MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos"

Transcrição

1 MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação F m a, as les do eleromagnesmo, as les do movmeno de uma parícula carregada em um campo eleromagnéco. Todas essas les da Físca Clássca êm uma forma comum, mesmo quando se raa da colsão de blhões de parículas. E essa forma comum é dada pelo Prncípo da Mínma Ação. Mesmo as les da Termodnâmca, que normalmene não são expressas na forma do PMA, são smples les esaíscas de um ssema com um grande número de graus de lberdade, de modo que as les báscas deses graus de lberdade êm a forma dada pelo PMA. A a e da Termodnâmca é parcalmene uma le cujo fundameno esá baseado no PMA. OBS: Graus de lberdade é o número mínmo de coordenadas que descreve compleamene a confguração de um deermnado ssema. Por exemplo, uma parícula lvre em grau de lberdade rês (rês coordenadas), duas parículas êm grau de lberdade ses; duas parículas cujos movmenos esão confnados em uma únca superfíce êm grau de lberdade quaro (duas coordenadas para cada uma). Vejamos um pouco mas de maemáca... -Inegração por Pares: dy( ) du( ) dv( ) y( ) u( ) v( ) v( ) u( ) d d d Inegrando em "", obemos: dy( ) du( ) dv( ) d v( ) d u( ) d d d d y () u( ) v( ) du( ) dv( ) v( ) d u( ) d d d du( ) dv( ) v( ) d u( ) d d d Se o produo u( ) v( ) se anula nos ponos ncal e fnal: u( ) v( ) dv( ) du( ) u () d v() d d d 0, enão eremos: -Dada uma função A(): Noas baseadas nas aulas do Prof. eonard Sussknd Unversdade de Sanford

2 Se A( ) f ( ) d 0, onde f é uma função "arbrára", enão: A 0 Para vermos sso, basa supor que A () seja dferene de zero A( 0) A0 em algum nfnésmo nervalo. Enão basara defnrmos a função f() (a qual é arbrára) como endo valor zero em oda a sua exensão, exceo no nervalo, no qual ela assumra o valor. Com sso eríamos: A0 A( ) f ( ) d A0 0 A Hsóra de um ssema é dada pela rajeóra, ao longo do empo, das coordenadas do ssema: Trajeóra ou Hsóra do ssema Esamos neressados em deermnar a Hsóra ou rajeóra do ssema. Como já menconamos, podemos abordar o problema de duas maneras: ocal ou Globalmene. ocal : Dada uma nformação em um dado pono da rajeóra, aplcamos uma le que nos perme deermnar a posção do próxmo pono. Com sso, podemos consrur oda a rajeóra (por exemplo, F ma q e os q num pono específco, podemos, a ). Assm, se sabemos duas nformações do ssema parr dese deermnado pono, consrur oda a rajeóra. Global : Olha-se para o problema vendo-se a rajeóra como um odo, consderando que exse uma quandade (a qual chamamos de Ação ) cuja mnmzação (valor esaconáro ) é obda somene ao longo da rajeóra realmene percorrda pelo ssema. Nese caso, ambém precsamos de duas nformações do ssema, que não são mas os q e os q num deermnado pono da rajeóra, mas sm q ( ) e q ( ). Essas duas formas são relaconadas e, de fao, equvalenes, pos, se o PMA esabelece a rajeóra oda, enão ele esabelece ambém a rajeóra local em um pono específco; assm como a le local, deermnando o próxmo pono a ser angdo, ambém deermna a rajeóra oda. Desa forma, é possível, a parr do PMA, que aua globalmene, deduzr-se ambém as equações dferencas do ssema, que auam localmene. Vamos ver como se deermna a função (Hsóra) que mnmza o PMA para um dado ssema. Noas baseadas nas aulas do Prof. eonard Sussknd Unversdade de Sanford

3 Sejam qˆ ˆ ˆ ˆ ( ), q( )... qn( ) q( ) as coordenadas generalzadas que mnmzam a Ação de um dado ssema. Vamos adconar a cada coordenada uma função arbrára f () : q ( ) qˆ ( ) f ( ) ; onde pode ser um número qualquer. Esabelecendo que a nova rajeóra, () enão a função arbrára () q, deve passar ambém pelos ponos ncal e fnal e, f deve anular-se em e, ou seja, f( ) f( ) 0. f e proporconalmene a. Com sso, a rajeóra rá modfcar-se de acordo com () Vamos supor que qˆ () seja a rajeóra que mnmza a Ação. Enão a Ação, em relação à rajeóra modfcada q (), será (uma vez escolhdas as funções arbráras f () ) apenas A q () A, sendo que, por hpóese, função de : a Ação é mínma ( ˆ () quando 0 q é suposa ser a rajeóra mnmzane). Temos, porano, uma função de, cujo mínmo é angdo em Aplcando a defnção da AÇÃO :, Enão emos: da( ) dq dq d d q d q d Mas: Porano: A q q d da( ) 0 0 d agrangeano dq d dq d q f f e q f f d d d d da( ) f f d d q q 0 Empregando a negração por pares e levando em consderação que f( ) f( ) 0: da( ) d f d f f d d q q d q da( ) d f d q d q d, pos, uma vez que f( ) f( ) 0, o ermo f é gual a zero. q Para o pono de mínmo, devemos er: da( ) 0 d, porano: d f ( ) d 0. q d q 3 Noas baseadas nas aulas do Prof. eonard Sussknd Unversdade de Sanford

4 Esa quana deve ser nula para qualquer função f (), pos oda modfcação na rajeóra verdadera, a qual mnmza a AÇÃO, deve resular em um aumeno da AÇÃO. Porano devemos er como resulado, para a condção do mínmo (valor esaconáro ): d 0 q d q EQUAÇÃO DE EUER-AGRANGE Esa equação é o coração de oda a Físca Clássca! Na verdade, numa forma um pouco dferene e mas sofscada, ela é ambém o coração da Mecânca Quânca! Todos os ssemas físcos conhecdos podem ser formulados pelo Prncípo da Mínma Ação, dado pela Equação de Euler-agrange, aplcando-se a campos gravaconas, campos eleromagnécos, Relavdade Geral e Relavdade Resra, Teora das Cordas, ec... Vamos observar alguns exemplos. Prmeramene, vamos dar nomes para alguns elemenos da Equação de Euler-agrange (EE): q q MOMENTO CANÔNICO CONJUGADO A q ou smplesmene MOMENTO. FORÇA GENERAIZADA Vemos enão que as Equações de Euler-agrange (EE) sgnfcam que a dervada do momeno é gual à força F ma. Vamos verfcar sso para o caso de uma parícula movendo-se em uma únca dmensão: mx T U U ( x) m x p ; x dp U U m x F m a d d x x d x x qs. ' Vejamos agora um ssema com váras parículas. Para cada uma eríamos x, y, z ; x, y, z ;... Vamos chamar cada smples coordenada de q, de modo que, para N parículas, eríamos 3 N Observemos um exemplo com duas parículas movendo-se em uma lnha rea: Vamos aqu nos referr a uma condção de Energa Poencal parcular, na qual emos a propredade de INVARIÂNCIA POR TRANSAÇÃO. Iso sgnfca que o AGRANGEANO, em parcular a Energa Poencal, não rá varar, se nós movermos ambas as parículas por um mesmo espaço, ou seja, a dependênca da Energa Poencal se dá em relação à dsânca enre as parículas, ndependene de onde elas esejam. Noas baseadas nas aulas do Prof. eonard Sussknd Unversdade de Sanford

5 Esa hpóese é equvalene a uma SIMETRIA, dada por uma SIMETRIA DE TRANSAÇÃO, na qual a posção da orgem do ssema não alera o valor do AGRANGEANO, como é o caso para a velocdade em geral e para a Energa Poencal, quando esa depende apenas de dsânca enre as parículas. m x m x U ( x x) d dp U d x x d dx d dp U d x x d dx Fazendo z x x U ( z) U ( x x ) U U z U ( x x) x z x U U U U z x x U ( x x).( ) x z x dp dp d U U Daí resula que: p p 0 d d d x x Porano, como resulado da Smera de Translação, emos a conservação da quandade de movmeno. Vemos enão que a conservação da quandade de movmeno é uma consequênca da Invarânca por Translação assocada às equações de Euler-agrange para o Prncípo da Mínma Ação. Porano o pono mas mporane nsso udo é a CONEXÃO ENTRE SIMETRIAS E EIS DE CONSERVAÇÃO Smera sgnfca uma deermnada operação que, quando aplcada ao ssema, não alera o valor do AGRANGEANO ou da AÇÃO. OBS: Na Mecânca Clássca não há neresse em smeras dscreas (por exemplo, nercâmbo de duas varáves, o que leva apenas a dos possíves esados), mas sm em smeras conínuas, que podem ser consruídas pela soma de smeras nfnesmas. Vamos observar o exemplo de uma parícula movendo-se num plano sob a ação da gravdade: T m x m y U m g y Nese caso, o agrangeano é nvarane em relação a ranslações no exo x, mas não no exo y, porque o agrangeano depende de y aravés da Energa Poencal. Desse modo, devemos achar uma le de conservação relava apenas à dreção x. Nós podemos reescrever o agrangeano em ermos de quasquer ouras coordenadas. A Ação pode aé fcar mas complcada nesas novas coordenadas, mas anda connuará a mesma Ação, que, ao longo da rajeóra real percorrda pelo ssema, angrá um valor mínmo (esaconáro). O fao de que a Ação é mnmzada para a rajeóra real do ssema é um resulado que não depende do ssema de coordenadas ulzado! Por esa razão, o PMA é ndependene do ssema de coordenadas empregado. Noas baseadas nas aulas do Prof. eonard Sussknd Unversdade de Sanford m x y m g y d d d d px 0 ; py m g d x d x d y d y 5

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012 Físca Geral I - F -8 Aula Cnemáca e Dnâmca das oações º semesre, 0 Movmeno de um corpo rígdo Vamos abandonar o modelo de parícula: passamos a levar em cona as dmensões do corpo, nroduzndo o conceo de corpo

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade.

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade. FISP CIRCUITOS ELÉTRICOS EXERCÍCIOS RESOLVIDOS 00 CIRCUITOS ELÉTRICOS EXERCÍCIOS 00 Para o crcuo da fgura, deermnar a ensão de saída V ou, ulzando a lneardade. Assumremos que a ensão de saída seja V ou

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Controle Cinemático de Robôs Manipuladores

Controle Cinemático de Robôs Manipuladores Conrole Cnemáco de Robôs Manpuladores Funconameno Básco pos de rajeóra rajeóras Pono a Pono rajeóras Coordenadas ou Isócronas rajeóras Conínuas Geração de rajeóras Caresanas Inerpolação de rajeóras Inerpoladores

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do 3 Snas Aleaóros em empo Conínuo. Pare II: Modelos de Fones de Informação e de uído. No capíulo aneror vemos oporundade de recordar os conceos báscos da eora das probabldades e das varáves aleaóras. Nese

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica MESTRADO EM IÊNIAS DE GESTÃO/MBA MÉTODOS QUANTITATIVOS APIADOS À GESTÃO V Funções Eponencal, Poênca e ogaríca V- FUNÇÕES EXPONENIA, POTÊNIA E OGARÍTMIA. U capal, coposo anualene a ua aa de juro anual durane

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

Análise da Confiabilidade de Componentes Não Reparáveis

Análise da Confiabilidade de Componentes Não Reparáveis Análse da onfabldade de omponenes Não Reparáves. omponenes versus Ssemas! Ssema é um conjuno de dos ou mas componenes nerconecados para a realzação de uma ou mas funções! A dsnção enre ssema, sub-ssema

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Projeto de Inversores e Conversores CC-CC

Projeto de Inversores e Conversores CC-CC eparameno de Engenhara Elérca Aula. onversor Buck Prof. João Amérco lela Bblografa BAB, vo. & MANS enzar ruz. onversores - Báscos Não-solados. ª edção, UFS,. MOHAN Ned; UNEAN ore M.; OBBNS Wllam P. Power

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Figura 1 Uma imensa nuvem de pássaros [ red-billed queleas] retornam a seu viveiro natural ao pôr do sol, Delta do Okavango, Botswana, África

Figura 1 Uma imensa nuvem de pássaros [ red-billed queleas] retornam a seu viveiro natural ao pôr do sol, Delta do Okavango, Botswana, África 5. MÉTODO DE ENXAME DE PARTÍCULAS PARTICLE SWARM 5..Analoga Comparamenal: odos por um e um por odos 5..A Tradução Maemáca: o algormo básco 5.3.A Programação do Algormo 5.4.Eemplos Ilusravos 5. MÉTODO DE

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Planejamento de Trajetórias

Planejamento de Trajetórias Unversae Feeral e Iajubá - UNIFEI Insuo e Engenhara e proução e Gesão - IEPG EPR-03 Auomação a Manufaura Noas sobre: Planejameno e Trajeóras Y (x, y) L θ X=L1.C1+L.C1 Y=L1.S1+L.S1 L1 θ1 X=L1.C1 Y=L1.S1

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor APÍTUO I IRUITOS BÁSIOS OM INTERRUPTORES, IOOS E TIRISTORES. IRUITOS E PRIMEIRA OREM.. rcuo R em Sére com um Trsor Seja o crcuo apresenado na Fg... T R v R V v Fg.. rcuo RT sére. Anes do dsparo do rsor,

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches ANÁLISE MATEMÁTICA DE MODELOS DE OLIMERIZAÇÃO Heloísa Laas Sanches TESE SUBMETIDA AO CORO DOCENTE DA COORDENAÇÃO DOS ROGRAMAS DE ÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1

Programação Dinâmica. Fernando Nogueira Programação Dinâmica 1 Programação Dnâmca Fernando Noguera Programação Dnâmca A Programação Dnâmca procura resolver o problema de otmzação através da análse de uma seqüênca de problemas mas smples do que o problema orgnal. A

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

3 Teoria de imunização

3 Teoria de imunização 33 3 Teora de munzação Como fo vso, o LM é um gerencameno conuno de avos e passvos como o nuo de dmnur ou aé elmnar os rscos enfrenados pelas nsuções fnanceras. Deses rscos, o rsco de axa de uros represena

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS

MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS BRUNO FIGUEREDO ARCENO FLORIANÓPOLIS 5 UNIVERSIDADE

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia 61 4 Premssas quano aos Modelos de Despacho de Geração, Formação do Preço da Energa e Comercalzação de Energa 4.1. Inrodução A remuneração de uma geradora depende do modelo de despacho de geração e formação

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

V - Modelo de onda cinemática

V - Modelo de onda cinemática Capíulo V - Onda cnemáca V - Modelo de onda cnemáca V. - Euaçõe do modelo de onda cnemáca Como e demonrou no capíulo IV, a euaçõe ue decrevem o modelo de Onda Cnemáca ão a euação da connudade: forma: e

Leia mais

Uma análise da não-linearidade da função de reação do Banco Central do Brasil: Avesso a Inflação ou a Recessão?

Uma análise da não-linearidade da função de reação do Banco Central do Brasil: Avesso a Inflação ou a Recessão? Uma análse da não-lneardade da função de reação do Banco Cenral do Brasl: Avesso a Inflação ou a Recessão? Terence de Almeda Pagano José Luz Ross Júnor Insper Workng Paper WPE: 88/9 Coprgh Insper. Todos

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC)

LIGAÇÕES QUÍMICAS NOS COMPOSTOS DE COORDENAÇÃO: TEORIA DO CAMPO CRISTALINO (TCC) LIGAÇÕES QUÍMICAS NS CMPSTS DE CRDENAÇÃ: TERIA D CAMP CRISTALIN (TCC) A Teoria do Campo Crisalino (TCC) posula que a única ineração exisene enre o íon cenral e os liganes é de naureza elerosáica, pois

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Capítulo 1 Introdução

Capítulo 1 Introdução Capíulo Inrodução No mercado braslero de prevdênca complemenar abera e de seguro, regulado e fscalzado pela Supernendênca de Seguros Prvados SUSEP, os planos de prevdênca e de seguro de vda que possuam

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais