MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

Tamanho: px
Começar a partir da página:

Download "MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)"

Transcrição

1 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos objetos nvarantes em relação às transformações que odem ser fetas. Por eemlo, os esaços métrcos são caracterzados or uma métrca (Esaços de Remann), defnndo a dstânca entre ontos vznhos e, com sso, estabelecendo a estrutura do esaço. O esaço de Posson é dferente do esaço métrco, tendo um caráter mas abstrato, com estrutura dferente, dada elo esaço de fases e suas roredades em relação às transformações de suas coordenadas: qs ' e s. ' Neste sentdo, oderíamos erguntar quas as transformações que odem ser fetas, envolvendo qs ' e s, ' cujo resultado não altera a estrutura básca da Mecânca Clássca. Este to de questão era a esecaldade dos ensadores franceses e se mostrou muto mortante ara o desenvolvmento da Físca. Fo nesta lnha de ensamento que eles descobrram a estrutura da Mecânca Clássca, que é a formulação mas abstrata da Mecânca Clássca, tendo como base os COLCETES DE POISSON. Os colchetes de Posson servem ara descrever o fluo no esaço de fases. Um to de fluo no esaço de fases é o movmento dos ontos neste esaço ao longo temo, descrevendo como os ontos se comortam ao longo do temo sob a nfluênca de um determnado amltonano. Já vmos as smetras báscas da Mecânca em relação às translações e rotações. Vejamos agora a relação delas com os fluos no esaço de fases. Concentremo-nos ncalmente no fluo realzado no esaço de coordenadas. Neste sentdo, nós odemos magnar a translação e a rotação como um fluo de ontos de uma osção ara outra, através de uma nfndade de equenos deslocamentos. Estes deslocamentos odem não ter nada a ver com o movmento atual do sstema ao longo do temo, eles smlesmente descrevem o que aquela translação ou deslocamento fazem com o sstema, através dos sucessvos deslocamentos. Além dessas transformações de coordenadas, odemos ter uma muto mas rca varedade de transformações ou fluos no esaço de fases, que não se refere aenas às coordenadas de osção, mas ao conjunto de qs ' e s ' no esaço de fases. Estas transformações ou fluos no esaço de fases são descrtos elo método dos Colchetes de Posson. Vamos rever as roredades dos Colchetes de Posson, orém de uma forma mas abstrata, sem nos reocuarmos com suas defnções detalhadas, observando-as aenas como um conjunto de ostulados ou de aomas : A B B A A B C A C B C A B C AB C BA C 1),, (ANTISIMETRIA) ),,, (LINEARIDADE) 3),,, (PRODUTO) 4) q, j j OBS : A forma na qual está escrta esta tercera roredade, aesar de ndferente em relação à osção dos colchetes de Posson, que admtem a comutação, será sgnfcatva na Mecânca Quântca, que não admte a comutação. Notas baseadas nas aulas do Prof. Leonard Sussknd Unversdade de Stanford

2 A artr destas relações, é ossível deduzr todas as demas roredades dos colchetes de Posson. q F q, 0 F, 0 df F q, dq q, F df d (Desenvolvmento em sére de Talor, Lneardade, Produto) Com sso, odemos dzer que temos uma álgebra ara os colchetes de Posson, a qual caracterza a relação entre qs ' e s ' no esaço de fases. da dt Vamos adconar mas um ostulado (já vsto or nós) aos outros ostulados: A, Por eemlo, ara a artícula smles, temos:, ortanto: m,, 0 m q q,, q, q, q m m m m m Vemos então que, sem alcar as equações de amlton, odemos dervá-las através da álgebra dos colchetes de Posson. Vejamos agora aquela maor varedade de transformações. Estas fórmulas báscas dos colchetes de Posson são váldas ara todos os sstemas físcos conhecdos (Relatvdade eral, Teora do Camo Quântco, Sstemas Clásscos, Eletromagnetsmo, etc.). Smetras, como já vmos, são transformações de um sstema que não modfcam sua dnâmca. As smetras vstas até agora envolvem mudanças nas varáves qs, ' como or eemlo na translação e na rotação do sstema. Vejamos se há e quas são as smetras que envolvem as varáves qs ' e s ' e que reservam a estrutura da Mecânca Clássca, ou seja, que não modfcam as roredades báscas dos colchetes de Posson. Suonhamos, or eemlo, um sstema com aenas um q e um, e façamos uma transformação tal que os novos Q e P sejam dados or: P e Q q. A ergunta é se esta transformação reserva a estrutura de Posson. A resosta é NÃO! os não obedece à quarta roredade: PQ, 4 1. Porém, se fzermos neste caso P e Q q então: PQ, 1, conservando-se esta roredade, assm como as demas. É nteressante notar que esta últma transformação (admssível) realza uma contração em e uma eansão (roorconal) em q. Notas baseadas nas aulas do Prof. Leonard Sussknd Unversdade de Stanford

3 3 Vejamos outro eemlo: P cos qsen "Rotação" Q sen q cos P, P Q, Q 0 P, P Q, Q 0 Q P q q q q, sen cos, cos sen, sen, cos 1 Portanto a rotação reserva a estrutura dos colchetes de Posson. Todas as transformações que reservam a estrutura dos colchetes de Posson são chamadas de TRANSFORMAÇÕES CANÔNICAS. Se nós odemos construr uma transformação a artr de uma comosção de transformações nfntesmas (aromáves em valores de rmera ordem), de modo que: Q q q (, q) P (, q) Então resulta que: Q, P q, q, q, OBS : O termo q, é um nfntésmo ao quadrado e, ortanto, é desrezível. As condções ara que a transformação seja Canônca é dada or: Q, P q, Para que tenhamos sso, é necessáro então que: q, q,. Vamos eressar q da segunte forma: q q, q,, q, "erador de transformação Canônca". As quantas q e reresentam um fluo nfntesmal no esaço de fases, e este fluo é caracterzado or aqulo que chamamos de ERADORES. eradores, ortanto, são funções de q e um que caracterzam como os fluos se desenvolvem no esaço de fases. q q, q, á um teorema segundo o qual, todas as vezes que:, então a transformação é, q, canônca, de modo que Q, P q, q ; q. Vamos rovar este teorema: q,, q, q, q q q dq Se sabemos que q q,, então q, dq dt q, dt q,, q Notas baseadas nas aulas do Prof. Leonard Sussknd Unversdade de Stanford

4 4 Sendo assm, se consderarmos dt como o equvalente de, teremos q q, q. Vemos assm que o amltonano faz o mesmo ael do erador Canônco! Portanto a transformação de coordenadas qs ' e s ' que é gerada elo fluo atual do sstema é ela róra um caso esecal de uma Transformação Canônca. Por outro lado, todas as transformações canôncas odem ser obtdas através de um gerador (nclusve o róro amltonano). Se as transformações que são admssíves (aquelas que reservam a estrutura da Mecânca) são canôncas, qual é então a subclasse delas que, ara um determnado amltonano, odem ser classfcadas como smetras? OBS : Smetras são Transformações Canôncas que não alteram o amltonano, sendo esta uma dea mas generalzada do que a smetra das transformações que não modfcam o Lagrangeano. Portanto smetras são transformações canôncas no esaço de fases que não modfcam a energa do sstema mecânco. Vsualzando este conceto geometrcamente no esaço de fases, temos: Se suusermos que os fluos de e de são tas que o fluo ao longo se dá mantendo um valor constante de (valor constante de energa), então é um gerador de transformação canônca smétrca ou é uma smetra. Portanto é uma smetra, se o fluo crado or ele não modfca a energa. A condção ara sso é smles. Vamos consderar uma função A : Esta é justamente a eressão que usamos ara obter a dervada no temo no caso de ser o róro da dt A, amltonano: A mudança de uma função arbtrára ao longo de qualquer fluo é roorconal ao roduto de Posson desta função elo gerador do fluo. Então, ara que a energa não se altere ao longo do fluo, o roduto de Posson entre e deve d ser nulo, 0. Isto mlca também que, 0, o que sgnfca que 0. dt A elevada abstração desta forma de eressão ara a Mecânca assume grande mortânca e tem alcação real na Mecânca Quântca. Vamos ver um smles eemlo, observando o movmento de uma artícula lvre, com massa untára ( m 1) Momento Angular: A A A A A q A A, q q q (amltonano),,,,,, 0 Notas baseadas nas aulas do Prof. Leonard Sussknd Unversdade de Stanford

5 5 Assm, a anulação do roduto de Posson, mlca que o momento angular é conservado, mas também mlca que, se tvéssemos um amltonano dado ela eressão, então a quantdade também sera conservada neste novo sstema, o que ressalta a smetra do sstema. Neste caso, teríamos:, ortanto:,, (movmento crcular) Neste movmento, a quanta sera conservada. Notas baseadas nas aulas do Prof. Leonard Sussknd Unversdade de Stanford

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Resumo de Álgebra Linear - parte II

Resumo de Álgebra Linear - parte II Aula 7 Resumo de Álge Lnear - parte II 7.1 Resumo Nesta aula contnuamos desenvolvendo concetos báscos de álge lnear, aprmorando a famlardade com a notação de Drac. Bblograa: Moysés, 8.7 (em parte), e Cohen-Tannoudj,

Leia mais

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson

MECÂNICA CLÁSSICA. AULA N o 8. Invariância de Calibre-Partícula em um Campo Eletromagnético-Colchetes de Poisson 1 MECÂNICA CLÁSSICA AULA N o 8 Invarânca de Calbre-Partícula e u Capo Eletroagnétco-Colchetes de Posson Vaos ver novaente, agora co as detalhes, o ovento de ua partícula carregada e u capo eletroagnétco,

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Cinemática dos Corpos Rígidos em Relatividade (1)

Cinemática dos Corpos Rígidos em Relatividade (1) Vol. III, Fasc. GAZETA DE FÍSICA Março 956 Cnemátca dos Coros Rígdos em Relatvdade () Resumo Exressão geral da tânca elementar de dos ontos dum coro. Alcação: A) tânca medda no esaço róro do coro; B) tânca

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida.

Proposta de resolução do Exame Nacional de Matemática A 2017 (2 ạ fase) GRUPO I (Versão 1) Assim, 2! 3! 4 = 48 é a resposta pedida. Proosta de resolução do Eame Naconal de Matemátca A 7 ( ạ fase) GRUPO I (Versão ) P P I I I. 3 3! 3! = 6 = 8 Estem quatro maneras dstntas de os algarsmos ares estarem um a segur ao outro (PPIII ou IPPII

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

PQI Daí, substituindo as respectivas expressões de solução ideal e solução gasosa perfeita, temos (7-2)

PQI Daí, substituindo as respectivas expressões de solução ideal e solução gasosa perfeita, temos (7-2) PQI-581 014 7 Soluções Ideas 7.1 Defnção de solução deal Uma solução é dta deal se 1, ara todos os seus comonentes, temos: ln (7-1) onde é função aenas da temeratura e ressão. Esta defnção é nteressante

Leia mais

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES

NOTAS DE AULA DA DISCIPLINA CE DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES NOTAS DE AULA DA DISCIPLINA CE76 3 DISTRIBUIÇÃO NORMAL MULTIVARIADA 3 DENSIDADE NORMAL MULTIVARIADA E SUAS PROPRIEDADES A densdade normal multvarada é uma generalação da densdade normal unvarada ara dmensões

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e)

2003/2004. então o momento total das forças exercidas sobre o sistema é dado por. F ij = r i F (e) Resolução da Frequênca de Mecânca Clássca I/Mecânca Clássca 2003/2004 I Consdere um sstema de N partículas de massas m, =,..., N. a Demonstre que, se a força nterna exercda sobre a partícula pela partícula

Leia mais

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL

CAPÍTULO IV PROPRIEDADES GEOMÉTRICAS DA SEÇÃO TRANSVERSAL CPÍTULO IV PROPRIEDDES GEOMÉTRICS D SEÇÃO TRNSVERSL Propredades Geométrcas da Seção Transversal 4. Propredades Geométrcas da Seção Transversal 4.. Introdução O presente trabalho é desenvolvdo paralelamente

Leia mais

A de nição do operador derivada, em coordenadas cartesianas ortogonais é dada por. + r i^e i i ; i =

A de nição do operador derivada, em coordenadas cartesianas ortogonais é dada por.   + r i^e i  i ; i = 1 Segunda aula Lucana Eban luc.eban@gmal.com Sumáro: 1. Operador Dferencal; 2. Grandente de uma função escalar; 3. Dvergente de um vetor; 4. Rotaconal de um vetor; 5. Laplacano; 6. Algumas dentdades; 7.

Leia mais

Sistemas Equivalentes de Forças

Sistemas Equivalentes de Forças Nona E 3 Corpos CÍTULO ECÂNIC VETORIL R ENGENHEIROS: ESTÁTIC Ferdnand. Beer E. Russell Johnston, Jr. Notas de ula: J. Walt Oler Teas Tech Unverst Rígdos: Sstemas Equvalentes de Forças 2010 The cgraw-hll

Leia mais

Sistemas Reticulados

Sistemas Reticulados 9//6 EF6 EF6 Estruturas na rqutetura I I - Sstemas Retculados Estruturas na rqutetura I Sstemas Retculados E-US FU-US Estruturas Hperestátcas Sstemas Retculados & ão-lneardade do omportamento Estrutural

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Compacidade em espaços métricos

Compacidade em espaços métricos Comacdade em esaços métrcos Gselle Moraes Resende Perera, Lucana Yoshe Tsuchya e Geraldo Márco de Azevedo Botelho 3 de abrl de 2009 1 Introdução Comacdade é um dos concetos centras da toologa Na reta,

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005)

Trabalho e Energia. Curso de Física Básica - Mecânica J.R. Kaschny (2005) Trabalho e Energa Curso de Físca Básca - Mecânca J.R. Kaschny (5) Lembrando nosso epermento de queda lvre... z z 1 v t 1 z = z - v t - gt ( ) z- z v = g = t Contudo, se consderarmos obtemos: v z z 1 t

Leia mais

Termo-Estatística Licenciatura: 4ª Aula (08/03/2013)

Termo-Estatística Licenciatura: 4ª Aula (08/03/2013) Termo-Estatístca Lcencatura: 4ª Aula (08/03/013) Prof. Alvaro Vannucc RELEMBRADO Dstrbução dscreta (hstogramas) x contínua (curvas de dstrbução): Dada uma Função de Dstrbução de Densdade de Probabldade,

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Unversdade Estadual do Sudoeste da Baha Departamento de Cêncas Exatas e Naturas 5 - Rotações, Centro de Massa, Momento, Colsões, Impulso e Torque Físca I Ferrera Índce 1. Movmento Crcular Unformemente

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

Resumo. Caos clássico. A velha teoria quântica. Caos quântico. Lorenz

Resumo. Caos clássico. A velha teoria quântica. Caos quântico. Lorenz Caos Quântco Raúl O. Vallejos Centro Braslero de Pesqusas Físcas Ro de Janero www.cbf.br/~vallejos Resumo Caos clássco A vela teora quântca Caos quântco Caos Clássco UFBA, Salvador, 7--007 3 Hstóra Henr

Leia mais

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1

SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1 SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo

Leia mais

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS

D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS D- MÉTODO DAS APROXIMAÇÕES SUCESSIVAS O método das apromações sucessvas é um método teratvo que se basea na aplcação de uma fórmula de recorrênca que, sendo satsfetas determnadas condções de convergênca,

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

OPF básico - Exemplo de aplicação dos conceitos de optimização não linear Notas para a disciplina de DOSE (LEEC-FEUP)

OPF básico - Exemplo de aplicação dos conceitos de optimização não linear Notas para a disciplina de DOSE (LEEC-FEUP) OF básco - Exemlo de alcação dos concetos de otmzação não lnear Notas ara a dsclna de DOSE (EE-FEU Manuel Matos FEU, 4. Introdução A nclusão das equações do trânsto de otêncas no roblema do desacho económco

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

Dinâmica Estocástica. Instituto de Física, outubro de Tânia Tomé - Din Estoc

Dinâmica Estocástica. Instituto de Física, outubro de Tânia Tomé - Din Estoc Dnâmca Estocástca Insttuto de Físca, outubro de 2016 1 Dnâmcas estocástcas para o modelos defndos em redes Sstema defndo em um retculado em um espaço de d dmensões Exemplo: rede quadrada d=2 em que cada

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade Laboratóro de Mecânca Aplcada I Determnação de Centros de Gravdade Em mutos problemas de mecânca o efeto do peso dos corpos é representado por um únco vector, aplcado num ponto denomnado centro de gravdade.

Leia mais

Ajuste de um modelo linear aos dados:

Ajuste de um modelo linear aos dados: Propagação de erros Suponhamos que se pretende determnar uma quantdade Z, a partr da medda drecta das grandezas A, B, C,, com as quas se relacona através de Z = f(a,b,c, ). Se os erros assocados a A, B,

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar )

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar ) Análse de altas balanceadas e não-balanceadas utlzando. Análse de alta balanceada usando a matrz de mpedânca de ra ( ) Aqu será eta uma análse de cálculo de curto-crcuto trásco (alta balanceada), utlzando

Leia mais

3 Animação de fluidos com SPH

3 Animação de fluidos com SPH 3 Anmação de fludos com SPH O SPH (Smoothed Partcle Hydrodynamcs) é um método Lagrangeano baseado em partículas, proposto orgnalmente para smulação de problemas astrofíscos por Gngold e Monaghan (1977)

Leia mais

Capítulo 2 Método de Cross

Capítulo 2 Método de Cross UNIERSIDDE NDRNTE DE SÃO PUO - Escola de Engenhara vl Notas de aula do curso Teora das Estruturas Prof. Dr. Rcardo de. lvm.. Introdução aítulo étodo de ross O étodo de ross é um método que ermte calcular

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

2 Esquemas conceituais em lógica de descrição

2 Esquemas conceituais em lógica de descrição 2 Esquemas concetuas em lógca de descrção Lógca de descrção (Descrton Logc LD) [4] é o nome dado ara uma famíla de formalsmos de reresentação de conhecmento. Para modelar um domíno de alcação em LD, rmeramente

Leia mais

ESTUDO DA MÁQUINA SIMÉTRICA TRIFÁSICA

ESTUDO DA MÁQUINA SIMÉTRICA TRIFÁSICA CAPÍTUO ETUDO DA ÁQUINA IÉTICA TIFÁICA. INTODUÇÃO A máquna de ndução trfásca com rotor bobnado é smétrca. Apresenta estruturas magnétcas clíndrcas tanto no rotor quanto no estator. Os enrolamentos, tanto

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Física Geral 3001 Cap 4 O Potencial Elétrico

Física Geral 3001 Cap 4 O Potencial Elétrico Físca Geral 3001 Cap 4 O Potencal Elétrco (Cap. 26 Hallday, Cap. 22 Sears, Cap 31 Tpler vol 2) 10 ª Aula Sumáro 4.1 Gravtação, Eletrostátca e Energa Potencal 4.2 O Potencal Elétrco 4.3 Superíces equpotencas

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

CAPÍTULO II 1ª LEI DA TERMODINÂMICA

CAPÍTULO II 1ª LEI DA TERMODINÂMICA APÍULO II - 1ª Le da ermodnâmca 1 APÍULO II 1ª LEI DA ERMODINÂMIA Introdução A ermodnâmca Químca é uma cênca nterdsclnar, que estuda as transormações de energa, e a sua relação com a estrutura da matéra.

Leia mais

8 Soluções Não Ideais

8 Soluções Não Ideais 8 Soluções Não Ideas 8.1 Convenções para o coefcente de atvdade na escala de frações molares Para a solução deal temos ln x onde é função apenas da pressão e temperatura. Fo anterormente mostrado que todas

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

Fluido Perfeito/Ideal

Fluido Perfeito/Ideal ν ref ref e L R scosdade do fludo é nula, ν0 - Número de Renolds é nfnto Admtndo que a conductbldade térmca é 0 s s s t s s t s Ds Admtndo que a conductbldade térmca é sufcentemente pequena para que se

Leia mais

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2. Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Introdução às Medidas em Física a Aula

Introdução às Medidas em Física a Aula Introdução às Meddas em Físca 4300152 8 a Aula Objetvos: Experênca Curvas Característcas Meddas de grandezas elétrcas: Estudar curvas característcas de elementos resstvos Utlzação de um multímetro Influênca

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Problemas de engenharia

Problemas de engenharia Análse de Sstemas de otênca Análse de Sstemas de otênca ( AS ) Aula 3 Operação Econômca de Sstemas de otênca 03//008 roblemas de engenhara Análse de Sstemas de otênca ( AS ) ANÁLISE Defndo o sstema, determnar

Leia mais

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert α ( y) l Método de Glauert Γ( y) r ( y) V c( y) β b 4 V b ( y) + r dy dγ y y dy Método de resolução da equação ntegro-dferencal da lnha sustentadora através da sua transformação num sstema de equações

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Curso Técnico em Informática. Eletricidade

Curso Técnico em Informática. Eletricidade Curso Técnco em Informátca Eletrcdade Eletrcdade Aula_0 segundo Bmestre Intensdade do Vetor B Condutor Retlíneo A ntensdade do vetor B, produzdo por um condutor retlíneo pode ser determnada pela Le de

Leia mais

5 Formulação para Problemas de Potencial

5 Formulação para Problemas de Potencial 48 Formulação para Problemas de Potencal O prncpal objetvo do presente capítulo é valdar a função de tensão do tpo Westergaard obtda para uma trnca com abertura polnomal (como mostrado na Fgura 9a) quando

Leia mais

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos Razão de crescmento desse temo Imortânca de análse de algortmos Um mesmo roblema ode, em mutos casos, ser resolvdo or város algortmos. Nesse caso, qual algortmo deve ser o escolhdo? Crtéro 1: fácl comreensão,

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

A seguir veremos o conceito de limites das funções de duas ou mais variáveis.

A seguir veremos o conceito de limites das funções de duas ou mais variáveis. Limites de Função de várias variáveis. Limites: No curso de CDI-I estudamos ite de uma função real de uma variável. A definição rigorosa de ite é dada or: f ( L, ( / se A seguir veremos o conceito de ites

Leia mais

11. Indutância (baseado no Halliday, 4 a edição)

11. Indutância (baseado no Halliday, 4 a edição) 11. Indutânca Capítulo 11 11. Indutânca (baseado no Hallday, 4 a edção) Capactores e Indutores Capactores Capactor: dspostvo que podemos usar para produzr um determnado campo elétrco numa certa regão do

Leia mais

Sobre o teorema quântico de Sommerfeld e de Epstein

Sobre o teorema quântico de Sommerfeld e de Epstein Revsta Braslera de Ensno de Físca, v. 27, n. 1, p. 103-107, (2005) www.sbfsca.org.br Sobre o teorema quântco de Sommerfeld e de Epsten (Zum Quantensatz von Sommerfeld und Epsten) A. Ensten Publcado nos

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro.

Variação ao acaso. É toda variação devida a fatores não controláveis, denominadas erro. Aplcação Por exemplo, se prepararmos uma área expermental com todo cudado possível e fzermos, manualmente, o planto de 100 sementes seleconadas de um mlho híbrdo, cudando para que as sementes fquem na

Leia mais

Terceira aula de mecânica dos fluidos para engenharia química (ME5330) 02/03/2010

Terceira aula de mecânica dos fluidos para engenharia química (ME5330) 02/03/2010 Tercera aula de mecânca dos ludos ara engenara químca (ME5330) 0/03/010 e s me ms V t t res determnação da vaão de orma dreta e e avalação alar da atvdade da cração vídeo odcast determnação da ressão na

Leia mais

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO 4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO Na Estátca, estuda-se o equlíbro dos corpos sob ação de esforços nvarantes com o tempo. Em cursos ntrodutóros de Mecânca, esse é, va de regra,

Leia mais

ROBÓTICA. Cinemática de Robôs Manipuladores. Prof. Winderson Dpto. de Eletrotécnica - UTFPR UTFPR 1

ROBÓTICA. Cinemática de Robôs Manipuladores. Prof. Winderson Dpto. de Eletrotécnica - UTFPR UTFPR 1 ROBÓTIC Cnemátca de Robôs Manladores rof. Wnderson Dto. de Eletrotécnca - UTFR UTFR Tócos. Introdção 2. Rotação 3. Reresentação da Orentação 4. Transformação de Coordenadas UTFR 2 Confgração de robôs:.

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

Método do limite superior

Método do limite superior Introdução O método do lmte superor é uma alternata analítca apromada aos métodos completos (e: método das lnhas de escorregamento) que possu um domíno de aplcabldade muto asto e que permte obter alores

Leia mais

Parênteses termodinâmico

Parênteses termodinâmico Parênteses termodnâmco Lembrando de 1 dos lmtes de valdade da dstrbução de Maxwell-Boltzmann: λ

Leia mais

DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS

DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS Físca Laboratoral I Ano Lectvo 7/8 RABALHO RÁICO Nº - LICENCIAURA E FÍSICA DEERINAÇÃO DAS CONSANES ELASICAS DE OLAS Objectvo - Neste trabalho pretende-se medr as constantes elástcas de duas molas e as

Leia mais

MODELAGEM E SIMULAÇÃO DE UM SISTEMA MASSA-MOLA COM 2 GRAUS DE LIBERDADE

MODELAGEM E SIMULAÇÃO DE UM SISTEMA MASSA-MOLA COM 2 GRAUS DE LIBERDADE MODELAGEM E SIMULAÇÃO DE UM SISTEMA MASSA-MOLA COM 2 GRAUS DE LIBERDADE C. Cancan; P. Domngues 1. INTRODUÇÃO O presente texto tem como objetvo apresentar a resolução e uma dscussão dos aspectos teórcos

Leia mais

A ; (1) A z. A A y

A ; (1) A z. A A y 1 Prmera aula Thals Grard thalsjg@gmal.com Sumáro 1. Introdução da notação ndcal 2. O produto escalar e o de Kronecker 3. Rotações 4. O produto vetoral e o " de Lev-Cvta 5. Trplo produto escalar e determnantes

Leia mais

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou

Um modelo nada mais é do que uma abstração matemática de um processo real (Seborg et al.,1989) ou Dscplna - MR070 INTRODUÇÃO À MODELAGEM DE SISTEMAS LINEARES POR EQUAÇÕES DIFERENCIAIS Os modelos de um determnado sstema podem ser físcos ou matemátcos. Neste curso focaremos a modelagem pela dentfcação

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

Prof. Dr. Alfredo Takashi Suzuki

Prof. Dr. Alfredo Takashi Suzuki JORNADA DE FÍSICA TEÓRICA INSTITUTO DE FÍSICA TEÓRICA U.N.E.S.P. 19 a 3-07-010 CAMPOS: CLÁSSICOS, QUÂNTICOS, DE GAUGE E POR AÍ AFORA Jornada de Físca Teórca 010 Insttuto de Físca Teórca/UNESP Prof. Dr.

Leia mais

Dados ajustáveis a uma linha recta

Dados ajustáveis a uma linha recta Capítulo VI juste dos Mínmos Quadrados Dados ajustáves a uma lnha recta Determnação das constantes e B Incerteza nas meddas de Incerteza na determnação de e B juste dos mínmos quadrados a outras curvas:

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrque arbosa Edfíco asílo Jafet - Sala 00 Tel. 309-6647 hbarbosa@f.usp.br http://www.fap.f.usp.br/~hbarbosa Faraday e Maxwell 79-867 O potencal elétrco Defnção de potencal: para um deslocamento

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais