudos de experêcas aleaóras de que se descohece

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

Contabilidade Social Carmen Feijó [et al.] 4ª edição

Contabilidade Social Carmen Feijó [et al.] 4ª edição Coabldade Socal Carme Fejó [e al.] 4ª edção CAPÍTULO 7 NÚMEROS ÍNDCES Professor Rodrgo Nobre Feradez Peloas 4 rodução Ese caíulo aresea a eora básca dos úmeros-ídce Se rocura esabelecer as lgações ere

Leia mais

ANÁLISE VISCOELÁSTICA DE PAVIMENTOS ASFÁLTICOS PELO MÉTODO DOS ELEMENTOS FINITOS

ANÁLISE VISCOELÁSTICA DE PAVIMENTOS ASFÁLTICOS PELO MÉTODO DOS ELEMENTOS FINITOS ANÁLISE VISCOELÁSTICA DE PAVIMENTOS ASFÁLTICOS PELO MÉTODO DOS ELEMENTOS FINITOS Eso de Lma Porela Uversdade Federal do Ceará Laboraóro de Mecâca dos Pavmeos - Deparameo de Egehara de Traspores Evadro

Leia mais

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito

Análise de Temperaturas em uma Barra Uniforme de Aço-Carbono com o Método Explícito Aálse de emperauras em uma Barra Uforme de Aço-Carboo com o Méodo Explíco Jorge Corrêa de Araújo Rosa García Márquez 0 de dezembro de 03 Resumo Nesse rabalho é desevolvda uma solução umérca por dfereças

Leia mais

Contabilometria. Números-Índices

Contabilometria. Números-Índices Coablomera Números-Ídces Foes: Seveso (1981) Esaísca Alcada à Admsração Ca. 15 Foseca, Mars e Toledo (1991) Esaísca Alcada Ca. 5 Números-Ídces Sezam modfcações em varáves ecoômcas durae um eríodo de emo

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

VaR t = valor em risco, em reais, do conjunto das exposições de que trata o caput para o dia "t", obtido de acordo com a seguinte fórmula:

VaR t = valor em risco, em reais, do conjunto das exposições de que trata o caput para o dia t, obtido de acordo com a seguinte fórmula: CIRCULAR Nº 3.568, DE 21 DE DEZEMBRO DE 2011 Documeo ormavo revogado, a parr de 1º/10/2013, pela Crcular º 3.634, de 4/3/2013. Alera dsposvos das Crculares s. 3.361, de 12 de seembro de 2007, 3.388, de

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Curso de Óptica Aplicada

Curso de Óptica Aplicada Curso de Ópca Aplcada Faculdade de Cêcas e Tecologa Uversdade Nova de Lsboa AT 4 Propagação Deparameo Aula Teórca de Físca 5 Ópca Geomérca Curso de Ópca Aplcada Aula Teórca 4 Propagação Curso de Ópca Aplcada

Leia mais

O gráfico abaixo mostra um exemplo das vendas (em unidades vendidas) mensais de um produto. Exemplo de Serie Temporal mes

O gráfico abaixo mostra um exemplo das vendas (em unidades vendidas) mensais de um produto. Exemplo de Serie Temporal mes Modelos de Prevsão Irodução Em omada de decsão é basae comum raar problemas cujas decsões a serem omadas são fuções de faos fuuros Assm, os dados descrevedo a suação de decsão precsam ser represeavos do

Leia mais

Sistemas Série-Paralelo e

Sistemas Série-Paralelo e Capíulo 5 Cofabldade de semas ére-paralelo e Msos Flávo. Foglao uposções comus a odos os ssemas aalsados Cofabldade de ssemas é avalada um poo o empo; ou seja, compoees apreseam cofabldades esácas em.

Leia mais

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA Polômos de Jacob e CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA III--)INTRODUÇÃO Para um melhor etedmeto do método da colocação ortogoal e sua relação com o método dos resíduos poderados (MRP),

Leia mais

Análise de Sistemas Dinâmicos Lineares

Análise de Sistemas Dinâmicos Lineares ále de Sema Dâmco Leare. reeação da Dcla Emea: Sema leare varae o emo. ále de Fourer ara a e ema de emo coíuo. ále de Fourer ara a e ema de emo dcreo. moragem de a. Caracerzação de ema or meo da raformada

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

Sinais contínuos e discretos. Sinais contínuos. Sinais: o que são? Sinais. Os sinais traduzem a evolução de uma grandeza ao longo do tempo.

Sinais contínuos e discretos. Sinais contínuos. Sinais: o que são? Sinais. Os sinais traduzem a evolução de uma grandeza ao longo do tempo. Sas coíuos e dscreos Sas orge s. marques orge s. marques Sas: o que são? Sas coíuos Os sas raduzem a eolução de uma gradeza ao logo do empo empo : IR IR ou : [ab] IR ou do espaço Um sal dz-se coíuo se

Leia mais

Instituto Politécnico de Lisboa

Instituto Politécnico de Lisboa suo Polécco de soa suo Superor de Egehara de soa Deparameo de Egehara Elecroécca e Auomação Secção de Ssemas de Eerga Folhas de Apoo às Aulas de aoraóro de Redes de Eerga Elécrca (Solução do Trâso de Eerga

Leia mais

Utilização do Matlab como Ferramenta de Desenvolvimento e de Visualização Gráfica dum Programa de Análise de Antenas pelo Método de FDTD

Utilização do Matlab como Ferramenta de Desenvolvimento e de Visualização Gráfica dum Programa de Análise de Antenas pelo Método de FDTD RVISTA DO DTUA VOL 3 Nº 5 JANIRO 00 Ulação do Malab como Ferramea de Desevolvmeo e de Vsualação Gráfca dum Programa de Aálse de Aeas pelo Méodo de FDTD Nassr Abohalaf Cláudo Mars Pedro Pho J F Rocha Perera

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

O consumo de alimentos e o bem-estar do consumidor em Campo Grande MS

O consumo de alimentos e o bem-estar do consumidor em Campo Grande MS Isuções, Efcêca, Gesão e Coraos o Ssema Agrodusral O cosumo de almeos e o bem-esar do cosumdor em Camo Grade MS Aderso Texera Bees CPF 7854485 Mesre em Agroegócos Uversdade Federal de Mao Grosso do Sul

Leia mais

Engª de Sistemas e Informática Fundamentos de Telecomunicações 2004/ Modulação analógica da amplitude de portadora sinusoidal

Engª de Sistemas e Informática Fundamentos de Telecomunicações 2004/ Modulação analógica da amplitude de portadora sinusoidal Egª de semas e Iormáca Fudameos de Telecomucações 004/005 Modulação aalógca da amlude de oradora susodal. Irodução Nos ssemas de comucação os sas mesagem são rasmdos de um oo ara ouro aravés de um caal

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Análise de Dados e Probabilidade B Exame Final 2ª Época

Análise de Dados e Probabilidade B Exame Final 2ª Época Aálse de Dados e obabldade B Eame Fal ª Éoca Claa Cosa Duae Daa: / /7 Cáa Feades Duação: hm edo Chaves MORTATE: Esceva o ome e úmeo o cmo de cada folha Resoda a cada guo em folhas seaadas, caso ão esoda

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

Manual de Estatística Descritiva, Probabilidade e Inferência Estatística. Frequência Relativa % (f r )

Manual de Estatística Descritiva, Probabilidade e Inferência Estatística. Frequência Relativa % (f r ) Maual de Eaíca Decrva, robabldade e Ierêca Eaíca Tabela 3 Drbução de reuêca acumulada Varável o de ervço Freuêca bolua Freuêca bolua cumulada F Freuêca Relava % r Freuêca Relava cumulada % F r reuêca relava

Leia mais

MODELOS NEURAIS AUTÔNOMOS PARA PREVISÃO DE CARGA ELÉTRICA VITOR HUGO FERREIRA, ALEXANDRE P. ALVES DA SILVA

MODELOS NEURAIS AUTÔNOMOS PARA PREVISÃO DE CARGA ELÉTRICA VITOR HUGO FERREIRA, ALEXANDRE P. ALVES DA SILVA MODELOS EURAIS AUTÔOMOS PARA PREVISÃO DE CARGA ELÉTRICA VITOR HUGO FERREIRA, ALEXADRE P. ALVES DA SILVA Laboraóro de Ssemas de Poêca - LASPOT, Dearameo de Egehara Elérca, Uversdade Federal do Ro de Jaero

Leia mais

Capítulo 4. FLUXO DE TRÁFEGO - RELAÇÕES BÁSICAS

Capítulo 4. FLUXO DE TRÁFEGO - RELAÇÕES BÁSICAS 1 Caíulo 4. FLUXO DE RÁFEGO - RELAÇÕES BÁSICAS A arefa fudameal de uma eora do Fluxo de ráfego é o esabelecmeo de relações áldas ere as aráes de eresse. Os resulados báscos dese esforço são o coeúdo relaado

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

Análise de Eficiência Energética em Sistemas Industriais de Ventilação

Análise de Eficiência Energética em Sistemas Industriais de Ventilação Aálse de Efcêca Eergéca em Ssemas Idusras de elação Kleber Davd Belovsk, Déco Bspo, Aôo Carlos Delaba, Sérgo Ferrera de aula Slva Faculdade de Egehara Elérca da Uversdade Federal de Uberlâda UFU, Aveda

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

Adotando-se as seguintes variáveis e parâmetro adimensionais: i 1 i i i i i 1

Adotando-se as seguintes variáveis e parâmetro adimensionais: i 1 i i i i i 1 Lsta de eercícos (Capítulo 4) ) Em dos reatores taque de mstura perfeta é coduzda a reação em fase líquda: A+BC+D de forma sotérmca. Os balaços estacoáros de massa do reagete A este sstema são descrtos

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

COMPLEMENTOS DE MECÂNICA QUÂNTICA PARA ESPECTROSCOPIA LEITURA OPCIONAL PARA PQF. M.N. Berberan e Santos

COMPLEMENTOS DE MECÂNICA QUÂNTICA PARA ESPECTROSCOPIA LEITURA OPCIONAL PARA PQF. M.N. Berberan e Santos COMPEMENTOS DE MECÂNICA QUÂNTICA PARA ESPECTROSCOPIA EITURA OPCIONA PARA PQF M.N. Berbera e Saos Abrl de 1 Complemeos de Mecâca Quâca 1.1 Equação de Schrödger depedee do empo A forma mas geral da equação

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

MOSFET: A Dedução da equação da corrente Aula 2

MOSFET: A Dedução da equação da corrente Aula 2 MOSFET: A edução da equação da corree Aula 31 Aula Maéra Cap./pága 1ª 03/08 Elerôca PS33 Programação para a Prmera Prova Esruura e operação dos rassores de efeo de campo caal, caraceríscas esão-corree.

Leia mais

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1 NOTA BREVE SOBRE O CONCEITO DE MÉDIA O coceto de méda surge de modo abudate a dscla de Métodos Estatístcos, resete em mutos cursos de lcecatura de sttuções de eso sueror. Surge, de gual modo, em domíos

Leia mais

IMPLEMENTAÇÃO DOS MÉTODOS DE RESÍDUOS PONDERADOS POR QUADRATURAS GAUSSIANAS. Eduardo Moreira de Lemos

IMPLEMENTAÇÃO DOS MÉTODOS DE RESÍDUOS PONDERADOS POR QUADRATURAS GAUSSIANAS. Eduardo Moreira de Lemos IMPLEMENTAÇÃO DOS MÉTODOS DE RESÍDUOS PONDERADOS POR QUADRATURAS GAUSSIANAS Edardo Morera de Lemos DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

A PROGRAMAÇÃO MATEMÁTICA, A TECNOLOGIA E A MAIS-VALIA

A PROGRAMAÇÃO MATEMÁTICA, A TECNOLOGIA E A MAIS-VALIA A PROGRAMAÇÃO MATEMÁTICA, A TECNOLOGIA E A MAIS-VALIA Sdepa Bogosa Neo Cero de Projeos de Navos Marha do Brasl Ilha das Cobras, Ed. 6, s/o. Cero, Ro de Jaero CEP 2009-000 e-mal: sbogosa@gmal.com RESUMO

Leia mais

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido

FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA. Héctor Arango José Policarpo G. Abreu Adalberto Candido FILTROS ATIVOS: UMA ABORDAGEM COMPARATIVA Hécor Arango José Polcaro G. Abreu Adalbero Canddo Insuo de Engenhara Elérca - EFEI Av. BPS, 1303-37500-000 - Iajubá (MG) e-mal: arango@ee.efe.rmg.br Resumo -

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

1 Equação de Transporte de Quantidade de Movimento

1 Equação de Transporte de Quantidade de Movimento Equação de Transore de Quandade de Momeno. Inrodução A equação de ransore de quandade de momeno em a forma de qualquer equação de eolução: d d ssema βdv βdv ( β. n) da (Fluo dfuso) (Fones - Poços) c surface

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

ALGORITMO DE BRANCH AND BOUND NÃO LINEAR PARA PROBLEMAS DE PLANEJAMENTO DE REATIVOS EM SISTEMAS DE ENERGIA ELÉTRICA

ALGORITMO DE BRANCH AND BOUND NÃO LINEAR PARA PROBLEMAS DE PLANEJAMENTO DE REATIVOS EM SISTEMAS DE ENERGIA ELÉTRICA XXX SMÓSO BRASLERO DE ESUSA OERACONAL esusa Operacoal a Socedade: Educação Meo Ambee e Desevolvmeo a 5/09/06 oâa O ALORTMO DE BRANCH AND BOUND NÃO LNEAR ARA ROBLEMAS DE LANEJAMENTO DE REATOS EM SSTEMAS

Leia mais

Secção 7. Sistemas de equações diferenciais.

Secção 7. Sistemas de equações diferenciais. 7. Sisemas de equações difereciais Secção 7. Sisemas de equações difereciais. (Farlow: Sec. 6., 6.4 e 6.6) No caso geral, um sisema de equações difereciais de primeira ordem pode ser represeado da seguie

Leia mais

Formulações Numéricas para Análise de Vigas em Contato com Bases Elásticas

Formulações Numéricas para Análise de Vigas em Contato com Bases Elásticas UNIVERSIDADE FEDERA DE OURO PRETO - ESCOA DE MINAS DEPARTAMENTO DE ENGENHARIA CIVI PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVI Formulações Numércas para Aálse de Vgas em Coao com Bases Eláscas AUTOR:

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Laise Lima de Carvalho. Um Estudo Comparativo de Métodos de Simulação de Tecidos Virtuais Através de Sistemas de Partículas

Laise Lima de Carvalho. Um Estudo Comparativo de Métodos de Simulação de Tecidos Virtuais Através de Sistemas de Partículas Lase Lma de Caralho Um Esudo Comparao de Méodos de Smulação de Tecdos Vruas Araés de Ssemas de Parículas Foraleza 0 Lase Lma de Caralho Um Esudo Comparao de Méodos de Smulação de Tecdos Vruas Araés de

Leia mais

ANÁLISE ELÁSTICA DE ESTRUTURAS COMPOSTAS POR LÂMINAS PLANAS DE ESPESSURAS CONSTANTES UTILIZANDO-SE O MÉTODO DOS ELEMENTOS DE CONTORNO

ANÁLISE ELÁSTICA DE ESTRUTURAS COMPOSTAS POR LÂMINAS PLANAS DE ESPESSURAS CONSTANTES UTILIZANDO-SE O MÉTODO DOS ELEMENTOS DE CONTORNO ISSN 89-586 ANÁLISE ELÁSICA DE ESRRAS COMOSAS OR LÂMINAS LANAS DE ESESSRAS CONSANES ILIZANDO-SE O MÉODO DOS ELEMENOS DE CONORNO Âgelo Vera Medoça & João Baa de ava Remo Na rmera are dee rabalho ão edada

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

Recursos Hídricos /// Associação Portuguesa dos Recursos Hídricos /// Volume 32# 02

Recursos Hídricos /// Associação Portuguesa dos Recursos Hídricos /// Volume 32# 02 Recursos Hídrcos /// Assocação Portuguesa dos Recursos Hídrcos /// Volume # Equações de Boussesq com Característcas Dsersvas Melhoradas. Alcações Boussesq-tye Equatos wth Imroved Dserso Characterstcs.

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

THIAGO SCARINI FERRARI APLICAÇÃO DE NÚMEROS ÍNDICES NO CÁLCULO DA CESTA BÁSICA

THIAGO SCARINI FERRARI APLICAÇÃO DE NÚMEROS ÍNDICES NO CÁLCULO DA CESTA BÁSICA 0 THIAGO SCARINI FERRARI APLICAÇÃO DE NÚMEROS ÍNDICES NO CÁLCULO DA CESTA BÁSICA SÃO JOSÉ DO RIO PRETO 2017 1 THIAGO SCARINI FERRARI APLICAÇÃO DE NÚMEROS ÍNDICES NO CÁLCULO DA CESTA BÁSICA Dsseração areseada

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Funções de várias variáveis

Funções de várias variáveis 3 Fuções de váras varáves Graça Peraça e Raael Mooo ª Edção PREFÁCIO Aposla baseada em lvros de cálculos e maeras ulados durae a aculdade de maemáca. Seu objevo é aclar o esudo vso que odo o coeúdo do

Leia mais

Capítulo 3. Interpolação Polinomial

Capítulo 3. Interpolação Polinomial EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 3 Iterpolação Polomal Teorema de Weerstrass: se f( é uma fução cotíua em um tervalo fechado [a, b], etão para cada >,

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

A OTIMIZAÇÃO DOS PESOS DAS OBSERVAÇÕES GEODÉSICAS POR UM PROBLEMA DE VALOR PRÓPRIO INVERSO: SOLUÇÃO PELO MÉTODO DE NEWTON E QUASE NEWTON BFGS.

A OTIMIZAÇÃO DOS PESOS DAS OBSERVAÇÕES GEODÉSICAS POR UM PROBLEMA DE VALOR PRÓPRIO INVERSO: SOLUÇÃO PELO MÉTODO DE NEWTON E QUASE NEWTON BFGS. A OTIMIZAÇÃO DOS PESOS DAS OBSERVAÇÕES GEODÉSICAS POR UM PROBLEMA DE VALOR PRÓPRIO INVERSO: SOLUÇÃO PELO MÉTODO DE NEWTON E QUASE NEWTON BGS. The omzaon of geodec observaons weghs hrough an egenvalue roblem:

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos:

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos: Crso de iâica das Esrras 5 III ESTRUTURAS COM VÁRIOS GRAUS E LIBERAE III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2 Determine o otencial elétrico de um diolo a Num onto P qualquer, a uma distância r da carga ositiva e a uma distância r da carga negativa; b Obtenha a eressão ara ontos muito afastados do diolo. c Determine

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Ponifícia Universidade Caólica Do Paraná PPGIA- Programa de Pós-Graduação Em Informáica Alicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE RENYI Resumo: Segmenação de imagem é um méodo

Leia mais

MODELOS DE REGRESSÃO NÃO LINEARES

MODELOS DE REGRESSÃO NÃO LINEARES M. Mede de Olvera Excerto da ota peoa obre: MODELOS DE REGRESSÃO NÃO LINEARES Obervação No modelo de regreão dto leare, a varável depedete é exprea como fução lear do coefcete de regreão. É rrelevate,

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Curvas e Superfícies

Curvas e Superfícies CI 8 - Ssemas Gráfcos ara Egehara - UC-Ro Crvas e Serfíces Baseao em maeras rearaos or Marcelo Gaass Deo. e Iformáca UC-Ro e Aré Maés Brabo erera Deo. e Eg. Cvl UFF aaao or L Ferao Marha ara a scla CI8

Leia mais

AJUSTAMENTO DE CURVAS E MODELOS ESTOCÁSTICOS: ABUSOS DO MÉTODO DOS MÍNIMOS QUADRADOS

AJUSTAMENTO DE CURVAS E MODELOS ESTOCÁSTICOS: ABUSOS DO MÉTODO DOS MÍNIMOS QUADRADOS AJUSTAMENTO DE CURVAS E MODELOS ESTOCÁSTICOS: ABUSOS DO MÉTODO DOS MÍNIMOS QUADRADOS CURVE FITTING AND STOCHASTIC MODELS: ABUSES OF THE LEAST SQUARES METHOD. INTRODUÇÃO Muas vezes dspõe-se de um modelo

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

4 Sondagem do canal de propagação rádio-móvel

4 Sondagem do canal de propagação rádio-móvel 4 Sodagem do caal de propagação rádo-móvel O desempeho dos ssemas de comucações móves é eremamee depedee do comporameo do caal de propagação. O percurso ere uma esação ase e um ermal móvel pode apresear

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Um Estudo sobre o Valor do Sistema de Rastreabilidade Animal nos EUA

Um Estudo sobre o Valor do Sistema de Rastreabilidade Animal nos EUA Quesões Agráras Educação o Camo e Desevolvmeo UM ESTUDO SOBRE O VALOR DO SISTEMA DE RASTREABILIDADE ANIMAL NOS EUA MOISÉS DE ANDRADE RESENDE FILHO; UNIVERSIDADE FEDERAL DE JUIZ DE FORA JUIZ DE FORA - MG

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear UleseMG Curso de Especlzção em Auomção e Corole Revsão de Álger Ler Deção de mrz Um mrz rel ou comple é um ução que cd pr ordedo,j o cojuo S m ssoc um úmero rel ou compleo. Um orm muo comum e prác pr represer

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev.

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev. uesp CAMUS DE GUARATINGUETÁ Computação e Cálculo Numérco: Elemetos de Cálculo Numérco ro. G.J. de Sea - Depto. de Matemátca Rev. 5 CAÍTUO 4 INTEROAÇÃO 4. INTRODUÇÃO Cosdere a segute tabela relacoado calor

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos

Mestrado em Finanças e Economia Empresarial EPGE - FGV. Derivativos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare : Renda Fixa Derivaivos - Alexandre Lowenkron Pág. Esruura a Termo das Taxas de Juros (curva de rendimeno Derivaivos - Alexandre Lowenkron

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

2 Conceitos Básicos de Redes de Bragg

2 Conceitos Básicos de Redes de Bragg Capítulo Coceitos Básicos de Redes de Bragg 1 Coceitos Básicos de Redes de Bragg.1. Redes de Bragg em fibras ópticas Uma rede de Bragg gravada em uma fibra óptica costitui uma modulação local e periódica

Leia mais