Experiência IV (aulas 06 e 07) Queda livre

Tamanho: px
Começar a partir da página:

Download "Experiência IV (aulas 06 e 07) Queda livre"

Transcrição

1 Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando os resulados expermenas com o modelo da queda lvre. Elaborar um modelo consse em descrever cero fenômeno a parr de uma eora, adoando um conuno de hpóeses que nos levam a consderar apenas os efeos mas mporanes. Ulzaremos a análse gráfca para verfcar a valdade do modelo empregado e, assm, das hpóeses que o orgnaram. Oberemos ambém uma esmava da aceleração da gravdade. Com ese esudo, ambém remos dscur como medr a velocdade de um obeo, que é uma grandeza dervada de ouras duas grandezas fundamenas (o empo e o espaço).. Inrodução A elaboração de modelos a parr de hpóeses smplfcadoras é um procedmeno mporane para a físca. Os fenômenos físcos dependem de muos faores e é fundamenal saber reer apenas aqueles mas relevanes, que nfluencam de modo sgnfcavo o processo consderado. Quando uma maçã ca de uma árvore podemos dzer que ela sofre a nfluênca da aração gravaconal, do empuxo relavo ao ar que a crcunda e da ressênca do ar. A prncípo poderíamos consderar ambém a varação da aração gravaconal da Terra com a alura, a nfluênca dos ouros planeas e galáxas. Levar em cona odas esas forças para descrever a queda da maçã podera ornar mpracável a obenção de qualquer

2 resulado numérco. Assm, por meo da análse da nfluênca relava dos faores menconados, podemos eleger os mas relevanes e, com a hpóese de que apenas eles governam o movmeno do corpo, somos capazes de descrever o fenômeno de manera quanava. No modelo de queda lvre supõe-se que oda a nfluênca do ar sobre o movmeno do corpo é desprezível. Nese caso, a hpóese com que rabalhamos é a de que não há nenhuma oura força auando no obeo, a não ser a da aração gravaconal. Quando se aplca um modelo, é sempre necessáro consderar os lmes da sua aplcabldade. Podemos usar o modelo de queda lvre para afrmar que uma bolnha de chumbo e de papel caem de 1 mero de alura em um mesmo nervalo de empo, por exemplo. Mas será que a hpóese de desprezar a nfluênca do ar connua válda quando lançamos eses obeos do décmo andar de um prédo? Nesa aula esudaremos a queda de um obeo com um formao aerodnâmco denro da sala do laboraóro, verfcando se o modelo de queda lvre descreve adequadamene os resulados empírcos denro da nossa precsão expermenal. De acordo com a segunda le de Newon, podemos relaconar a força resulane F sobre um cero corpo com a sua quandade de movmeno p como: dp F d, onde p mv, sendo m a massa do corpo e v, a sua velocdade. Consderando a suação em que a massa é consane, emos: dv F m ma d em que a é a aceleração., No modelo de queda lvre rabalhamos com a hpóese de que apenas a força de aração gravaconal aua sobre o corpo. Esa pode ser dada por mg, onde g é a aceleração da gravdade, desde que o eveno esudado sue-se nas proxmdades da Terra. Dessa manera, escrevemos: ma mg. Consderando que a velocdade e a posção ncas são dadas por v 0 x, respecvamene, a solução da equação acma fornece: e 0 g 0 0 x x v,

3 que represena a posção do obeo em função do empo. Se a posção e velocdade ncas e a aceleração da gravdade possuem a mesma dreção, podemos reescrever a equação acma, de manera smplfcada, como: g 0 0 x x v. A velocdade, por sua vez, é dada por: v v0 g. Com o modelo de queda lvre ramos uma oura conclusão mporane acerca do movmeno do corpo e que empregaremos na análse dos dados: como se consdera que a aceleração é consane, podemos dzer que a velocdade méda enre dos nsanes 1 e é gual à velocdade nsanânea na meade do nervalo, 1 m. Dessa forma, emos: v m v 1, x 1 1 x. Podemos nos quesonar em que condções esa aproxmação é válda. Será que ela é válda somene para o caso da queda lvre? Ou será que mesmo para suações onde a nfluênca do ar é mensurável, esa aproxmação ambém é válda para nervalos de empo curos? 3. Procedmeno expermenal Nesa experênca, o obeo a ser lançado em a forma de um elpsóde de revolução (parecdo com um ovo), que ca enre dos fos meálcos sem ocá-los. Incalmene, o obeo é mando no opo da hase por meo de um eleroímã, que é deslgado aravés de uma chave, lberando o elpsóde. O aconameno connuado desa chave provoca pulsos de ala ensão enre os fos e, devdo a um anel meálco em orno do corpo (na fgura 5.1 ele é represenado por uma faxa hachurada em orno do elpsóde, que é feo de um maeral solane), ocorrem descargas elércas enre os fos, orgnando faíscas. Os pulsos são gerados por um crcuo elérco, com a mesma freqüênca da rede elérca, f 60,00 Hz (eses quaro algarsmos sgnfcavos mosram a grande precsão do período de osclação da rede elérca). Assm, o nervalo de empo enre duas faíscas é 1 T s. 60,00

4 Fgura 5.1: equpameno ulzado para o esudo da queda do corpo. As faíscas provocadas pelos pulsos de ala ensão enre os dos fos marcam um papel encerado. Para regsrar a ocorrênca das faíscas emprega-se uma fa de papel encerado (papel de fax), colocada ao longo da hase de supore dos fos. As descargas elércas marcam o papel, deermnando a posção do obeo no nsane em que a faísca ocorreu. Para se realzar a omada de dados sugermos os segunes passos: 1) para garanr que o elpsóde marque correamene o papel, é mporane observar se a hase de supore dos fos esá alnhada com a vercal, o que pode ser verfcado com um fo de prumo e com algumas smulações de queda do corpo. Nesas deve-se noar se o obeo não oca os fos. Tome muo cudado para não omar um choque elérco; ) para ober o deslocameno do corpo com o empo, usamos o papel encerado que será marcado pelas faíscas em nervalos consanes. Nesa eapa deve-se prender o papel na hase e colocar o elpsóde no opo dela, preso pelo eleroímã; 3) após garanr que a hase esea na vercal, a fa presa correamene e o ovo preso no opo da hase, acona-se a chave que deslga o eleroímã e ao mesmo empo dá níco aos pulsos de ala ensão;

5 4) após a queda do elpsóde, é mporane observar se as marcas no papel encerado são regulares, pos so garane que odas as faíscas ocorreram correamene e não houve falhas. 4. Análse de dados Para analsarmos o movmeno do corpo, podemos deermnar a relação enre a sua velocdade e o empo. Para sso, medmos o deslocameno do elpsóde x x x, correspondene ao nervalo de empo, obendo a velocdade nsanânea em parr de: m, a v m v, x x x. É mporane lembrar que ao usarmos esa relação assummos que a aceleração é consane, pelo menos em um breve nervalo de empo. Na análse dos dados, além da undade convenconal de empo, o segundo, podemos alernavamene adoar como undade de empo o nervalo enre duas faíscas, a qual denomnamos de u, onde u 1 / 60 s. Por exemplo, podemos dzer que a ercera faísca ocorre em 3 u. Fca a créro do aluno escolher a undade de empo usada na análse. Pare I: A análse dos resulados é fea a parr das segunes eapas: 1) denfcar o prmero pono marcado na fa, assocando-o com o nsane ncal, ou sea, 0 u(ou segundo). Localzar os demas, anoando ao lado deles os empos correspondenes em u ou segundos (1u, u, 3 u e ec); ) medr a dsânca enre os dversos ponos, x x x, com uma régua, anoando os valores em uma abela com a descrção do nervalo ao qual eles se referem. Um dos negranes do grupo, denomnado de A, oberá a dsânca enre duas marcas consecuvas (1-, 3-4, 5-6 e ec) e o B medrá, pulando uma marca (1-3, -4, 5-7, 6-8 e ec). Vea que nenhum pono fo omado como exremo de dos nervalos. Iso fo feo para evar que um dado sea dependene de ouro. Não se esqueça de esmar a ncereza deses valores;

6 3) consrur abelas das velocdades nsanâneas e dos empos aos quas elas se referem, com as respecvas ncerezas. Pare II: 1) fazer um gráfco da velocdade em função do empo, empregando os ponos obdos na eapa aneror, colocando barras de ncereza. Assumndo a valdade das hpóeses que dão orgem ao modelo de queda lvre, esperamos ober uma dependênca lnear enre a velocdade e o empo, o que represena que a aceleração do corpo é consane. A parr desa déa, avale a adequação do modelo aos dados. Eles são bem descros por uma rea? ) por meo da análse do gráfco, deermnar os parâmeros da rea com as respecvas ncerezas (há uma explcação sobre so na aposla aneror, no capíulo 3). Teremos enão a velocdade no nsane ncal e a aceleração do corpo; 3) dscur os resulados obdos, comparando a aceleração da gravdade obda com o valor fornecdo pelo IAG (Insuo de Asronoma, Geofísca e Cêncas Amosfércas), g = 9,7864 m/s. 4) Se rocássemos o elpsóde por um obeo oco, muo mas leve, será que o modelo de queda lvre connuara valendo? Com o obevo de explorar esa quesão mas a fundo efeuaremos meddas relavas ao movmeno de um carro em um rlho de ar, que oferece pouco aro. Incalmene omam-se os dados relavos ao carro em queda apenas. Em seguda, colocaremos uma vela para observar como os resulados são alerados. O que se espera para cada suação? Faça um gráfco para cada caso, comparando-os. 5. Quesões 1) Por que é mporane não omar nervalos cuos exremos seam repedos? ) A prmera faísca deve obrgaoramene ocorrer com o aconameno da chave que deslga o eleroímã? Nese sendo, o valor da velocdade rado do ause da rea esá de acordo com o esperado? 6. Referêncas 1. J. H. Vuolo e al, Físca Expermenal para o Bacharelado em Físca, Geofísca e Meeorologa, Insuo de Físca da USP (005).

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal. Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe

Leia mais

Análise da Confiabilidade de Componentes Não Reparáveis

Análise da Confiabilidade de Componentes Não Reparáveis Análse da onfabldade de omponenes Não Reparáves. omponenes versus Ssemas! Ssema é um conjuno de dos ou mas componenes nerconecados para a realzação de uma ou mas funções! A dsnção enre ssema, sub-ssema

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos:

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos: (9) - O LIT SOLV IM DISCUSIVS ÍSIC USTÃO ÍSIC sendo nula a velocdade vercal ncal v, devdo à equação (). Volando à equação () obemos:,8 ˆj ˆj b) Dado o momeno lnear da equação () obemos a velocdade na dreção

Leia mais

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor APÍTUO I IRUITOS BÁSIOS OM INTERRUPTORES, IOOS E TIRISTORES. IRUITOS E PRIMEIRA OREM.. rcuo R em Sére com um Trsor Seja o crcuo apresenado na Fg... T R v R V v Fg.. rcuo RT sére. Anes do dsparo do rsor,

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks Físca xpermenal IV - 008 Polarzação por Reflexão ângulo de Brewser Prof. Alexandre Suade Prof. Manfredo Tabacnks Reflexão e Refração da Luz fsca.ufpr.br/edlson/cap34.pdf fsca.ufpr.br/edlson/cap34.pdf prsma

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA Sergo Rcardo Perera Perllo *, Irac Maríne Perera Gonçalves *, Robero Carlos

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA Paulo Mansur Levy Mara Isabel Fernans Serra Esa noa em como objevo dvulgar resulados relavos ao comporameno das exporações e mporações produos ndusras

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia 61 4 Premssas quano aos Modelos de Despacho de Geração, Formação do Preço da Energa e Comercalzação de Energa 4.1. Inrodução A remuneração de uma geradora depende do modelo de despacho de geração e formação

Leia mais

S&P Dow Jones Indices: Metodologia da matemática dos índices

S&P Dow Jones Indices: Metodologia da matemática dos índices S&P Dow Jones Indces: Meodologa da maemáca dos índces S&P Dow Jones Indces: Meodologa do índce Ouubro 2013 Índce Inrodução 3 Dferenes varedades de índces 3 O dvsor do índce 4 Índces ponderados por capalzação

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

GUSTAVO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA.

GUSTAVO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA. GUSTAO UHMANN HOSS ANÁLISE DE TENSÕES EM COMPONENTES DE UMA SUSPENSÃO PNEU- MÁTICA. Monografa apresenada ao Deparameno de Engenara Mecânca da Escola de Engenara da Unversdade Federal do Ro Grande do Sul,

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do 3 Snas Aleaóros em empo Conínuo. Pare II: Modelos de Fones de Informação e de uído. No capíulo aneror vemos oporundade de recordar os conceos báscos da eora das probabldades e das varáves aleaóras. Nese

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Artigos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Maria Helena Nunes**

Artigos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Maria Helena Nunes** Argos IMPACTO DA PRECIPITAÇÃO EDOS EFEITOS DE CALENDÁRIO NAS VENDAS DE CIMENTO* Mara Helena Nunes** 1. INTRODUÇÃO * As opnões expressas no argo são da nera responsabldade da auora e não concdem necessaramene

Leia mais

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana Arbragem na Esruura a ermo das axas de Juros: Uma Abordagem Bayesana Márco Pole Laurn Armêno Das Wesn Neo Insper Workng Paper WPE: / Copyrgh Insper. odos os dreos reservados. É probda a reprodução parcal

Leia mais

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo Denlson Rcardo de Lucena Nunes Gesão de suprmenos no varejo semas de reposção de esoques em duas camadas e análse de esquemas de monorameno da prevsão de demanda Tese de Douorado Tese apresenada ao programa

Leia mais

2 Conceitos básicos Modelos de Markov

2 Conceitos básicos Modelos de Markov 2 Conceos báscos O objevo dese Capíulo é abordar eorcamene os assunos que formam a base para o desenvolvmeno do modelo proposo e a descrção do modelo de Frchman, que devdo sua frequene aplcação em rabalhos

Leia mais

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO Roque Passos Pvel Escola Polécnca da Unversdade de São Paulo - EPUSP Pedro Alem Sobrnho Escola Polécnca da Unversdade

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

3 Planejamento da Operação Energética no Brasil

3 Planejamento da Operação Energética no Brasil 3 Planeameno da Operação Energéca no Brasl 3.1 Aspecos Geras O ssema elérco braslero é composo por dos dferenes pos de ssemas: os ssemas solados, os quas predomnam na regão Nore do Brasl e represenam cerca

Leia mais

Richard John Brostowicz Junior. Futuros de swap de variância e volatilidade na BM&F - apreçamento e viabilidade de hedge

Richard John Brostowicz Junior. Futuros de swap de variância e volatilidade na BM&F - apreçamento e viabilidade de hedge FACULDADE IBMEC SÃO PAULO Programa de Mesrado Profssonal em Economa Rchard John Brosowcz Junor Fuuros de swap de varânca e volaldade na BM&F - apreçameno e vabldade de hedge São Paulo 009 Lvros Grás hp://www.lvrosgras.com.br

Leia mais

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido.

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. A Prevsão com o Modelo de Regressão.... Inrodução ao Modelo de Regressão.... Exemplos de Modelos Lneares... 3. Dervação dos Mínmos Quadrados no Modelo de Regressão... 6 4. A Naureza Probablísca do Modelo

Leia mais

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches

ANÁLISE MATEMÁTICA DE MODELOS DE POLIMERIZAÇÃO. Heloísa Lajas Sanches ANÁLISE MATEMÁTICA DE MODELOS DE OLIMERIZAÇÃO Heloísa Laas Sanches TESE SUBMETIDA AO CORO DOCENTE DA COORDENAÇÃO DOS ROGRAMAS DE ÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

V - Modelo de onda cinemática

V - Modelo de onda cinemática Capíulo V - Onda cnemáca V - Modelo de onda cnemáca V. - Euaçõe do modelo de onda cnemáca Como e demonrou no capíulo IV, a euaçõe ue decrevem o modelo de Onda Cnemáca ão a euação da connudade: forma: e

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Otimização no Planejamento Agregado de Produção em Indústrias de Processamento de Suco Concentrado Congelado de Laranja

Otimização no Planejamento Agregado de Produção em Indústrias de Processamento de Suco Concentrado Congelado de Laranja Omzação no Planeameno Agregado de Produção em Indúsras de Processameno de Suco Concenrado Congelado de Larana José Renao Munhoz Crova Agro Indusral Lda., 15800-970, Caanduva, SP (ose.munhoz@crova.com)

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Tráfego em Redes de Comutação de Circuitos

Tráfego em Redes de Comutação de Circuitos Caracerzação do ráfego nálse de ssemas de esados nálse de ráfego em ssemas de erda nálse de ráfego em ssemas de araso Bloqueo em ssemas de andares múllos Máro Jorge Leão Inenconalmene em branco Caracerzação

Leia mais

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela

Esta monografia é dedicada a Letícia e aos meus pais, João e Adelangela Esa monografa é dedcada a Leíca e aos meus pas, João e Adelangela Agradecmenos Gosara de agradecer ao Prof. Vrgílo, pelo apoo e orenação dados durane ese e ouros rabalhos. Agradeço ambém a meus colegas

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN XXVIII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO DINÂICA E PREVISÃO DE PREÇOS DE COODITIES AGRÍCOLAS CO O FILTRO DE KALAN Flávo Pnhero Corsn (POLI-USP) flavo.corsn@gmal.com Celma de Olvera Rbero (POLI-USP)

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ Alejandro Magno Lma Leão Mesre em economa pelo CAEN Audor Fscal da Recea do Esado do Ceará Fabríco Carnero Lnhares Phd

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 GRUO TIO A FÍS. FÍSICA Quesões de. Um mss de 7kg de águ, nclmene C, deve ser converd olmene em vpor C, rvés de um uecedor elérco de ressênc elérc R e lgdo um fone de forç eleromorz de V. Consdere emperur

Leia mais

MODELAGEM E ANÁLISE DE VENTILADORES MECÂNICOS E APARELHOS DE ANESTESIA

MODELAGEM E ANÁLISE DE VENTILADORES MECÂNICOS E APARELHOS DE ANESTESIA MODLAGM ANÁLIS D VNTILADORS MCÂNICOS APARLHOS D ANSTSIA Ivna Caão Fadlo Cur, IC vna@h8.a.br Takash Yoneyama, PQ akash@ele.a.br Resumo Os modelos dnâmcos são de grande vala na avalção e predção de dversos

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

ESCOAMENTO TURBULENTO

ESCOAMENTO TURBULENTO ESCOAMENTO TURBULENTO a rblênca em geral srge de ma nsabldade do escoameno em regme lamnar, qando o número de Renolds orna-se grande. As nsabldades esão relaconadas com nerações enre ermos vscosos e ermos

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP OTIMIZAÇÃO DA

Leia mais

2. REVISÃO BIBLIOGRÁFICA

2. REVISÃO BIBLIOGRÁFICA MODELO DE APOIO À DECISÃO PARA UM PROBLEMA DE POSICIONAMENTO DE BASES, ALOCAÇÃO E REALOCAÇÃO DE AMBULÂNCIAS EM CENTROS URBANOS: ESTUDO DE CASO NO MUNICÍPIO DE SÃO PAULO RESUMO Ese argo apresena uma proposa

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

Avaliação Inter/Intra-regional de absorção e difusão tecnológica no Brasil: Uma abordagem não-paramétrica. AUTORES.

Avaliação Inter/Intra-regional de absorção e difusão tecnológica no Brasil: Uma abordagem não-paramétrica. AUTORES. Avalação Iner/Inra-regonal de absorção e dfusão ecnológca no Brasl: Uma abordagem não-paramérca. Palavras chave: Efcênca écnca Produvdade oal Varação ecnológca AUTORES Emerson Marnho ouor em Economa pela

Leia mais

Crescimento econômico e restrição externa: Um modelo de simulação pós-keynesiano

Crescimento econômico e restrição externa: Um modelo de simulação pós-keynesiano Crescmeno econômco e resrção exerna: Um modelo de smulação pós-keynesano Mara Isabel Busao 1 Maro Luz Possas 2 Resumo O argo busca dscur a dnâmca do crescmeno econômco das economas em desenvolvmeno a parr

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

Planejamento de Trajetórias

Planejamento de Trajetórias Unversae Feeral e Iajubá - UNIFEI Insuo e Engenhara e proução e Gesão - IEPG EPR-03 Auomação a Manufaura Noas sobre: Planejameno e Trajeóras Y (x, y) L θ X=L1.C1+L.C1 Y=L1.S1+L.S1 L1 θ1 X=L1.C1 Y=L1.S1

Leia mais

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR EIO DOS ODELOS CAP NÃO-CONDICIONAL E CAP CONDICIONAL (Cos of equy analyss n Brazl: Non-Condonal CAP and Condonal CAP) Lumla Souza Grol 1 1 Unversdade Federal

Leia mais

FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO THIAGO CAIUBY GUIMARÃES TESTES EMPÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO

FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO THIAGO CAIUBY GUIMARÃES TESTES EMPÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO FUNDAÇÃO GETULIO VARGAS ESCOLA DE ECONOMIA DE SÃO AULO THIAGO CAIUBY GUIMARÃES TESTES EMÍRICOS DA EFICIÊNCIA DO MERCADO ACIONÁRIO BRASILEIRO SÃO AULO 28 THIAGO CAIUBY GUIMARÃES TESTES EMÍRICOS DA EFICIÊNCIA

Leia mais

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE Pesqusa Operaconal e o Desenvolvmeno Susenável 7 a /9/5, Gramado, RS HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE André Luís Shguemoo Faculdade de Engenhara Elérca e Compuação Unversdade Esadual

Leia mais

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO RICARDO CONSONNI

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO RICARDO CONSONNI FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ECONOMIA DE SÃO PAULO RICARDO CONSONNI MODELAGEM DE SUPERFÍCIES DE VOLATILIDADE PARA OPÇÕES COM BAIXA LIQUIDEZ SOBRE PARES DE MOEDAS, CUJOS COMPONENTES APRESENTAM OPÇÕES

Leia mais

BBR - Brazilian Business Review E-ISSN: 1807-734X bbronline@bbronline.com.br FUCAPE Business School Brasil

BBR - Brazilian Business Review E-ISSN: 1807-734X bbronline@bbronline.com.br FUCAPE Business School Brasil BBR - Brazlan Busness Revew E-ISSN: 1807-734X bbronlne@bbronlne.com.br FUCAPE Busness School Brasl Fausno Maos, Paulo Rogéro; Texera da Rocha, José Alan Ações e Fundos de Invesmeno em Ações: Faores de

Leia mais

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos Análse RFV do Clene na Omzação de Esraégas de Markeng: Uma Abordagem por Algormos Genécos Anderson Gumarães de Pnho Ponfíca Unversdade Caólca do Ro de Janero Ro de Janero RJ Brasl agp.ne@gmal.com 1. Inrodução

Leia mais

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005 1 Impaco da Educação Defasada sobre a Crmnaldade no Brasl: 2001-2005 Evandro Camargos Texera Ana Lúca Kassouf Seembro, 2011 Workng Paper 010 Todos os dreos reservados. É probda a reprodução parcal ou negral

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

CIBRIUS INSTITUTO CONAB DE SEGURIDADE SOCIAL

CIBRIUS INSTITUTO CONAB DE SEGURIDADE SOCIAL CIBRIUS INSTITUTO CONAB SEGURIDA SOCIAL Plano ConabPrev (COM BASE NA PROPOSTA REGULAMENTO A SER SUBMETIDA A PREVIC Noa Técnca Auaral 060/13 (Refcada) Agoso/2015 1 ÍNDICE 1 OBJETIVO... 5 2 GLOSSÁRIO...

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Autoria: Josilmar Cordenonssi Cia

Autoria: Josilmar Cordenonssi Cia Uma Possível Solução para o Equy Premum Puzzle (EPP Auora: Joslmar Cordenonss Ca Resumo MEHRA e PRESCO (985 levanaram uma quesão que aé hoje não fo respondda de forma sasfaóra: o prêmo de rsco das ações

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais